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Fig. 1. We propose a learning-based approach to produce a high-quality HDR image (shown in middle) given three differently exposed LDR images of a

dynamic scene (shown on the left). We first use the optical flow method of Liu [2009] to align the images with low and high exposures to the one with medium

exposure, which we call the reference image (shown with blue border). Note that, we use reference to refer to the LDR image with the medium exposure,

which is different from the ground truth HDR image. Our learning system generates an HDR image, which is aligned to the reference image, but contains

information from the other two images. For example, the details on the table are saturated in the reference image, but are visible in the image with the shorter

exposure. The method of Kang et al. [2003] is able to recover the saturated regions, but contains some minor artifacts. However, the patch-based method of

Sen et al. [2012] is not able to properly reproduce the details in this region because of extreme motion. Moreover, Kang et al.’s method introduces alignment

artifacts which appear as tearing in the bottom inset. The method of Sen et al. produces a reasonable result in this region, but their result is noisy since they

heavily rely on the reference image. Our method produces a high-quality result, better than other approaches both visually and numerically. See Sec. 4 for

details about the process of obtaining the input LDR and ground truth HDR images. The full images as well as comparison against a few other approaches are

shown in the supplementary materials. The differences in the results presented throughout the paper are best seen by zooming into the electronic version.

Producing a high dynamic range (HDR) image from a set of images with
different exposures is a challenging process for dynamic scenes. A category
of existing techniques first register the input images to a reference image and
then merge the aligned images into an HDR image. However, the artifacts
of the registration usually appear as ghosting and tearing in the final HDR
images. In this paper, we propose a learning-based approach to address
this problem for dynamic scenes. We use a convolutional neural network
(CNN) as our learning model and present and compare three different system
architectures to model the HDR merge process. Furthermore, we create a
large dataset of input LDR images and their corresponding ground truth
HDR images to train our system. We demonstrate the performance of our
system by producing high-quality HDR images from a set of three LDR
images. Experimental results show that our method consistently produces
better results than several state-of-the-art approaches on challenging scenes.
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1 INTRODUCTION

Standard digital cameras typically take images with under/over-
exposed regions because of their sensors’ limited dynamic range.
Themost commonway to capture high dynamic range (HDR) images
using these cameras is to take a series of low dynamic range (LDR)
images at different exposures and then merge them into an HDR
image [Debevec and Malik 1997]. This method produces spectacular
images for tripod mounted cameras and static scenes, but generates
results with ghosting artifacts when the scene is dynamic or the
camera is hand-held.
Generally, this problem can be broken down into two stages: 1)

aligning the input LDR images and 2) merging the aligned images
into an HDR image. The problem of image alignment has been
extensively studied and many powerful optical flow algorithms
have been developed. These methods [Liu 2009; Chen et al. 2013]
are typically able to reasonably align images with complex non-rigid
motion, but produce artifacts in the regionswith no correspondences
(see Fig. 2). These artifacts usually appear in the HDR results, which
are obtained by merging the aligned images during the second stage.

Our main observation is that the artifacts of the alignment can be
significantly reduced during merging. However, this is a complex
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process since it requires detecting the regions with artifacts and
excluding them from the final results. Therefore, we propose to learn
this complex process from a set of training data. Specifically, given
a sequence of LDR images with low, medium, and high exposures,
we first align the low and high exposure images to the medium
exposure one (reference) using optical flow. We then use the three
aligned LDR images as the input to a convolutional neural network
to generate an HDR image that approximates the ground truth HDR
image. Note that, the reference refers to the LDR image withmedium
exposure and is different from the ground truth HDR image. As seen
in Fig. 1, the input LDR images can be of dynamic scenes with a
considerable motion between them. To explore this idea, we present
and compare three different system architectures and compute the
required gradients for end-to-end training of each architecture.

One challenge is that we need a large number of scenes to properly
train a deep network, but such a dataset is not available. We address
this issue by proposing an approach to create a set of LDR images
with motion and their corresponding ground truth image (Sec. 4).
Specifically, we generate the ground truth HDR image using a set of
three bracketed exposure images captured from a static scene. We
then capture another set of three bracketed exposure images of the
same scene with motion. Finally, we replace the medium exposure
from the dynamic set with the corresponding image from the static
set (see Fig. 7). We create a dataset of 74 training scenes with this
approach and substantially extend it with data augmentation.

Experimental results demonstrate that our method is robust and
handles challenging cases better than state-of-the-art HDR recon-
struction approaches (see Fig. 1). In summary, our work makes the
following contributions:

• We propose the first machine learning approach for recon-
structing an HDR image from a set of bracketed exposure
LDR images of a dynamic scene (Sec. 3).

• We fully explore the idea by presenting three different sys-
tem architectures and comparing them extensively (Sec. 3.2).

• We introduce the first dataset suitable for learning HDR re-
construction, which can facilitate future learning research
in this domain (Sec. 4). In addition, our dataset can poten-
tially be used to compare different HDR reconstruction
approaches. Note that, existing datasets, such as the one
introduced by Karaduzovic et al. [2016], contain limited
scenes and are not suitable for training a deep CNN.

2 RELATED WORK

High dynamic range imaging has been the subject of extensive
research over the past decades. One class of techniques captures
HDR images in a single shot by modifying the camera hardware.
For example, a few methods use a beam-splitter to split the light
to multiple sensors [Tocci et al. 2011; McGuire et al. 2007]. Several
approaches propose to reconstruct HDR images from coded per-
pixel exposure [Heide et al. 2014; Hajisharif et al. 2015; Serrano et al.
2016] or modulus images [Zhao et al. 2015]. These methods produce
high-quality results on dynamic scenes since they capture the entire
image in a single shot. Unfortunately, they require cameras with a
specific optical system or sensor, which are typically custom made
and expensive and, thus, not available to the general public.

Another category of approaches reconstructs HDR images from a
stack of bracketed exposure LDR images. Since bracketed exposure
images can be easily captured with standard digital cameras, these
methods are popular and used in widely available devices such as
smartphone cameras. We categorize these approaches into three
general classes and discuss them next.

