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Light field cameras capture full spatio-angular information of the light field,
and enable many novel photographic and scientific applications. It is often
stated that there is a fundamental tradeoff between spatial and angular reso-
lution, but there has been limited understanding of this tradeoff theoretically
or numerically. Moreover, it is very difficult to evaluate the design of a light
field camera, because a new design is usually reported with its prototype
and rendering algorithm, all of which affect resolution.

In this paper, we develop a light transport framework for understanding the
fundamental limits of light field camera resolution. We first derive the pre-
filtering model of lenslet-based light field cameras. The main novelty of
our model is in considering the full space-angle sensitivity profile of the
photosensor—in particular, real pixels have non-uniform angular sensitiv-
ity, responding more to light along the optical axis, rather than at grazing an-
gles. We show that the full sensor profile plays an important role in defining
the performance of a light field camera. The proposed method can model all
existing lenslet-based light field cameras and allows us to compare them in a
unified way in simulation, independent of the practical differences between
particular prototypes. We further extend our framework to analyze the per-
formance of two rendering methods: the simple projection-based method
and the inverse light transport process. We validate our framework with
both flatland simulation and real data from the Lytro light field camera.
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1. INTRODUCTION

In recent years, plenoptic or light field cameras have increased in
popularity, with multiple research systems [Veeraraghavan et al.
2007; Bishop and Favaro 2012], and commercial and consumer
models becoming available from Raytrix and Lytro. These cameras
capture full 4D spatio-angular information of a light field [Adelson
and Bergen 1991; Levoy and Hanrahan 1996; Gortler et al. 1996],
typically by placing additional optical elements between the main
lens and the sensor. Light field cameras enable new applications
beyond the reach of conventional 2D cameras, such as refocusing
images after capture [Ng et al. 2005], or acquiring 3D depth from a
single shot [Adelson and Wang 1992]. However, a significant dis-
advantage is the loss in image resolution, to a small fraction of the
resolution provided by the camera sensor. For example the reso-
lution of the 2D refocused image, in the basic lenslet camera [Ng
et al. 2005], is reduced to the number of lenslets (reduced by a fac-
tor of the number of pixels under each lenslet), and is usually up to
100 times smaller than the number of sensor pixels.

To overcome this limitation, various light field camera designs have
been proposed (see Sec. 2 for more details), but typically involve
other tradeoffs. Moreover, comparing different optical designs of
light field cameras remains a difficult and open problem. Most de-
signs are presented with their own prototypes and software ren-
dering algorithms. The cost and quality of the optics and sensors in
those prototypes can differ significantly. The complexity of the ren-
dering algorithms can also vary from simple re-sampling to com-
putationally intensive prior-assisted deconvolution. It is hard to tell
if the design of one light field camera is intrinsically better than
another from the presented results, since the rendering algorithm
itself affects resolution.

In this paper, we develop a theoretical framework based on light
transport analysis for understanding the fundamental limits of
lenslet-based light field cameras in a unified way in simulation. The
main distinction to existing models, each usually derived for a spe-
cific design, is that we consider all parameters in the optical sys-
tem. These include the main lens aperture size, the lenslet aperture
size and spacing, and the photosensor spacing and its full spatio-
angular profile. Real pixels have non-uniform angular sensitivity,
responding more to light along the optical axis than at grazing an-
gles, but this has not been taken into account in previous analy-
ses. We first use our framework to derive the prefilter kernel for
light field cameras. The key finding is that in all designs, the pre-
filter kernel is not only non-perfectly bandlimited, but also depth-
dependent and even spatially-variant due to the finite pitch size
and non-uniform angular sensitivity of the photosensor. Therefore,
the expected resolution limit should be above the lenslet resolution,
and the depth- and spatially-variant nature of the captured light field
must be taken into account in algorithm designs and evaluations.

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: MM YYYY.



2 • Liang and Ramamoorthi

Since the light field must be further processed for display, we ex-
tend our framework to analyze two main categories of rendering
algorithms: the simple projection-based algorithm [Kitamura et al.
2004; Chan et al. 2007; Perez Nava and Luke 2009; Georgiev
et al. 2011] and the inverse light transport (deconvolution) pro-
cess [Bishop and Favaro 2012; Shroff and Berkner 2013; Brox-
ton et al. 2013]. For the projection-based algorithm, we derive the
overall filtering kernel for the rendered image and show that it can
generate high-resolution results for most designs. We show the full
depth-dependent frequency response of rendered images of various
designs by flatland simulation and data from the Lytro light field
camera. Finally, we also show how to extend this algorithm to gen-
erate high-resolution all-in-focus images.

For the inverse light transport process, we extend our framework
to construct the light transport matrix and analyze the stability of
the inversion process. While most existing reports include addi-
tional priors to regularize the ill-conditioned process, we deliber-
ately leave that out to compare different light field camera designs
in a content-independent way. We report the depth-dependent sta-
bility for many designs by simulation.

Our goal is to understand the resolution limits from a theoretical
perspective, while providing many insights into current practical
systems and future designs. However, we do not claim to precisely
evaluate real-world resolution profiles of light field cameras, since
those also depend on the performance of the actual optics and prac-
tical software rendering algorithms. Our results are developed ana-
lytically using 2D flatland light fields for simplicity (the extension
to 4D light fields is straightforward), and with numerical simula-
tions that allow us to contrast different light field camera designs.

In summary, we make the following contributions in this paper:

• We present the first general framework to model all lenslet-
based light field cameras, considering the full spatial-angular
profile of the photosensor and other parameters (Sec. 4).

• We use this light transport framework to identify the non-
bandlimited, depth-dependent, and spatially-variant prefilter-
ing behavior of light field cameras (Sec. 5).

• We analyze the performance of projection-based rendering
algorithms, including the theoretical filtering kernel, results
from flatland simulation of various designs, and real light
field data from the Lytro light field camera (Sec. 6).

• We extend the projection-based algorithm for generating all-
in-focus images and show results from both flatland simula-
tion and real light field data (Sec. 6).

• We provide the full experimental depth-dependent perfor-
mance profile of the Lytro light field camera, showing its
achievable resolution is above lenslet resolution across a
large refocusable range, even without deconvolution (Sec. 7).

• We extend the framework to study the stability of the in-
verse light transport (deconvolution) process for different
light field camera designs and parameters (Sec. 8).

2. RELATED WORK

Light Field Capture: Development of light field cameras, or
plenoptic cameras, can be dated back to more than a century ago.
Those early designs place a fly-eye lens array or a slit plate in front
of the film [Lippmann 1908; Ives 1903]. This topic recently re-
gained much attention after the theories for analyzing and process-
ing light fields were developed [Adelson and Bergen 1991; Levoy

and Hanrahan 1996; Gortler et al. 1996; Isaksen et al. 2000], and
many designs and prototypes have been proposed.

In the basic lenslet-based design [Adelson and Wang 1992], a
lenslet or microlens array is placed in front of the photosensor array
by one focal length of the lenslet. Ng et al. built a portable prototype
of this design and demonstrated various new photographic applica-
tions, such as post-capture refocusing [2005]. One noticeable limi-
tation of such a design is that the resolution is limited to the number
of lenslets, much lower than the sensor resolution. In the following
discussion, we will call the resolution provided by the number of
lenslets, or other elements that define the spatial sampling rate, as
lenslet resolution.

To provide more control over resolution, Ng [2006] proposed the
generalized light field camera, in which the lenslet-photosensor
separation can be reduced, and thus the peak spatial resolution
and the refocusable depth range are adjustable. Lumsdaine and
Georgiev [2009] proposed the focused light field camera by in-
creasing the lenslet-photosensor separation and observed similar
trade-offs. Perwaß and Wietzke derived the resolution bound of
focused light field cameras using a simplified model [2012]. In
this work, we develop a general mathematical model for all lenslet-
based designs and compare their performance in simulation.

In heterodyne light field camera, Veeraraghavan et al. placed a
mask layer with a sum of sinusoids in front of the photosensor. The
modulation due to the mask creates periodic replicas of the light
field in Fourier space [2007]. The light field can be reconstructed
by properly rearranging the spectral samples. Lanman et al. im-
proved the mask design [2008], and Wetzstein et al. showed that
the reconstruction can be performed in the spatial domain [2013].
However, these designs and processing are based on the bandlimit
assumption, and the output is limited to the lenslet resolution.

Levin and Durand exploited the dimensionality gap of the 4D light
field [2010] and proposed an efficient frequency-domain algorithm
to reconstruct high-resolution light fields from the focus stack or
aliased light field, without per-pixel depth information. They do not
consider the depth and spatially-dependent prefiltering behavior of
the light field camera as we will derive in this paper. We also ana-
lyze the performance and stability of the spatial-domain rendering
algorithms which use depth information.

Light Field Processing: Bishop and Favaro first modeled the im-
age formation process of the lenslet-based light field cameras using
geometric optics [2012]. They also combined depth estimation and
image priors to perform deconvolution. Wanner and Goldluecke in-
creased both the spatial and angular resolution using depth estima-
tion and convex optimization [2012b].

Shroff and Berkner derived the forward image formation model
of the basic lenslet-based design using wave optics [2013]. They
showed that each photosensor has a unique point-spread-function
and further performed deconvolution to recover high-resolution im-
ages in simulation. Broxton et al. derived a similar model for light
field microscopy and 3D deconvolution [2013]. In this paper, we
reach a similar model using geometric optics. We use our model to
compare different designs and analyze the stability of the inverse
light transport process.

It is empirically found that if one directly projects the recorded light
field samples to a finer grid, the perceived resolution can be higher
than the lenslet resolution. This is observed in the basic lenslet-
based design [Perez Nava and Luke 2009], the focused light field
camera [Georgiev et al. 2011], or even camera arrays [Kitamura
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Table I. Notation
Symbol Description
f̂ Fourier transform of f
x Spatial coordinate
u Angular coordinate
x = [x, u]T Light field coordinate
Ω = [Ωx,Ωu]T Frequency coordinate
rect(x/d) 1 if |x| < 0.5d, 0 otherwise.

Light field transformation matrix
Md =

[
1 −d
0 1

]
Translation by distance d

Rf =
[ 1 0
f−1 1

] Thin-lens refraction with focal
length f

et al. 2004; Chan et al. 2007]. Yu et al. analyzed the resolution en-
hancement factor using the distribution of the projected samples
in the 2D space, and proposed a light field aware demosaic algo-
rithm [2012].

Venkataraman et al. [2013] constructed a camera array in the scale
for a mobile module. They reduced the pixel aperture in their pro-
totype to preserve the high-frequency details. They also use the
projection-based method as the initial estimate for the following
complex, iterative reconstruction process. Marwah et al. [2013]
represented the local light field as a sparse combination from an
overcomplete dictionary, and designed a mask-based light field
camera to sample the light field in a compressive way.

Compared to existing work, our light transport framework consid-
ers all parameters in the optical system, including the full spatial-
angular photosensor profile. We also characterize the performance
of the projection-based algorithm and the stability of the inverse
process. These theoretical analyses can be integrated into future
light field designs or reconstruction algorithms.

Finally, researchers have exploited the unique structure of the light
field spectrum to design effective 4D filters [Dansereau and Bruton
2007; Dansereau et al. 2013]. However, the resulting spatial reso-
lution is limited to the lenslet resolution. We believe that our new
light transport model can be combined with existing work to design
more advanced filters.

Light Transport Analysis: The light field transforms as it propa-
gates through space or interacts with elements in the scene. Light
transport analysis formulates these transformations and exploits the
structure of the transformed light field for various applications, in-
cluding synthetic image or light field rendering [Chai et al. 2000;
Durand et al. 2005; Egan et al. 2009; Egan et al. 2011; Lehtinen
et al. 2011; Jarosz et al. 2012; Belcour et al. 2012], processing for
light field cameras and displays [Ng 2005; Zwicker et al. 2006;
Levin and Durand 2010; Wetzstein et al. 2012], image formation
modeling [Levin et al. 2009; Liang et al. 2011], and inverse trans-
port analysis [Ramamoorthi and Hanrahan 2001; Seitz et al. 2005].
Our approach leverages these foundational analyses, and focuses
on analyzing the resolution of lenslet-based light field cameras.

3. BASIC FOURIER SPECTRUM ANALYSIS

In this section, we briefly review the existing light field spectrum
analysis [Chai et al. 2000; Durand et al. 2005; Ng 2005; Veer-
araghavan et al. 2007; Levin and Durand 2010], which motivates
us to develop the complete light transport analysis in the spatial
domain. This section also provides background and introduces the
key notation used in the paper, shown in Table I. We analyze the

u 

x 

Optical axis 

1 

(a) (b) 

𝜆𝜆 

Ray emitting 
surface 

Virtual light 
field sensor 

Fig. 1. (a) The local two-plane parameterization. (b) The simplified op-
tical configuration for the spectrum analysis. A light field emitted from a
Lambertian surface is sampled by a virtual light field sensor at λ units away.

flatland 2D space-angle light field (schematic is in Figure 1)—the
insights carry over in a straightforward way to the 4D light field in
three dimensions. Because most light field camera designs do not
modify the main lens, we consider the light field inside the cam-
era as in most previous work. The effects of the main lens will be
considered in the full light transport analysis in the next section.