2.1 Rejecting Pixels with Motion

These approaches start by registering all the input images globally.
The static pixels will have the same color across the stack and can
be merged into HDR as usual. If a pixel is moving, these methods
detect it and reject it. Different approaches have different ways of
detecting the motion.
Khan et al. [2006] compute the probability that a given pixel

is part of the background and assign weights accordingly. Jacobs
et al. [2008] detects moving pixels by computing local entropy of
different images in the stack. Pece and Kautz [2010] compute median
threshold bitmaps for each image to generate a motion map. Zhang
and Cham [2012] propose to detect movement by analyzing the
image gradient. Several approaches predict the pixel colors of an
image in another exposure and compare them to the original pixel
colors to detect motion [Grosch 2006; Gallo et al. 2009; Raman and
Chaudhuri 2011]. Heo et al. [2010] assign a weight to each pixel by
computing a Gaussian-weighted distance to a reference pixel color.

Granados et al. [2013] detects the consistent subset of pixels across
the image stack and then solves a labeling problem to produce a
visually pleasing HDR result. Detecting the inconsistent pixels with
a bidirectional approach has been investigated by Zheng et al. [2013]
and Li et al. [2014]. Rank minimization has also been used [Lee et al.
2014; Oh et al. 2015] to reject outliers and reconstruct the final HDR
image. However, these methods are not able to handle moving HDR
content as they simply reject their corresponding pixels.

2.2 Alignment Before Merging

These approaches first align the input images and then merge them
into an HDR image. Several methods have been proposed to per-
form rigid alignment using translation [Ward 2003] or homogra-
phy [Tomaszewska and Mantiuk 2007]. However, they are unable
to handle moving HDR content.

Bogoni [2000] estimates local motion using optical flow to align
the input images. Kang et al. [2003] use a variant of the optical flow
method by Lucas and Kanade [1981] to estimate the flow and propose
a specialized HDR merging process to reject the artifacts of the
registration. Jinno and Okuda [2008] pose the problem as a Markov
random field to estimate a displacement field. Zimmer et al. [2011]
find optical flow by minimizing an energy function consisting of
gradient and smoothness terms. Hu et al. [2012] align the images by
finding dense correspondences usingHaCohen et al.’s method [2011].
Gallo et al. [2015] propose a fast motion estimation approach for
images with small motion. These approaches use simple merging
methods to combine the aligned LDR images, and thus, are not able
to avoid alignment artifacts in challenging cases.

2.3 Joint Alignment and Reconstruction

The approaches in this category perform the alignment and HDR
reconstruction in a unified optimization system. Sen et al. [2012]
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propose a patch-based optimization system to fill in the missing
under/over-exposed information in the reference image from the
other images in the stack. Hu et al. [2013] propose a similar patch-
based system, but include camera calibration as part of the opti-
mization. Although these two methods are perhaps the state of
the art in HDR reconstruction, patch-based synthesis produces
unsatisfactory results in challenging cases where the reference
has large over-exposed regions or is significantly under-exposed
(Figs. 1, 13, 14, 16 and Table 1).

3 ALGORITHM

Given a set of three LDR images of a dynamic scene (Z1,Z2,Z3),
our goal is to generate a ghost-free HDR image, H , which is aligned
to the medium exposure image Z2 (reference). This process can be
broken down into two stages of 1) alignment and 2) HDR merge.
During alignment, the LDR images with low and high exposures,
defined with Z1 and Z3, respectively, are registered to the reference
image, denoted as Z2. This process produces a set of aligned images,
I = {I1, I2, I3}, where I2 = Z2. These aligned images are then
combined in the HDR merge stage to produce an HDR image, H .
Extensive research on the problem of image alignment (stage 1)

has resulted in powerful techniques over the past decades. These
non-rigid alignment approaches are able to reasonably register the
LDR images with complex non-rigid motion, but often produce ar-
tifacts around the motion boundaries and on the occluded regions
(Fig. 2). Since the aligned images are used during the HDR merge
(stage 2) to produce the final HDR image, these artifacts could po-
tentially appear in the final result.

Our main observation is that the alignment artifacts from the first
stage can be significantly reduced through the HDR merge in the
second stage. This is in fact a challenging process and there has been
significant research on this topic, even for the case when the images
are perfectly aligned. Therefore, we propose to model this process
with a learning system.1 Inspired by the recent success of deep
learning in a variety of applications such as colorization [Cheng
et al. 2015; Iizuka et al. 2016] and view synthesis [Flynn et al. 2016;
Kalantari et al. 2016], we propose to model the process with a con-
volutional neural network (CNN).

3.1 Overview

In this section, we provide an overview of our approach (shown in
Fig. 3) by explaining different stages of our system.

Preprocessing the Input LDR Images. If the LDR images are not in
the RAW format, we first linearize them using the camera response
function (CRF), which can be obtained from the input stack of images
using advanced calibration approaches [Grossberg and Nayar 2003;
Badki et al. 2015]. We then apply gamma correction (γ = 2.2) on
these linearized images to produce the input images to our system,
Z1,Z2,Z3. The gamma correction basically maps the images into a
domain that is closer to what we perceive with our eyes [Sen et al.
2012]. Note that, this process replaces the original CRF with the
gamma curve which is used to map images from LDR to the HDR
domain and vice versa.

1We also experimented with learning the alignment process, but the system had similar
performance as the optical flow method, since most artifacts could be reduced through
the merging step.

Our HDR Reference High Aligned High Our HDR Ground Truth
Fig. 2. We use the optical flowmethod of Liu [2009] to align the images with

high and low exposures (only high is shown here) to the reference image.

As shown in the top inset, optical flow methods are able to reasonably align

the images where there are correspondences. However, in the regions with

no correspondence (the bottom row), they produce artifacts. Our learning-

based system is able to produce a high-quality HDR image by detecting

these regions and excluding them from the final results.

Alignment. Next, we produce aligned images by registering the
images with low (Z1) and high (Z3) exposures to the reference image,
Z2. For simplicity, we explain the process of registering Z3 to Z2,
but Z1 can be aligned to Z2 in a similar manner. Since optical flow
methods require brightness constancy to perform well, we first raise
the exposure of the darker image to the brighter one. In this case, we
raise the exposure of Z2 to match that of Z3 to obtain the exposure

corrected image. Formally, this is obtained as Z2,3 = clip(Z2Δ
1/γ
2,3 ),

where the clipping function ensures the output is always in the
range [0, 1]. Moreover, Δ2,3 is the exposure ratio of these two images,
Δ2,3 = t3/t2, where t2 and t3 are the exposure times of the reference
and high exposure images.