3.1 Setup

We use the local two-plane light field parameterization shown in
Figure 1(a). Each light ray is represented by its intersections with
two virtual parallel planes orthogonal to the main optical axis of
the whole system. The second plane is one unit away from the first
one. The spatial coordinate x measures the distance between the
first intersection and the optical axis, and the angular coordinate u
measures the offset from x. Considering the Lambertian surface at
distance λ away from the light field sensor (Figure 1(b)), its surface
light field is 1

lλ(x) = tλ(x), (1)

where tλ denotes the texture function of the surface. The surface
light field would propagate by λ to reach the sensor. The observed
light field and its spectrum l̂ are:

l(x) = lλ(Mλx) = tλ(x− λu), (2)

l̂(Ω) = l̂λ(M−T
λ Ω) = t̂λ(Ωx)δ(λΩx + Ωu), (3)

where Mλ is the light transport matrix due to translation [Gerrard
and Burch 1975; Durand et al. 2005] (Table I), and δ denotes a
Dirac delta function.

We can see that the energy of l̂ only falls on a line of slope −λ
through the origin in the 2D Fourier space. When the objects in the
scene lie within a depth range λ ∈ [−Λ,Λ], l̂ would be the sum of
all l̂λ’s and contains energy within a double wedge bounded by two
lines of slope −Λ and Λ (Figure 2(a)). 2

3.2 Aliasing and Prefiltering

A light field camera samples the light field along both the spatial
and angular domains, which define a periodic sampling lattice over

1We allow the light field to transport backwards when λ < 0. This happens
when the object is focused behind the sensor by the main lens.
2Occlusions can introduce discontinuities into the light field and make it
non-bandlimited, but their numerical effect is generally small.
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Ω𝑢𝑢  
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angular sampling rate and prefiltering 

Ω𝑥𝑥  

Ω𝑢𝑢  Ω𝑢𝑢  

(f) Local light field without 
aliasing 
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Ω𝑥𝑥  
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(d) Sampling (a) with a different 
bandlimit prefiltering 

Bandlimit filter 

Ω𝑥𝑥  Ω𝑥𝑥  

Ω𝑢𝑢  

(h) Local light field aliasing 
between two depths 

Fig. 2. (a) The source light field spectrum from a scene with objects at depths ranging from −Λ to +Λ. (b) The spectrum of the sampled light field in (a)
contains severe aliasing. The red dots represent the centers of replicas. (c) The sampled spectrum with a pre-sampling bandlimit filter applied. The dotted
rectangle shows the passband of the ideal bandlimit filter. (d) In the focused light field camera, the pre-sampling filter is sheared to preserve more high
frequency components at certain depths. (e) Double the spatial sampling rate and half the angular sampling rate would change the required prefilter shape,
compared to (c). (f) The sampled spectrum of a local light field with constant depth. (g) The sampled spectrum of a local light field at another depth. Aliasing
arises since the central replica now touches others, but the distance between aliasing replicas is larger than the spatial Nyquist rate. (h) The sampled spectrum
of a local light field with two depth layers. Aliasing arises at a few specific frequencies.

the 2D space. The spectrum of the sampled light field would have
periodic replicas over the entire Fourier space [Chai et al. 2000].
If no proper prefiltering is applied before sampling, replicas would
overlap and cause severe aliasing (Figure 2(b)).

To prevent aliasing, a prefilter must be applied before sampling
to bandlimit the light field to the spatial and angular Nyquist fre-
quencies (Figure 2(c)). If the prefilter is designed perfectly, spec-
tral components outside the prefilter bandwidth cannot be recon-
structed. Traditional analysis for the basic light field camera as-
sumes such a perfect prefilter is applied before sampling, and thus
the output resolution is limited to the lenslet resolution [Ng 2005].

A few lenslet-based designs address this problem by changing the
optical configuration [Ng 2006; Lumsdaine and Georgiev 2009].
However, it is easy to show that those designs basically change the
shape of the prefilter, but not the overall sampling density [Lums-
daine et al. 2012] (Figure 2(d)). The spatial bandwidth of the pre-
filter can increase for certain depths but decrease for others, and
thus reduce the overall refocusable range. On the other hand, if we
reallocate the sampling budget to increase the spatial sampling rate
and decrease the angular one, we may increase the spatial band-
width of the prefilter. However, the angular bandwidth would de-
crease, and the range of depths not being affected by the angular
prefiltering is reduced (Figure 2(e)).

In summary, if a light field camera is designed to be entirely
aliasing-free, the prefilter would eliminate most high-frequency de-
tails at the current optics and sensor technology. Simple reshaping
of the prefilter kernel or reallocating the spatial and angular sam-
pling rates cannot fundamentally improve the situation.

3.3 Localized Spectrum Analysis and Implications

If we analyze the light field locally within a small window, its depth
range can be much smaller than that of the entire light field. More-
over, the depth complexity can be reduced to a patch with constant
depth or a few layers with distinct depths. We illustrate a few cases
in Figure 2(f)-(h). For a local region at a specific constant depth,
even without prefiltering, its spectrum would not overlap with the
replicas (Figure 2(f)). In this case, we may reconstruct the local
light field without unmixing the aliased data. Aliasing can still arise
with the constant depth, but the aliased replica is not necessarily the
nearest one (e.g. Figure 2 (g)), and thus the anti-aliasing filter can
have wider bandwidth. Finally, aliasing may happen when there are
multiple layers in the local region (Figure 2(h)). However, depend-
ing on the local scene configuration, the aliasing can happen only
at a few specific frequencies.

These examples provide a few interesting implications. First, even
when the prefilter of a light field camera does not perfectly ban-
dlimit the light field, for a local region, many frequency compo-
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nents above the spatial and angular Nyquist rates may still not
be corrupted by the replicas. It is possible to recover those com-
ponents without sophisticated unmixing processes. Second, even
when aliasing happens, one can design the anti-aliasing filter to
match the local depth configurations and preserve most high-
frequency details (like a notch filter rather than low-pass filter).
Note that we do observe such cases in the Lytro light field cam-
era, as shown later in Sect. 7.

The main challenge for exploiting those properties is that prior
knowledge of the local depth is required, and the reconstruction
processing is spatially-variant. Fortunately, there exist many algo-
rithms to extract per-sample depth from light fields [Liang et al.
2008; Wanner and Goldluecke 2012a; Kim et al. 2013; Tao et al.
2013]. To explore these implications, we are motivated to develop
a general light transport framework to model the light field cam-
era prefiltering kernels, and show their interactions with the depth-
dependent reconstruction algorithms. These are the main contribu-
tions of the paper.

4. LIGHT TRANSPORT ANALYSIS

In this section, we derive a general framework to model the pre-
filter kernels for existing lenslet-based light field camera designs.
We consider all parameters in the optical systems, in particular,
the full space-angle sensitivity profile of the photosensor, includ-
ing both its spatial support and angular sensitivity. Typically, the
angular sensitivity peaks for rays along the optical axis and falls
off in other directions. Most previous work assumes pixels have
uniform angular sensitivity, but real pixels have spatial and angular
profiles depending on the particular sensor.

We use the developed framework to show that the prefilter is depth-
dependent in all designs, and generally not as bandlimited as the
previous studies assume. Therefore, the sampled light field would
contain frequencies higher than the Nyquist rate. This is not merely
theoretical; in Sec. 7, we show that real systems already exploit this
feature to obtain higher resolutions. Moreover, we show that unlike
for the idealized camera, the prefiltering kernel is spatially-varying,
which precludes analytic Fourier theory, but we can still simulate
prefiltering kernels numerically, and obtain insights into resolution.
We present the simulation in Sec. 5.