We then compute the flow between Z3 and Z2,3 using the optical
flow algorithm by Liu [2009]. Finally, we use bicubic interpolation
to warp the high exposure image Z3 using the calculated flow. This
process produces a set of aligned images I = {I1, I2, I3} which are
then used as the input to our learning-based HDRmerge component
to produce the final HDR image, H . An example of aligned images
can be seen in Fig. 9.

HDR Merge. The main challenge of this component is to detect
the alignment artifacts and avoid their contribution to the final
HDR image. In our system, we use machine learning to model this
complex task. Therefore, we need to address two main issues: the
choice of 1) model, and 2) loss function, which we discuss next.
1) Model: We use convolutional neural networks (CNNs) as our

learning model and present and compare three different system
architectures to model the HDR merge process. We discuss them in
detail in Sec. 3.2.
2) Loss Function: Since HDR images are usually displayed after

tonemapping, we propose to compute our loss function between the
tonemapped estimated and ground truth HDR images. Although
powerful tonemapping approaches have been proposed, these meth-
ods are typically complex and not differentiable. Therefore, they are
not suitable to be used in our system. Gamma encoding, defined
as H1/γ with γ > 1, is perhaps the simplest way of tonemapping
in image processing. However, since it is not differentiable around
zero, we are not able to use it in our system.
Therefore, we propose to use μ-law, a commonly-used range

compressor in audio processing, which is differentiable (see Eq. 5)
and suitable for our learning system. This function is defined as:
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Input LDR Images Aligned LDR Images

HDR Merger
Sec. 3.2 Tonemapper

Final Tonemapped 
HDR Image

Alignment with
Optical Flow

Final HDR Image

Fig. 3. In our approach, we first align the input LDR images using the optical flow method of Liu [2009] to the reference image (medium exposure). We

then use the aligned LDR images as the input to our learning-based HDR merge system to produce a high-quality HDR image which is then tonemapped to

produce the final image.

Our Tonemapped HDR Image Linear Ours Ground Truth
Fig. 4. We compare the result of training our system using the loss func-

tion in Eq. 2 in the linear and tonemapped (indicated as “Ours”) domains.

Tonemapping boosts the pixel values in the dark regions, and thus, opti-

mization in the tonemapped domain gives more emphasis to these darker

pixels in comparison with the optimization in the linear domain. Therefore,

optimizing in the linear domain often produces results with discoloration,

noise, and other artifacts in the dark regions, as shown in the insets.

T =
log(1 + μH )

log(1 + μ)
, (1)

where μ is a parameter which defines the amount of compression,
H is the HDR image in the linear domain, and T is the tonemapped
image. In our implementation, H is always in the range [0, 1] and
we set μ to 5000. In our approach, we train the learning system
by minimizing the �2 distance of the tonemapped estimated and
ground truth HDR images defined as:

E =
3∑

k=1

(
T̂k −Tk

)2
, (2)

where T̂ and T are the estimated and ground truth tonemapped
HDR images and the summation is over color channels.
Note that we could have chosen to instead train our system by

computing the error in Eq. 2 directly on the estimated (Ĥ ) and
ground truth (H ) HDR images in the linear domain. Although this
system produces HDR images with small error in the linear HDR
domain, the estimated images typically demonstrate discoloration,
noise, and other artifacts after tonemapping, as shown in Fig. 4.

3.2 Learning-Based HDR Merge

The goal of the HDR merge process is to take the aligned LDR
images, I1, I2, I3, as input and produce a high-quality HDR image, H .
Intuitively, this process requires estimating the quality of the input
aligned HDR images and combining them based on their quality.
For example, an image should not contribute to the final HDR result
in the regions with alignment artifacts, noise, or saturation.

Generally, we need the aligned images in both the LDR and HDR
domains to measure their quality. The images in the LDR domain
are required to detect the noisy or saturated regions. For example,
a simple rule would be to consider all the pixels that are smaller

Estimated 
HDR Image

LDR

Aligned Images

HDR

CNN
Fig. 6

Blending
Weights

Alpha Blend
Eq. 6

Estimated 
HDR Image

CNN
Fig. 6

Blending
Weights

Alpha Blend
Eq. 6

Estimated 
HDR Image

Refined
Aligned

CNN
Fig. 6

HDR Merger

3) Weight and Image Estimator (WIE)

2) Weight Estimator (WE)

1) Direct

HDR Merger

HDR Merger

LDR

Aligned Images

HDR

LDR

Aligned Images

HDR

Fig. 5. Each row demonstrates a different architecture for learning the

HDR merge process. The top row shows the architecture where we model

the entire process using a CNN. We constrain the problem for the other

two architectures (middle and bottom rows) by using the knowledge from

existing techniques. See the text in Sec. 3.2 for more details.

than 0.1 and larger than 0.9, noisy and saturated, respectively. More-
over, the images in the HDR domain could be helpful for detecting
misalignments by, for example, measuring the amount of deviation
from the reference image.

Therefore, the HDR merge process can be formally written as:

H = д(I,H), (3)

where д is a function which defines the relationship of the HDR
image, H , to the inputs. Here, H is the set of aligned images in
the HDR domain, H1,H2,H3. Note that these are obtained from the
aligned LDR images, Ii , as: Hi = I

γ
i /ti , where ti is the exposure

time of the ith image.2 As discussed earlier, the HDR merge process,
which is defined with the function д, is complex. Therefore, we
propose to model it with a learning system and present and compare
three different architectures for this purpose (see Fig. 5).

We start by discussing the first and simplest architecture (direct),
where the entire process is modeled with a single CNN. We then use
knowledge from the existing HDR merge techniques to constrain
the problem in the weight estimator (WE) architecture by using the
network to only estimate a set of blending weights. Finally, in the
weight and image estimator (WIE) architecture, we relax some of the
constraints of the WE architecture by using the network to output a
set of refined aligned LDR images in addition to the blendingweights.
Overall, the three architectures produce high-quality results, but
have small differences which we discuss later.