Assumptions: We derive the light transport from a Lambertian
textured surface at a fixed depth, through a lenslet light field cam-
era. Note that the light transport analysis derives the prefilter kernel
at a single photosensor pixel, as opposed to the earlier Fourier spec-
trum analysis which considers the global light field. Therefore, the
fixed depth assumption only means depth is locally-constant within
the area seen by a single photosensor. This assumption simplifies
the derivation and is invalid only when a single photosensor re-
ceives light rays from multiple surfaces or a surface with very large
depth variation in the observed region. In Sec. 6.5, we also discuss
algorithmic extensions for depth variation and occlusion. Finally,
the theory restricts itself to intensity light fields, and does not ex-
plicitly consider Bayer patterns or demosaicing. The color channels
can simply be handled separately in the standard way. Our practical
verification on real scenes in Fig. 15 includes a variety of complex
surfaces and occlusions, and moderate non-Lambertian reflectance.

4.1 Derivation

Our goal is to derive a direct relationship between the recorded
output light field samples at the photosensor, and the texture func-
tion tλ that defines the in-camera input light field from the Lam-
bertian surface at depth λ. If each output light field sample only
gathers light rays from a small spatial support in tλ, it means
the texture function is weakly filtered before sampling, and thus
high-frequency components are preserved—refocused images can
achieve high resolution. Conversely, if there is a large spatial sup-
port, the texture will be strongly filtered, and resolution is reduced.

We consider the general lenslet-based light field camera design
shown in Figure 3. The system consists of a main lens with focal
length f , aperture width A, and F-number F = f/A. The lenslet
array consists of lenslets with identical focal length fm and aper-
ture width d. The distance between two lenslet centers is g. The
pitch size, or the active area, of a photosensor is p, and the distance
between two photosensor centers is h. The source surface is λ away
from the lenslet array, and the lenslet-photosensor array separation
is α. Note that in our analysis, we do not require that the F-number
of the main lens matches that of the lenslet. This gives us more
flexibility in design.3

We assume the main lens is a thin-lens which transforms the light
field from the world space into the camera. Therefore, the only dif-
ference of the in-camera light field (parameterized on the virtual
surface) to (1) is that light rays outside the aperture are blocked
(Figure 3(b)). To account for this effect, we refine (1) to4

lλ(x) = tλ(x)rect(Fu). (4)

We also consider the full spatial and angular profile of the photo-
sensor in our analysis; the sensitivity of each sensor is a spatial- and
angular-variant function sc(x), where c is the index of the photo-
sensor. Since spatial and angular factors are usually independent,
we can decompose sc into two one-dimensional functions:

sc(x) = rect
(x− xc

p

)
ρ(u), (5)

where xc denotes the center of the photosensor and p denotes its
pitch size, which can be smaller than the inter-sensor distance h
(Figure 3(d)). ρ(u) is the angular sensitivity function, which can
be extracted from the sensor specification. Note that in practice,
it is impossible to manufacture a photosensor with constant angu-
lar profile. Besides foreshortening, the photodetector in the CMOS
sensor is usually buried under a deep dielectric tunnel formed by
multiple metal layers, and this pixel vignetting can reduce the over-
all optical efficiency [Catrysse and Wandell 2002; El Gamal and
Eltoukhy 2005]. We will show that the full spatial-angular profile
has a strong influence on the performance of a light field camera.

Given the source light field (parameterized at the sensor), and the
photosensor profile, we can describe each pixel c as the integral of

3In practice, the chief ray angle, the F-number, or even the shape of the
effective aperture can be spatially variant across the sensor, but we ignore
those variations in our derivation. We have not seen any light field camera
design utilize those variations yet.
4This is strictly correct only on the optical axis, and the center of the rect
function can shift at other sensor locations due to variation of the chief ray
angle (similar arguments hold for photosensor angular sensitivity). How-
ever, the shift is very small in practical systems, and can usually be ignored.
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Fig. 3. Lenslet-based light field camera. (a) The configuration of the optical system and the source light field. We only show the top-half to save space. (b)
The feasible ray directions from the source light field are approximately limited by F . (c) To simplify the derivation, we propagate both the source light field
and the sensing rays from the photosensor to the virtual plane in front of the lenslet. (d) The closeup of (a) near the lenslet and photosensor arrays.

the product of the incoming light field and the sensor profile:

i[c] =

∫ ∞
x=−∞

∫ ∞
u=−∞

l
([ x

−u

])
sc

([ x
u

])
dudx. (6)

The negative sign of u in l is for aligning the orientation of l and s.

However, unlike the ideal case in Sec. 3 where l is a simple lin-
ear transformation of lλ, the light field is now propagated through
a lenslet array. Because each lenslet refracts light rays indepen-
dently, many discontinuities are introduced to the transformed light
field, and the derivation becomes complicated. To address this is-
sue, we borrow an idea from bidirectional path tracing [Lafortune
and Willems 1993]. We define a virtual plane slightly in front of
the lenslet array and define the integral on this plane (Figure 3(c)).
We propagate the light field by λ to reach the lenslet array before
refraction, and propagate s backward by α through the lenslet ar-
ray.5 The advantage of this approach is that while the discontinuity
would be introduced to the transformed sc, in most designs, we
only need to consider one particular lenslet that covers this sensor.

The light field at the virtual plane is simply given by propagation,

lv(x) = lλ(Mλx) = t(x− λu)rect(Fu). (7)

We now seek to propagate the sensor response. Without loss of gen-
erality, we derive the sensor transformation for the lenslet with its

5We cannot propagate sc all the way to the surface of the emitted light
field because λ can be negative. However, in such cases propagating lλ to
the virtual plane is still valid because the source light field comes from the
space outside the camera.

optical center aligned with that of the main lens. To obtain the sen-
sor response on the virtual plane, we first propagate it to the mi-
crolens and then apply the lens refraction given in Table I.