2During the preprocessing step, a gamma curve is used to map the images from linear
HDR domain to the LDR domain, and thus, we raise the LDR images to the power of
gamma to take them to the HDR domain.
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1) Direct. In this architecture, we model the entire HDR merge
process using a CNN, as shown in Fig. 5 (top). In this case, the CNN
directly parametrizes the function д in terms of its weights. The
CNN takes a stack of aligned images in the LDR and HDR domains
as input, {I,H} and outputs the final HDR image, H .
The estimated HDR image is then tonemapped using Eq. 1 to

produce the final tonemapped HDR image (see Fig. 3). The goal of
training is to find the optimal network weights,w , by minimizing
the error between the estimated and ground truth tonemapped
HDR images, defined in Eq. 2. In order to use gradient descent based
techniques to train the system, we need to compute the derivative
of the error with respect to the network weights. To do so, we use
the chain rule to break down this derivative into three terms as:

∂E

∂w
=
∂E

∂T̂

∂T̂

∂Ĥ

∂Ĥ

∂w
. (4)

The first term is the derivative of the error function in Eq. 2
with respect to the estimated tonemapped image. Since our error is
quadratic, this derivative can be easily computed. The second term
is the derivative of the tonemapping function, defined in Eq. 1, with
respect to its input. Since we use μ-law function as our tonemapping
function, this derivative can be computed as:

∂T̂

∂Ĥ
=

μ

log(1 + μ)

1

1 + μĤ
. (5)

Finally, the last term is the derivative of the network output with
respect to its weights which can be calculated using backpropaga-
tion [Rumelhart et al. 1986].
Overall, the CNN in this simple architecture models the entire

complex HDR merge process, and thus, training the network with a
limited number of scenes is difficult. Although this architecture is
able to produce high-quality results, in some cases it leaves residual
alignment artifacts in the final HDR images, as will be shown later
in Fig. 9 (top row). In the next architecture, we use some elements
of the previous HDR merge approaches to constrain the problem.

2) Weight Estimator (WE). The existing techniques typically com-
pute a weighted average of the aligned HDR images to produce the
final HDR result:

Ĥ (p) =

∑3
j=1 α j (p)Hj (p)
∑3
j=1 α j (p)

, where Hj (p) =
I
γ
j

tj
. (6)

Here, the weight α j (p) basically defines the quality of the jth

aligned image at pixel p and needs to be estimated from the input
data. Previous HDR merging approaches calculate these weights
by, for example, the derivative of inverse CRF [Mann and Picard
1995], a triangle function [Debevec andMalik 1997], or modeling the
camera noise [Granados et al. 2010]. Unfortunately, these methods
assume that the images are perfectly aligned and do not workwell on
dynamic scenes. To handle the alignment artifacts, Kang et al. [2003]
propose to use a Hermite cubic function to weight the other images
based on their distance to the reference.

We propose to learn the weight estimation process using a CNN.
In this case, the CNN takes the aligned LDR and HDR images as
input, {I,H}, and outputs the blending weights, ααα . We then com-
pute a weighted average of the aligned HDR images using these
estimated weights (see Eq. 6) to produce the final HDR image.

To train the network in this architecture, we need to compute the
derivative of the error with respect to the network’s weights. We
use the chain rule to break down this derivative into four terms as:

∂E

∂w
=
∂E

∂T̂

∂T̂

∂Ĥ

∂Ĥ

∂ααα

∂ααα

∂w
. (7)

Note that, the last term is basically the derivative of the network’s
output with respect to its weights and can be calculated using back-
propagation [Rumelhart et al. 1986]. Here, the only difference with
respect to Eq. 4 is the third term. This term, ∂Ĥ/∂ααα , is the derivative
of our estimated HDR image with respect to the blending weights,
α1,α2,α3. Since the estimated HDR image in this case is obtained
using Eq. 6, we can compute this derivative as:

∂Ĥ

∂αi
=

Hi (p) − Ĥ (p)∑3
j=1 α j (p)

. (8)

This architecture is more constrained than the direct architecture
and easier to train. Therefore, it produces high-quality results with
significantly fewer residual artifacts (see Fig. 9). Moreover, this
architecture produces the final HDR results using only the original
content of the aligned LDR images. Therefore, it should be used
when staying faithful to the original content is important.

3) Weight and Image Estimator (WIE). In this architecture we relax
the restriction of the previous architecture by allowing the network
to output refined aligned images in addition to the blending weights.
Here, the network takes the aligned LDR and HDR images as input
and outputs the weights and the refined aligned images, {ααα , Ĩ}. We
use Eq. 6 to compute the final HDR image using the refined images,
Ĩi , and the estimated blending weights, αi .

Again we can compute the derivative of the error with respect to
the network weights using the chain rule as:

∂E

∂w
=
∂E

∂T̂

∂T̂

∂Ĥ

∂Ĥ

∂{ααα , Ĩ}

∂{ααα , Ĩ}

∂w
. (9)

The only difference with respect to Eq. 7 lies in the third term,
∂Ĥ/∂{ααα , Ĩ}, as the network in this case outputs refined aligned
images in addition to the blending weights.
The derivative of the estimated HDR image with respect to the

estimated blending weights, ∂Ĥ/∂ααα , can be estimated using Eq. 8.
To compute ∂Ĥ/∂Ĩ we can use the chain rule to break it down into
two terms as:

∂Ĥ

∂Ĩi
=
∂Ĥ

∂H̃i

∂H̃i

∂Ĩi
. (10)

Here, the first term is the derivative of the estimated HDR image
with respect to the aligned images in the HDR domain. The relation-
ship between Ĥ and H̃i is given in Eq. 6, and thus, the derivative
can be computed as:

∂Ĥ

∂H̃i

=
αi∑3
j=1 α j

. (11)

Finally, the second term in Eq. 10 is the derivative of the refined
aligned images in the HDR domain with respect to their LDR version.
Since the HDR and LDR images are related with a power function
(see Eq. 6), this derivative can be computed with the power rule as:

∂H̃i

∂Ĩi
=

γ

ti
Ĩ
γ−1
i . (12)
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Fig. 6. We use a network with four fully convolutional layers and decreasing

kernel sizes as our model. We use sigmoid as the activation function for the

last layer and use rectified linear unit (ReLU) for the rest of the layers. We

use the same network in our three different system architectures with the

exception of the number of outputs which is different in each case.

The direct end-to-end training of this network is challenging
and usually the convergence is very slow. Therefore, we propose to
perform the training in two stages. In the first stage, we force the
network to output the original aligned images as the refined ones,
i.e., Ĩ = I, by minimizing the �2 error of the output of the network
and the original aligned images. This stage constrains the network
to generate meaningful outputs and produce results with similar
performance as the WE architecture.

In the second stage, we simply perform a direct end-to-end train-
ing and further optimize the network by synthesizing refined aligned
images. Therefore, this architecture is able to produce results with
the best numerical errors (see Table 1). However, as shown in
Figs. 11 and 12, this additional flexibility in comparison to the WE
architecture comes at the cost of producing slightly overblurred
results in dark regions.

Network Architecture. As shown in Fig. 6, we propose to use a CNN
with four convolutional layers similar to the architecture proposed
by Kalantari et al. [2016]. We particularly selected this architecture,
since they were able to successfully model the process of generating
a novel view image from a set of aligned images, which is a similar
but different problem. In our system, the networks have a decreasing
filter size starting from 7 in the first layer to 1 in the last layer. All the
layers with the exception of the last layer are followed by a rectified
linear unit (ReLU). For the last layer, we use sigmoid activation
function so the output of the network is always between 0 and 1.
We use a fully convolutional network, so our system can handle
images of any size. Moreover, the final HDR image at each pixel can
usually be obtained from pixel colors of the aligned images at the
same pixel or a small region around it. Therefore, all our layers have
stride of one, i.e., our network does not perform downsampling or
upsampling.
We use the same network in the three system architectures, but

with different number of output channels, no . Specifically, this num-
ber is equal to 3 corresponding to the color channels of the output
HDR image in the direct architecture. In theWE architecture the net-
work outputs the blending weights, α1,α2,α3, each with 3 channels,
and thus, no = 9. Finally, for the network in the WIE architecture
no = 18, since it outputs the refined aligned images, Ĩ1, Ĩ2, Ĩ3, each
with 3 color channels, in addition to the blending weights.

Discussion. In summary, the three architectures produce high-
quality results, better than state-of-the-art approaches (Table 1),

Eq
. 6

Dynamic Set Static Set

Ground Truth HDR Image

Middle Image of Static Set

Input LDR Images

Fig. 7. We ask a subject to stay still and capture three bracketed exposure

images on a tripod which are then combined to produce the ground truth

image. We also ask the subject to move and capture another set of bracketed

exposure images. We construct our input set by taking the low and high

exposure images from this dynamic set and the middle exposure image from

the static set.

0 10.5

1

0 10.5

1

0 10.5

1

Fig. 8. The triangle functions that we use as the blending weights to gener-

ate our ground truth HDR images.

but have small differences. The direct architecture is the simplest
among the three, but in rare cases leaves small residual alignment
artifacts in the results. The WE architecture is the most constrained
one and is able to better suppress the artifacts in these rare cases.
Finally, similar to the direct architecture, the WIE architecture is
able to synthesize content that is not available in the aligned LDR
images. However, the direct and WIE architectures slightly overblur
images in dark regions to suppress the noise, as will be shown later
in Figs. 11 and 12. Therefore, we believe the WE is the most stable
architecture and produces results with the best visual quality.

4 DATASET

Training deep networks usually requires a large number of training
examples. In our case, each training example should consist of a set
of LDR images of a dynamic scene and their corresponding ground
truth HDR image. Unfortunately, most existing HDR datasets either
lack ground truth images [Tursun et al. 2015, 2016], are captured
from static scenes [Funt and Shi 2010], or have a small number of
scenes with only rigid motion [Karaduzovic-Hadziabdic et al. 2016].
We could potentially use the HDR video dataset of Froehlich et
al. [2014] to produce our training sets. However, the number of
distinct scenes in this dataset is limited, making it unsuitable for
training deep networks.

To overcome this problem, we create our own training dataset of
74 different scenes and substantially extend it through data augmen-
tation. Next, we discuss the capturing mechanism, data augmenta-
tion, and the process to generate our final training examples.

Capturing Process. The goal is to produce a set of LDR images
with motion and their corresponding ground truth HDR image. For
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Aligned LDR WE (Tonemapped HDR Image)Input LDR Direct WE WIE GTSimple Merging

Fig. 9. We compare the result of our three architectures on the two insets indicated by the green and red boxes. We also show the result of simply merging the

aligned LDR images (shown on the left) into an HDR result. The direct architecture sometimes leaves the residual alignment artifacts in the final results, while

the other two architectures are more effective in suppressing these artifacts, as shown in the top inset. Moreover, the direct and WIE architectures are able to

synthesize content, and thus, can reduce noise (top inset) and recover small highlights (bottom inset). In comparison, the WE architecture produces the final

HDR results using the content of the aligned LDR images, and thus, is more constrained to the available content. Note that, we have adjusted the brightness

and contrast of the top inset to make the differences visible.

this process, we consider mostly static scenes and use a human
subject to simulate motion between the LDR images.

To generate the ground truth HDR image, we capture a static set
by asking a subject to stay still and taking three imageswith different
exposures on a tripod (see Fig. 7). Since there is no motion between
these captured LDR images, we use a simple triangle weighting
scheme, similar to the method of Debevec and Malik [1997], to
merge them into a ground truth HDR image using Eq. 6. The weights
in this case are defined as:

α1 = 1 − Λ1(I2), α2 = Λ2(I2), α3 = 1 − Λ3(I2), (13)

where Λ1,Λ2, and Λ3 are shown in Fig. 8. Although more sophisti-
cated merging algorithms, such as Granados et al.’s approach [2010],
can be used to produce the ground truth HDR image, we found that
the simple triangle merge is sufficient for our purpose.

Next, we capture a dynamic set to use as our input by asking the
subject to move and taking three bracketed exposure images either
by holding the camera (to simulate camera motion) or on a tripod
(see Fig. 7). Since in our system, the estimated HDR image is aligned
to the reference image (middle exposure), we simply replace the
middle image from the dynamic set with the one from the static set.
Therefore, our final input set contains the low and high exposed
images from the dynamic set as well as the middle exposed image
from the static set.
We captured all the images in RAW format with a resolution of

5760 × 3840 and using a Canon EOS-5D Mark III camera. To reduce
the possible misalignment in the static set, we downsampled all the
images (including the dynamic set) to the resolution of 1500 × 1000.
To ensure diversity of the training sets, we captured our bracketed
exposure images separated by two or three stops.

We capturedmore than 100 scenes, while ensuring that each scene
is generally static. However, we still had to discard a quarter of these
scenes mostly because they contained unacceptable motions (e.g.,
leaves, human). These motions could potentially produce ghosting
in the ground truth images and negatively affect the performance
of the training. We note that slight motions are unavoidable, but
they are rare and treated as outliers during training.