Ms = MαRfm =
[ 1 −α

0 1

][ 1 0

f−1
m 1

]
=
[ (1− α

fm
) −α

f−1
m 1

]
,

(8)

where Rfm is the light transport matrix due to thin-lens refraction
[Gerrard and Burch 1975]. Here the matrices are multiplied in the
reverse order because we wish to transform the light field signal,
not the coordinate. We obtain the propagated sensor profile sc,v by
applying Ms to sc:

sc,v(x) = rect
( (1− αf−1

m )x− αu− xc

p

)
ρ(f−1

m x+ u). (9)

Finally, we also consider the aperture of the lenslet as a masking
function b:

b(x) = rect
(x
d

)
, (10)

where d can be smaller than the inter-lenslet distance g (Fig-
ure 3(d)). In practice, it can be implemented by depositing a black
chromium mask on top of the lenslet array [Georgiev et al. 2011].
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Table II. Simulation parameters
Main lens F-number (F ) 1.9
Inter-sensor distance (h) 2.0 µm

Photosensor pitch size (p) 1.0 µm

Lenslet focal length (fm) 37.0 µm

Inter-lenslet distance (g) 21.0 µm

Lenslet aperture size (d) 21.0 µm

We can now redefine (6) as the integral of the product of (7), (9),
and (10) (note that rect(−Fu) = rect(Fu) below):

i[c] =

∫ ∞
x=−∞

∫ ∞
u=−∞

lv

([ x

−u

])
b(x)sc,v(x)dudx

=

∫ ∞
x=−∞

∫ ∞
u=−∞

t(x+ λu)rect(Fu)rect
(x
d

)
ρ(f−1

m x+ u)×

rect
( (1− αf−1

m )x− αu− xc

p

)
dudx. (11)

While the integral is over the whole spatial and angular dimensions,
rect(Fu) due to the main lens aperture and rect(x/d) due to the
lenslet aperture jointly define the effective integration range, and
thus the feasible range of xc. Therefore, for a single lenslet, only a
finite number of photosensors would have a nonzero response.

One can further substitute x+ λu with k in (11) and obtain:

i[c] =

∫ ∞
k=−∞

t(k)wc(k)dk = (t ∗ w̃c)(0), (12)

wc(k)=

∫ ∞
u=−∞

rect(Fu)b
([ k−λu

u

])
sc,v

([ k−λu
u

])
du,(13)

where ∗ denotes convolution and f̃(x) = f(−x). We can see that
a recorded light field sample is the average of t(k) weighted by
a prefilter kernel function wc(k), or the convolution of t and w̃c

evaluated at the origin. Note that the shape of wc(k) depends on
every single parameter in the optical system: the F-number of the
main lens, the sensor pitch size and its angular sensitivity profile,
the lenslet-sensor distance, the focal length of lenslet, and even the
aperture size of the lenslet.

4.2 Reduction to and Verification of Simplified Model

Because wc has strong dependency on xc, it is no longer possible
to describe the integration as a simple global convolution over the
entire light field, and we have to proceed with numerical simula-
tion in the next section. In this sub-section, we show that although
the final integral (11) appears complex, it can be reduced to verify
the models in previous work [Perwaß and Wietzke 2012]. There-
fore, our derivation can be considered a significant generalization
of those approaches. Previous work describes the light field camera
only under specific settings, that may not be realistic for practical
designs (for example, they omit the pixel’s angular sensitivity).

Simplified Sensor Response: In previous analyses, the pitch size
of the photosensor is usually ignored (p → 0), and the angular
sensitivity is assumed to be constant. With these two assumptions,
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Fig. 4. Effective resolution ratios (ERR) from the simplified model with
photosensor pitch size (top) 0µm (middle) 1µm and (bottom) 2µm for
different α’s. Other parameters are given in Table II. We can see that the
basic design (black curves, α = fm) always has the lowest peak among all
designs. Other designs can achieve a higher resolution peak. However, the
resolution falloff is steeper than the basic design, and the resolution profile
is asymmetric along λ. For all designs, the resolution decreases as the photo
sensor pitch size increases.

the pixel sensitivity function (5) is simplified to:6

sc = δ(x− xc). (14)

and (9) becomes

sc,v(x) = δ((1− αf−1
m )x− αu− xc). (15)

That is, for a specific point x on the virtual plane, only the light ray
from a specific direction u = ((1 − αf−1

m )x − xc)/α would be
sensed by the photosensor.

Reduced Kernel: We can now use the simplified sensor response
to determine a reduced kernel wc for sensing the light field. Specif-
ically, we obtain the simplified form of (11) by using the delta func-

6Mathematically, there should also be a factor proportional to p, accounting
for the loss of light efficiency in integrating over a limited pitch size. For
simplicity, since it does not affect our insights, we ignore this normalization.
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tion (15) and omitting ρ,

i[c] =

∫ ∞
x=−∞

∫ ∞
u=−∞

t(x+ λu)rect(Fu)rect
(x
d

)
×

δ((1− αf−1
m )x− αu− xc)dudx. (16)

Since the integral over the δ-distribution above evaluates the inte-
grand at u = ((1− αf−1

m )x− xc)/α, we have

i[c] =
1

α

∫ ∞
x=−∞

t
( (α+ λ− λαf−1

m )x− λxc

α

)
×

rect
(
F

(1− αf−1
m )x− xc

α

)
rect

(x
d

)
dx.(17)

From this relation, we can extract the kernel function in much the
same way as in (12). Substitute k = α−1((α+λ−λαf−1

m )x−λxc),

i[c] =
1

α+ λ− λαf−1
m

∫ ∞
k=−∞

t(k)rect
(
F

(1− αf−1
m )k − xc

α+ λ− λαf−1
m

)
×

rect
( αk + λxc

d(α+ λ− λαf−1
m )

)
dk.(18)

Finally, the reduced kernel can be written as follows (we drop the
constant normalization term for simplicity),

wc(k) = rect
(
F

(1− αf−1
m )k − xc

α+ λ− λαf−1
m

)
rect

( αk + λxc

d(α+ λ− λαf−1
m )

)
.

(19)

We can see that the integrand in (18) is the product of the texture
function and two rect functions. The first rect function is due to
the main lens aperture, and the second one is due to the lenslet
aperture. In existing analysis [Georgiev et al. 2011; Perwaß and
Wietzke 2012], the effect of the main lens aperture is also ignored
because of the F-number matching constraint: the system is config-
ured such that every light ray entering the main lens would pass the
lenslet and eventually reach the sensor. Therefore, the integrand can
be further simplified as a product of the texture function and a rect
function centered at −λxc/α with width |d(α+ λ− λαf−1

m )/α|.

Basic Lenslet Camera: In this simplified model, when α = fm,
the spot size becomes constant, d, for all λ’s. Therefore, the basic
light field camera design cannot preserve features smaller than the
size of the lenslet, and hence the effective resolution is fixed to the
lenslet resolution for all depths. However, this conclusion is based
on many strong assumptions: the photosensor angular sensitivity is
uniform, the photosensor pitch size is negligible, and the F-number
of the main lens perfectly matches that of the lenslet.

Sweet Spot: When the kernel width |d(α+λ−λαf−1
m )/α| is zero,

no blurring is introduced by the system, and thus all high-frequency
components are preserved in the sampled data. This corresponds to
a sweet spot where λ = 1/(f−1

m − α−1). The sweet spot is in front
of the lenslet array in the focused camera design and behind the
lenslet array in the generalized design.

Finite Pixels: If we allow p to be finite, the kernel is the superposi-
tion of rects centered from −λ(xc− p

2
)/α to −λ(xc + p

2
)/α. The

overall kernel width becomes |d(α + λ − λαf−1
m )/α| + |λp/α|.