Data Augmentation. To avoid overfitting, we perform data aug-
mentation to increase the size of our dataset. Specifically, we use

color channel swapping and geometric transformation (rotating 90
degrees and flipping) with 6 and 8 different combinations, respec-
tively. This process produces a total of 48 different combinations
of data augmentation, from which we randomly choose 10 combi-
nations to augment each training scene. Our data augmentation
process increases the number of training scenes from 74 to 740.

Patch Generation. Finally, since training on full images is slow,
we break down the training images into overlapping patches of size
40 × 40 with a stride of 20. This process produces a set of training
patches consisting of the aligned patches in the LDR and HDR
domains as well as their corresponding ground truth HDR patches.
We then select the training patches where more than 50 percent
of their reference patch is under/over-exposed, which results in
around 1,000,000 selected patches. This selection is performed to
put the main focus of the networks on the challenging regions.

5 RESULTS

We implemented our approach in MATLAB and used MatCon-
vNet [Vedaldi and Lenc 2015] for efficient implementation of the
convolutions in our CNNs. To train our network in all three ar-
chitectures, we first initialized their weights using the Xavier ap-
proach [Glorot and Bengio 2010]. We then used ADAM solver to
optimize the networks’ weights with β1 = 0.9, β2 = 0.999, and a
learning rate of 0.0001. We performed the training in all three archi-
tectures for 2,000,000 iterations on mini-batches of size 20, which
took roughly two days on an Intel Core i7 with 64 GB of memory and
a GeForce GTX 1080 GPU. Our method takes roughly 30 seconds to
generate the final HDR image from three input LDR images of size
1000 × 1500. Specifically, it takes 28.5 seconds to align the images
using the optical flow method of Liu [2009] and 1.5 seconds to evalu-
ate the network and generate the final HDR result. The HDR results
demonstrated here are all tonemapped with Photomatix [2017] to
properly show the HDR details in each image.

Comparison of the Three Architectures. We begin by comparing
our three system architectures (Sec. 3.2) in Fig. 9. We also show the
result of simple triangle merging (Eqs. 6 and 13) to demonstrate
the ability of our method to hide the alignment artifacts. As seen,
all three architectures are able to suppress artifacts and produce
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Refined Aligned

Refined (     )Aligned (     ) Refined (     )Reference (     )(    ) (   )(  )

Blending WeightsBlending Weights

Weight and Image Estimator (WIE)Weight Estimator (WE)

Fig. 10. We show the outputs of the network in WE and WIE architectures

for the image in Fig. 9. As seen, the blending weights produced by the two

architectures have similar patterns. The weight α1 is responsible for drawing

information from the low exposure image, and thus, has large values in

the bright regions. In contrast, α3 is large in the dark regions to utilize

the information available in the high exposure image. Moreover, the two

architectures assign small weights to the regions with artifacts (indicated

by green arrows) to avoid introducing these artifacts to the final results.

Finally, we show the refined aligned images for the WIE architecture on the

right. Note that, since our training is end-to-end, the network sometimes

produces invalid content in the regions that do not contribute to the final

results, e.g., green areas in Ĩ1. As shown in the red inset, our network in this

architecture is able to hallucinate the highlight in the refined image, Ĩ1, and

consequently, reconstruct the highlight in the final HDR image (bottom row

Fig. 9). Moreover, in the regions where the high exposure image contains

alignment artifacts, our network synthesizes a refined image with slightly

less noise than the reference image (green inset).

high-quality HDR results. However, they have small differences
which comes from their design differences.

Overall, the direct architecture is the most simple and straightfor-
ward one among the three. However, since training the network in
this architecture is difficult, it produces results with residual align-
ment artifacts in some cases (top inset in Fig. 9). In comparison, the
other two architectures are more constrained, and thus, are able to
better suppress the artifacts in these cases. Specifically, the weight
estimator (WE) architecture is the most constrained one and pro-
duces the final HDR results using only the content of the original
aligned LDR images. Therefore, if the fidelity to the content is of
major concern, this architecture should be used. Finally, the weight
and image estimator (WIE) is slightly less constrained and is able
to synthesize content which is not available in the aligned images.
Therefore, similar to the direct architecture, WIE is able to reduce
noise and recover small highlights in some cases.

Ground TruthWIEWEDirect
Fig. 11. We show the result of our three architectures on an inset taken

from Fig. 1. The direct and WIE architectures overblur the fine details of the

flower to remove the noise. The WE architecture keeps the details, but is

slightly more noisy.

WIEWEDirectWE Result Ground Truth

Fig. 12. The direct and WIE architectures reproduce highlights at the top

inset, but slightly overblur the fine structures of the lady’s hair. This can be

seen better by toggling back and forth between the images in the supple-

mentary materials.

In Fig. 10, we demonstrate the output of the networks in the WE
and WIE architectures. As expected, in both networks the predicted
blending weights, αi , measure the quality of each aligned image. For
example, the weight for the low exposure image (α1) has large values
in the highlights and bright regions, while the weight for the high
exposure image (α3) has large values in the dark regions. It is worth
noting that our network in both cases avoids introducing artifacts
to the final results by assigning small weights to the regions with
artifacts, such as the ones shown with green arrows in the bottom
row. Furthermore, as discussed, our network in theWIE architecture
is able to hallucinate small highlights (red inset) and reduce the noise
through reconstruction of the refined aligned images (green inset).
However, because of this additional flexibility, the WIE and di-

rect architectures reduce noise through overblurring, as shown in
Fig. 11. In contrast, theWE architecture is faithful to the content and
produces results that are slightly better visually, but more noisy. Fig-
ure 12 shows another case, where the direct and WIE architectures
are able to recover the highlights in the region where alignment
fails, but overblur the fine details of the lady’s hair. Overall, while
all three architectures produce high-quality results, we believe the
WE architecture produces results with slightly better visual quality.

Comparison on Test Scenes with Ground Truth. Next, we compare
our three architectures against several state-of-the-art techniques.
Specifically, we compare against the two patch-based methods of
Hu et al. [2013] and Sen et al. [2012], the motion rejection method of
Oh et al. [2015], and the flow-based approach of Kang et al. [2003].

We used authors’ code for all the approaches, except for Kang et
al.’s method that we implemented ourself since the source code is not
available. Note that, we used the optical flow method of Liu [2009]
(same as ours) to align the input LDR images in Kang et al.’s ap-
proach. Furthermore, the method of Oh et al. is a motion rejection
approach which has a mechanism to align the images by estimating
homography through an optimization process. However, we provide
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Kang Sen Hu Oh Ours Ours Ours
(2003) (2012) (2013) (2015) Direct WE WIE

PSNR-T 39.10 40.75 35.49 32.19 42.92 42.74 43.26
HDR-VDP-2 64.46 63.43 60.86 61.31 67.45 66.63 67.50
PSNR-L 39.97 37.95 30.40 34.43 41.69 41.25 41.60

Table 1. Quantitative comparison of our three system architectures against

several state-of-the-art methods. The PSNR-T and PSNR-L refer to the PSNR

(dB) values calculated on the tonemapped (using Eq. 1) and linear images,

respectively. All the values are averaged over 15 test scenes and larger values

mean higher quality.

Oh et al.
36.27

Ours
43.58

Ground
Truth

Hu et al.
38.23

Sen et al.
41.85

Kang et al.
37.24

Fig. 13. Comparison of our approach against several state-of-the-art meth-

ods on one of the 15 test sets. See supplementary materials for the full

images including the input LDR images.

our aligned images as the input to their method, which we found
to significantly improve their results. To evaluate the results, we
compute the PSNR values for images in the tonemapped (PSNR-T)3

and linear (PSNR-L) domains. Note that, since we observe the HDR
images after tonemapping, the PSNR values in the tonemapped do-
main better reflect the quality of the HDR images. However, we
also show the PSNR values in the linear domain for completeness.
Moreover, we measure the quality of the results using HDR-VDP-
2 [Mantiuk et al. 2011], which is a visual metric specifically designed
to evaluate the quality of HDR images.

Table 1 shows the result of this comparison averaged over 15 test
scenes. Note that, none of the test scenes are included in the training
sets and they are captured from different subjects. As can be seen,
all our three architectures produce results with better numerical
errors than the state-of-the-art techniques. Moreover, while all the
architectures have similar numerical errors, the WE architecture is
slightly worse. This is perhaps because this architecture is the most
constrained, and thus, is not as flexible as the other architectures in
minimizing the error. However, we believe the WE architecture is
slightly more stable and produces results with higher visual quality,
and thus, use it to produce the results in the rest of the paper.

3Note that, we use Eq. 1 as our tonemapping operator in this case, which is different
from the operator used to show the final images. Since the operator in Eq. 1 does not
clamp the images, the tonemapped images contain all the HDR information.
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OursHu et al.Sen et al.Our Tonemapped HDR Image
Fig. 14. Comparison of our approach against the patch-based methods of

Sen et al. [2012] and Hu et al. [2013].

In Fig. 13, we compare our approach against other methods on
one of these scenes, demonstrating three people in a dark room with
bright windows. The first row of insets shows a region where the
highlights need to be reconstructed from the low exposure image.
The methods of Kang et al. and Oh et al. are able to recover the
highlights despite having small artifacts as indicated by the arrows.
The patch-based approaches of Sen et al. and Hu et al. are not able
to find corresponding patches in the low exposure image, and thus,
produce saturated highlights. Our approach is able to recover the
highlights and produces an HDR image which is reasonably close
to the ground truth. The second row demonstrates a region with
significant motion, where the approaches by Kang et al. and Oh
et al. are not able to avoid introducing the alignment artifacts in
the final results. The methods of Sen et al. and Hu et al. are able to
faithfully reconstruct the hands. However, they often heavily rely
on the reference image, and thus, produce an overall noisy result.
In contrast, our approach is able to avoid alignment artifacts, but
draws information from the high exposure image and produces a
relatively noise-free results.

Comparison on Natural Scenes. We compare our method against
the patch-based approaches of Sen et al. and Hu et al. on three chal-
lenging test scenes in Fig. 14. Note that, we do not have ground truth
images in these cases as we captured images of natural dynamic
scenes. The top row shows a picture of an outdoor scene with a
moving car. In this case, the patch-based approaches are not able to
recover the top of the building, which is saturated in the reference
image, because of the car’s significant motion. Moreover, these two
techniques produce noisy results in the dark regions because they
heavily rely on the reference.
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OursOh et al.Kang et al.Our Tonemapped HDR Image
Fig. 15. Comparison of our approach against the approaches by Kang et

al. [2003] and Oh et al. [2015].

The second row demonstrates a picture of a man walking in a
dark hallway. The patch-based methods are not able to effectively
suppress the noise in the top inset. Moreover, these approaches
typically have problemwith the structured regions, and thus, are not
able to properly reconstruct the edges of the bricks in the bottom
inset. Our method is able to reduce noise in the dark areas and
properly reconstruct the saturated regions. Finally, the third row
shows a picture of an outdoor scene on a bright day with a walking
person. All the methods are able to plausibly reconstruct the moving
person. However, this particular scene has large saturated regions
in the reference image (see supplementary materials). Therefore,
the patch-based approaches are not able to properly reconstruct the
saturated regions due to insufficient constraints. On the other hand,
our method produces a high-quality HDR image.

Figure 15 shows a comparison of our approach against the meth-
ods of Kang et al. and Oh et al. on three other test scenes. The top
row shows an outdoor scene with a bright background where a man
is sitting in a dark area. Here, the other approaches are not able to
avoid alignment artifacts and generate results with duplicate (Kang
et al.) or missing (Oh et al.) hands. However, our method is able
to produce a noise-free high-quality HDR result. The second row
shows a picture of a lady and a baby in a dark room with a bright
window. The two other approaches are not able to properly recon-
struct the baby’s hand as alignment fails in this region because of
the motion blur. Note that, only our approach is able to reconstruct
the bright highlight on the lady’s shirt and the baby’s face without
noise and other artifacts.

Finally, the third row demonstrates an outdoor scene with a large
dynamic range and significant motion. Kang et al.’s method is not
able to suppress the alignment artifacts around the motion bound-
aries. Similarly themethod of Oh et al. introduces alignment artifacts
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Fig. 16. Comparison against the patch-based methods of Sen et al. [2012]

and Hu et al. [2013] on Tursun et al.’s scenes [2015; 2016].

OursOh et al.Kang et al.Our Tonemapped HDR Image
Fig. 17. Comparison against the approaches by Kang et al. [2003] and Oh

et al. [2015] on Tursun et al.’s scenes [2015; 2016].

to the final results and is noisy. However, our method properly re-
constructs the areas around the motion boundaries and produces a
high-quality HDR result.