The location of the sweet spot also becomes a function of p, and
the minimal kernel width will no longer be zero.

Effective Resolution: Perwaß and Wietzke [2012] define the ef-
fective resolution ratio (ERR) as the ratio of sensor sampling pe-
riod h and the kernel width. We plot the ERR with different p’s
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ߙ ൌ 1.05 ݂

ୡݔ ൌ 0 ୡݔ ൌ 4μm

1200μm

െ1200μm

ߣ

݇െ105μm 105μm21μm

Fig. 5. The kernels for uniform ρ and p = 0. The red dotted lines represent
the ideal box filter of width 21µm, corresponding to the lenslet aperture.
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1200μm

െ1200μm

ߣ

݇െ105μm 105μm21μm

Fig. 6. The kernels for uniform ρ and p = 1µm (fill factor of 0.5). The
red dotted lines represent the ideal box filter of width 21µm.

in Figure 4.7 The resulting plots match the results presented in the
previous work. We can see that in this simplified model, the basic
design (α = fm) has lowest peak resolution among all designs.
When the α is away from fm, the peak resolution would increase,
but with faster falloff.

5. SIMULATION FOR PREFILTER KERNELS

As we have shown in the previous section, the kernel wc is depth-
dependent and spatially-variant, and thus we utilize numerical sim-
ulation in the following analysis.

Unless stated otherwise, we use the parameters listed in Table II
in our simulation—these parameters have the same general range
as current light field cameras. We use the simple power of cosine

7The value of p is not reported in [Perwaß and Wietzke 2012].
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Fig. 7. The kernels for photo sensor with p = 1µm and different angular sensitivity functions. Here, we shift each kernel by λxc/α and reduce the spatial
range k to ±41µm for clear visualization.

model to represent the angular sensitivity function ρ(u), in much
the same way as glossiness is represented in the popular Phong
BRDF model (σ is analogous to the Phong exponent):

ρ(u) = cosσ(tan−1(u)). (20)

When σ = 0, the angular sensitivity function is uniform. Higher σ
means the photosensor is more “glossy” or “picky” in direction.

Uniform Sensitivity and Point Pixels: We begin with the simpli-
fication in Sec. 4.2: the sensor angular sensitivity is uniform (σ = 0
in (20)) and p = 0, and show the kernels at three different lenslet-
sensor distances: fm, 0.95fm and 1.05fm, which correspond to
the three designs in Sec. 2. The kernel functions under those set-
tings at the center of the lenslet (xc = 0µm) and side (xc = 4µm)
are shown in Figure 5. For each configuration, we show the kernel
functions for λ ∈ [−1200µm, 1200µm]. This range covers all re-
focusable ranges presented in previous work (more than ±30fm).

When the sensor pitch size is zero, in the basic light field cam-
era design [Adelson and Wang 1992; Ng et al. 2005] (α = fm),
the kernel function is a box function of width d for all depths. If
the target output resolution is the lenslet resolution, the refocus-
able range would be infinite. In the generalized (α < fm) [Ng
2006] or focused (α > fm) light field camera [Lumsdaine and
Georgiev 2009] designs, the kernel functions can be very narrow,
even smaller than h at a specific sweet spot depth. However, as
we go away from the sweet spot, the kernel functions would grow
quickly and eventually become wider than d.

For the photosensor off the optical axis of the lenslet, the kernel
profile across depths is sheared in all designs, but the kernel width
at each depth is identical to that of the center photosensor.

This observation matches the existing models and the derivations
in Sec. 4.2. In the basic design, the signal is uniformly prefiltered
by a constant box function to match the spatial Nyquist rate. In the
design where α does not match fm, the prefilter can be narrower
than d, and the preserved high-frequency details can be recovered
if properly processed.8 However, the working depth range of those
designs is significantly reduced.

Finite Pixels: Next, we drop the assumption that the photosensor
sensing area is infinitesimal and set p to 1µm (i.e. , the photosen-
sor fill factor is 0.5). The resulting kernel functions are shown in
Figure 6. We can see that for all designs, the kernel width increases
with λ when away from the sweet spot depth.9 The basic design
no longer applies a constant prefilter for all depths, and thus the
refocusable range is limited.

One important finding is that in the generalized or focused designs,
even for the sweet spot, the kernel width is still much larger than h
and even comparable to d. Therefore, when the sensor pitch size is
finite, the resolution performance of focused light field camera de-
signs could be much lower than what is claimed in previous work.

8The exact frequency response also depends on the shape of the kernel, not
only the width. Here we keep the discussion at an abstract level and will
show the true frequency response by the rendering results in Sec. 6.
9In the basic design, we define the sweet spot at λ = 0.
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Angular Sensitivity (σ > 0): Finally, we visualize the kernel func-
tions with different σ’s in Figure 7. Since our primary interest is the
shape of the kernel functions, we shift each kernel by (λxc/α) to
align all kernels. We can see that for all designs, as σ increases,
the kernels become more narrow. Therefore, more high-frequency
details are preserved. However, for the sweet spot depth of each
design (i.e. the one with smallest kernel), the kernel profiles do not
change much with σ. This is because at the sweet spot, the rays
emitted from a point on the source light field would converge to
a point at the photosensor plane. In this case, the kernel width is
largely affected by pitch size p, which defines the source area seen
by the photosensor.

Another important observation is that the kernel function for each
photosensor is distinct to others. As σ increases, the difference
is more obvious. Compared to the photosensor aligned with the
lenslet optical axis (xc = 0), the photosensor on the side receives
fewer rays due to the aperture. Also, its main sensing direction does
not align with that of most incoming rays. Therefore, its kernel
function spans a smaller area, and the overall magnitude is lower.

Discussion: These observations suggest that we should not treat a
light field camera as a device that performs uniform prefiltering and
sampling on the light field signal. Instead, it behaves more like a
cluster of individual light field samplers, and each has a unique pre-
filter kernel and sampling location. The light field is non-uniformly
filtered and irregularly sampled by a light field camera, and tra-
ditional signal processing and spectrum analysis cannot be trivially
applied. On the other hand, this irregular filtering and sampling sug-
gests that proper reconstruction can recover a wider range of light
field frequencies and produce higher-resolution refocused images.

Besides the sensor sensitivity profile, the kernel functions are also
affected by many other parameters (F-number, lenslet aperture size,
etc), and thus the design space is much larger than simply changing
the lenslet-photosensor distance. Some existing prototypes may
exploit these properties without realizing their importance.

6. PROJECTION-BASED RENDERING

We have shown that light field cameras often preserve frequency
components above the spatial Nyquist rate. In this section, we show
that those components can be utilized with the simple projection
algorithm.

The projection algorithm recently gained popularity owing to its
simplicity and efficiency [Kitamura et al. 2004; Perez Nava and
Luke 2009; Georgiev et al. 2011; Yu et al. 2012]. In contrast,
other works rely on expensive deconvolution computations, and
usually require sophisticated image priors to regularize the process
[Georgiev and Lumsdaine 2009; Bishop and Favaro 2012; Wanner
and Goldluecke 2012b; Marwah et al. 2013]. While those methods
may produce higher-quality results (we do not focus on quantitative
evaluation or comparison in this paper), we show here that they are
not actually required to achieve higher resolutions. Later, in Sec. 8,
we briefly analyze the conditioning of a full inverse light transport
algorithm for different light field camera designs.

After a brief algorithm review, we will extend the light transport
analysis to derive the exact filter characteristics for the projection-
based rendering results. Then, we will show the flatland simulation
results for different light field camera designs. To demonstrate the
flexibility of the projection-based algorithm, we also show how to
extend the basic algorithm to handle depth variation and occlusion.

6.1 Algorithm Overview

The basic projection rendering algorithm is straightforward to im-
plement as illustrated in Figure 8. To generate a refocused image
at depth λ, we transform each light field sample by M−λ. In other
words, each sample at (x, u) is moved to (x−λu, u) (Figure 8(b)).
This corresponds to shearing the light field for refocusing at a given
depth. Since we have already sheared the light field, we can simply
drop the u coordinate of transformed samples, and splat their value
to pixels close to x− λu in the target image buffer (Figure 8(c)).

It is known that in practice, this projection algorithm can create im-
ages with resolution higher than the lenslet resolution [Perez Nava
and Luke 2009; Georgiev et al. 2011]. Intuitively, if the scene is
Lambertian, a sample at (x, u) can represent all samples with iden-
tical x coordinates. Therefore, we can replace the angular domain
integration with simple projection. The concept is also exploited to
reproject samples for distribution rendering [Lehtinen et al. 2011].

Because the distribution of projected samples is much denser than
the lenslet density, as shown in (Figure 8(c)), if each one is a point-
wise sample of the light field, the resolution is limited by the spatial
distribution of projected samples [Yu et al. 2012]. However, if the
light field is properly filtered before sampling, the output resolution
is bandlimited, no matter how dense the samples are (Figure 8(d)).

6.2 Derivation

We extend the proposed framework to derive the frequency re-
sponse of the projected image. An output pixel m in the projected
image o can be represented as the linear combination of i’s:

o[m] =

∑
c i[c] · r(xλ[c], xm)∑

c r(xλ[c], xm)
, (21)

where xλ[c] = x[c]−λu[c], xm is the spatial coordinate of the pixel
m, and r is the spatial reconstruction kernel, of which the profile is
defined according to the target output resolution. In practice, r is
usually a simple low-pass function (box, tent, or Gaussian).

We can combine (12) and (21) and obtain:

o[m] =

∑
c

∫∞
k=−∞ t(k)wc(k)dk · r(xλ[c], xm)∑

c r(xλ[c], xm)

=

∫ ∞
k=−∞

t(k)
(∑

c wc(k)r(xλ[c], xm∑
c r(xλ[c], xm

)
dk

=

∫ ∞
k=−∞

t(k)Wλ,m(k)dk = (t ∗ W̃λ,m)(0), (22)

Wλ,m(k) =

∑
c wc(k)r(xλ[c], xm)∑

c r(xλ[c], xm)
. (23)

That is, the output pixel is a weighted average of the source t. The
weight function Wλ,m is a weighted average of the prefiltering ker-
nel functionswc’s. As shown in Sec. 5,wc varies with depth and the
optical configurations, and is generally not perfectly bandlimited.
Therefore, we expect the perceived resolution to be higher than the
lenslet resolution. Moreover, because each wc is unique due to an-
gular sensitivity, and each output pixel combines different sets of
source pixels, each output pixel has a unique frequency response.

While it is possible to design r to fully compensate the prefilter-
ing effect, here we apply a low-pass and spatially-invariant kernel.
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Fig. 8. Illustration of projection-based rendering. (a) The continuous light field from a textured surface at a constant depth λ and the sampling grid. Note the
source texture has higher frequency than the lenslet density 1/g. (b) Shear the discrete light field samples by −λu. (c) Project the samples by splatting to the
target reconstruction buffer. Note again the reconstruction buffer has higher sampling rate than the lenslet density. (d) If the light field is perfectly prefiltered
before sampling (top), the projection result is bandlimited (bottom).

The output generated in this way serves as the lower bound of the
resolution of a light field camera design since the process does not
amplify the attenuated high-frequency components. We leave the
discussion of the inverse light transport process to Sec. 8.

Finally, the projection algorithm shares some similarity with
the back-projection methods in computed tomography [Kak and
Slaney 2001] or light field display synthesis [Wetzstein et al.
2011]. While those methods are developed for reconstructing semi-
transparent volume or layers, the projection algorithm is used in
reconstructing Lambertian and opaque scenes from the light field.

6.3 Implementation

We first normalize each sample i[c] by its effective exposure e[c],
similar to vignetting correction in 2D images:

in[c] =
i[c]

e[c]
, (24)

e[c] =

∫ ∞
x=−∞

∫ ∞
u=−∞

rect(Fu)b(x)sc,v(x)dudx. (25)

In previous work, the spatial coordinate of each sample, x[c], is the
center of the lenslet. Here, we define the (x[c], u[c]) coordinate of
each sample as the weighted average of coordinates of all incoming
light rays; we found this refinement gave slightly better results:

x[c] =
1

e[c]

∫ ∞
x=−∞

∫ ∞
u=−∞

x · rect(Fu)b(x)sc,v(x)dudx, (26)

u[c] =
1

e[c]

∫ ∞
x=−∞

∫ ∞
u=−∞

u · rect(Fu)b(x)sc,v(x)dudx. (27)

We compute that transformed spatial coordinate and splat in[c] to
the two nearest pixels with bilinear weighting (that is, r in (21) is a
tent function). Finally, we normalize each pixel by the total weights
it received, as in equation 21.

ݐ ݔ
1x 1.5x 2x

1200μm

െ1200μm

ߣ

ߪ ൌ 0 ߪ ൌ 20

Fig. 9. Refocusing from the basic light field camera design α = fm using
the projection algorithm. (Left) The results from photosensor with uniform
angular sensitivity. (Right) The results from photosensor with strong angu-
lar sensitivity variation. Readers are encouraged to zoom into these figures
in the electronic version to see the details and avoid unrelated aliasing arti-
facts from resampling in their document reader or printer.

6.4 Simulation

In our simulation, we use parameters in Table II and set the photo-
sensor count to 1050 (i.e. the sensor width is 2100µm). The input
texture function t(x) contains three segments of square waves (line
grating) with periods 42µm, 28µm and 21µm, which correspond
to 1x, 1.5x, and 2x lenslet resolution, respectively. According to
the traditional analysis, the basic light field camera design cannot
preserve details narrower than 21µm (period 42µm), and thus the
maximal effective resolution is 100 pixels. The target image buffer
size is 300 pixels for the projection algorithm.