We also compare our approach against other methods on several
scenes from Tursun et al. [2015; 2016]. These scenes have 9 images
with one stop separation from which we select three images with
two or three stop separations. Note that these scenes are captured
using different cameras than the one we used to capture our training
scenes. Figure 16 shows comparison of our approach against the
methods of Sen et al. [2012] and Hu et al. [2013] on the Fountain
(top) and Cafe (bottom) scenes. Since the motion of water in the
Fountain scene is complex, the patch-based approaches are not able
to find correspondences in these regions. Therefore, these methods
are not able to recover the highlights on the water. The Cafe scene
contains bright windows on the right, which are completely satu-
rated in the reference image. Although other methods recover the
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building, they produce results with crooked (Sen et al.) or replicated
and blurred (Hu et al.) structures, which are common problems of
patch-based synthesis.
In Fig. 17, we show comparison of our method against the ap-

proaches by Kang et al. [2003] and Oh et al. [2015] on the Museum1
(top) and Cars (bottom) scenes. Since the person walking in front
of the camera in the Museum1 scene has motion blur, the warped
images contain severe alignment artifacts due to inaccuracies in
optical flow. As a result, the other approaches produce images with
missing head and hand, while our method generates a high-quality
HDR image. Similarly, optical flow is not able to align the fast mov-
ing cars in the Cars scene, and thus, other methods produce results
with artifacts on the two cars.

6 DISCUSSION, LIMITATIONS, AND FUTURE WORK

As discussed in Sec. 2, there are approaches that capture the multiple
exposures in a single shot by, for example, varying the per-pixel
exposure [Heide et al. 2014; Hajisharif et al. 2015; Serrano et al. 2016].
Although these approaches inherently handle dynamic scenes, they
require special types of sensors, which are not readily accessible. In
contrast, bracketed exposure images, as used in our method, can be
easily captured using standard digital cameras. This is perhaps why
stack-based HDR imaging approaches are popular and implemented
in commercial devices such as smartphone cameras.
It is worth noting that dynamic range can also be increased

by combining multiple images captured with the same exposure
time [Zhang et al. 2010; Hasinoff et al. 2016]. Comparing to brack-
eted exposure methods, the images in these techniques have similar
content, and thus, alignment is generally simpler. However, these
methods typically demonstrate increasing dynamic range by only
two or three stops. The main reason is that, to increase the dynamic
range by a large factor, these methods require capturing and pro-
cessing an impractically large number of input images. For example,
increasing the dynamic range by four or six stops, as we show in
this paper, requires capturing 16 or 64 images, respectively. There-
fore, bracketed exposure approaches, like ours, are more suitable
for capturing scenes with large dynamic range.
The main limitation of our approach is that our network takes

a specific number of images as the input. We demonstrated that
our system is able to produce high-quality results with a set of
three input images. Although we observed that three images are
sufficient to capture the dynamic range of most scenes, it would
be interesting to retrain our network for cases with more than
three inputs (e.g., 5 or 7) and evaluate its performance. Moreover,
investigating flexible network architectures to make the system
independent of the number of inputs would be an interesting future
research topic.
In this paper, we trained our networks on scenes with two and

three stop separations. It is worth noting that our system is able to
produce high-quality results on scenes with separations that it has
not been trained on, e.g., the scene in Fig. 15 (middle) is captured at
-2.66, 0, and +3.33 stops. However, to produce high-quality results
on scenes with significantly different separations than two or three
stops, our system needs to be retrained.

Another limitation of our method is that in some cases, because
of the camera motion, the low and high exposure images do not

have information at the boundaries of the image. In these situations,
we simply use the content of the reference image to reconstruct the
HDR image. Therefore, the final HDR image could appear noisy or
saturated if the reference image is under/over-exposed in these re-
gions. While all the other flow-based techniques have this limitation,
the patch-based methods are usually able to perform hole-filling
and synthesize the content of these regions. However, this is not
a major limitation as the same patch-based hole-filling could be
performed in a postprocess after reconstructing the HDR image
with our system.

Since our goal is to handle alignment artifacts, we train our net-
works on images with significant motion. In this case, our system
learns to properly merge the images in the aligned regions, while
avoiding the artifacts in the regions with misalignments. As a result,
we produce results that are slightly noisier than the images obtained
by noise optimal merging approaches [Hasinoff et al. 2010; Grana-
dos et al. 2010] in the aligned regions. Considering the ability of our
approach in avoiding significant alignment artifacts, we believe this
is an acceptable sacrifice.

As discussed, while ourWIE architecture produces the best results
numerically (PSNR-T in Table 1), it sometimes overblurs the noisy
regions producing results that are not visually pleasing, as shown
in Fig. 11. In the future, it would be interesting to see if training
the network in a perceptual way by, for example, using generative
adversarial networks [Goodfellow et al. 2014], could improve the
visual quality of the results.

Finally, in this paper we used optical flow to align the input im-
ages. However, the flow estimation could potentially be learned
using an additional CNN and trained end-to-end to minimize the
error between the estimated and ground truth HDR images. We per-
formed a simple experiment to learn the final flow by providing a
network with a homography field, optical flow, and a flow obtained
by matching patches. However, the final HDR images generated
with this system were generally similar to the ones generated by our
system. This experiment suggests that the optical flow is perhaps
the best among the three inputs to the network and the artifacts of
the alignment can be easily avoided by the merge network. How-
ever, in this simple experiment, the network was basically selecting
the best flow among the three input flows. In the future, it would
be interesting to investigate the possibility of training a network,
perhaps similar to the one proposed by Dosovitskiy et al. [2015] or
Ilg et al. [2016], to estimate the flow from the input images.

7 CONCLUSION

We have presented the first learning-based technique to produce
an HDR image using a set of LDR images captured from a dynamic
scene. We use a convolutional neural network to generate the HDR
image from a set of images aligned with optical flow. To properly
train the network, we proposed a strategy to produce a set of in-
put LDR images and their corresponding ground truth image. We
present three architectures for our learning-based techniques and
find through extensive comparison that using the knowledge from
existing techniques in our learning system leads to improvement.
Specifically, we found that using the network to estimate blending
weights for combining aligned LDR images is slightly better than
modeling the entire process with a network. This finding implies
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that learning approaches could use elements of existing techniques
to potentially solve complex problems more efficiently.
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