Basic Lenslet Camera: We first show the results from the basic
light field camera design (i.e. α = fm) in Figure 9. One interesting
observation is that even when the angular sensitivity function is uni-
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ݐ ݔ
1x 1.5x 2x

1200μm

െ1200μm

ߣ

ߙ ൌ 0.95 ݂ ߙ ൌ 1.05 ݂

Fig. 10. Refocusing from the basic light field camera design using the pro-
jection algorithm. (Left) The generalized light field camera design. (Right)
The focused light field camera design. σ = 0 in both designs. The red
arrows mark the location of the sweet spot in both cases. Readers are en-
couraged to zoom into these figures in the electronic version.

form (σ = 0), the projection results still show details at 1.5x lenslet
resolution. Although the kernel functions are wider than the lenslet
pitch size, they are not perfectly bandlimited. Frequency compo-
nents above the spatial Nyquist rate are attenuated, but not elimi-
nated. We can see that the contrast of the wave functions decreases
as |λ| increases, which matches the increase of kernel width with
|λ| shown in Figure 7. We also see that for certain λ’s. the rendering
results are much worse than others (blue arrows on the side of Fig-
ure 9). This is because many samples coincide at those λ’s. In other
words, the projected coordinate (x[c] − λu[c]) of many different
c’s collide with others, and thus the resolution is limited.

Angular Sensitivity: When σ = 0, we can hardly see the details
at 2x lenslet resolution (almost looks uniform grey in Figure 9 left.)
However, as σ is increased to 20, the details at 2x lenslet resolution
start becoming visible for some λ. This matches our prediction at
the end of Sec. 4.1: a more peaked photosensor response would
narrow the kernel and preserve more high frequency details.

Generalized Light Field Camera: Next, we show the refocus-
ing results for the generalized and focused camera designs in Fig-
ure 10. Here we only show the results of σ = 0. When σ increases,
the contrast enhancement is similar to Figure 9. The results match
our analysis of the kernel functions. At the sweet spot (red arrows
in the figure), all details up to 2x lenslet resolution are preserved.
However, the sharpness falls off quickly, and thus the effective re-
focusable range is smaller than that in the basic design.

Quantitative Resolution Plots: To have a more quantitative as-
sessment of the achievable sharpness, we can perform simula-
tions with different source texture frequencies (one frequency at
a time), and measure the contrast of the refocused images at differ-
ent depths. For each input frequency Ω and depth λ, we define the
contrast of the refocused image as

CΩ,λ = (imax − imin)/(imax + imin), (28)

where imax and imin are the maximal and minimal values in the
refocused image. To prevent numerical error and the corruption due
to aliasing at certain λ’s, we detect and average all local maximal

and minimal values at the extrema of the source t across the im-
age domain. When C > 0, it means the signal at this particular
frequency is preserved. In practice, the resolution of an imaging
system is defined as the maximal frequency with contrast above a
certain threshold.

The contrast measurement over frequencies and depths constitute
the full resolution profile of the light field camera as shown in Fig-
ure 11. We can see that the contrast decreases as the source fre-
quency increases, but even in the basic design (Figure 11 left), the
preserved frequencies are above the lenslet resolution. In focused
or generalized designs, the frequencies up to 3x lenslet resolution
can be preserved at certain depths, but also the maximal frequency
with non-zero contrast can be below the lenslet resolution at oth-
ers. Note that because the simulation is performed with thousands
of rays per sample, the light field is noise free. Hence, the contrast
measurement represents the performance under optimal imaging
conditions.

Because the 2D surfaces of the resolution profile might be too clut-
tered for comparison, we plot the 1D slice at 1.5x lenslet resolution
in Figure 12. The plots are consistent with the perceptual results in
Figures 9 and 10. We can see that the achievable resolution is above
the lenslet resolution for all designs, without any deconvolution or
sharpness enhancement process. For all designs, the contrast in-
creases with σ and decreases with p. Surprisingly, when p = h, all
designs behave very similarly, in terms of both refocusable range
and peak contrast. This contradicts the prediction from the existing
model [Ng 2006; Perwaß and Wietzke 2012], showing that the 4D
sensor profile must be considered.

6.5 Extensions for Depth Variation

The simulations so far use scenes at a constant depth. However,
the analysis computes the prefilter kernels for a single photosen-
sor pixel at a time, and so only makes the mild assumption that
the depth seen by a single imager pixel is locally constant. Here
we show that the projection algorithm can be extended to handle
depth variations including occlusion, and thus can be used as a
practical method. If we apply the simple projection algorithm to
generate the defocus effect, there will be artifacts due to angular
aliasing, and various rendering algorithms can be applied to address
them [Lehtinen et al. 2011; Mehta et al. 2013]. We will concentrate
on generating the all-in-focus (extended depth-of-field) image.

To create an all-in-focus image, we first need per-sample depth
information, which can be obtained by most light field depth es-
timation algorithms [Liang et al. 2008; Wanner and Goldluecke
2012a; Kim et al. 2013; Tao et al. 2013]. We then replace xλ[c]
from x[c] − λu[c] to x[c] − λ[c]u[c], and hence the projected spa-
tial coordinate of each sample is set by its own depth value.

Second, we need to handle the samples that should be occluded at
the target viewpoint (that is, the center of the aperture). Since the
depth map of this viewpoint is usually available as a subset of the
full depth information, we can adjust the influence of a sample by
its depth value:

o[m] =

∑
c i[c] · r(xλ[c], xm) · rd(λ[c], λm)∑

c r(xλ[c], xm) · rd(λ[c], λm)
, (29)

where rd is the depth-aware reconstruction kernel and λm is the
depth value for the output pixel o[m]. In the experiment, we choose
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Fig. 11. The resolution profile of the light field camera designs with σ = 10, p = 1µm, and α = (left) 1.0fm, (middle) 0.95fm, and (right) 1.05fm. The
frequency is normalized by 2g(42µm).
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Fig. 12. The contrast profile of light field camera designs at 1.5x lenslet resolution over λ’s. The contrast is defined in equation (28). The dips correspond to
the case where many projected samples collide with others (see blue arrows in Figure 9).

a simple kernel to reject occluded samples:

rd(λ[c], λm) =

{
1 if |λ[c]− λm| ≤ Tλ
0 otherwise

, (30)

where Tλ is a small constant for tolerating depth estimation error.
Note that in our definition, a larger λ is farther in the real world
(Figure 3(a)).

We show a few simulation results in Figure 13. We use the basic
design (α = fm) with ρ = 20 and other parameters listed in Ta-
ble II. When the scene is a slanted surface (Figure 13(a)), we can
see the local sharpness is consistent with that of the constant depth
results (Figure 9 right). For certain λ’s the image quality is limited
due to the collision of projected samples, and this would only affect
the image quality locally. The second scene in Figure 13(b) consists
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−700µm −700µm 

−420µm 

−140µm 

140µm 
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(a) 

𝑡𝑡 𝑥𝑥  

(b) 
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𝜆𝜆 

𝑡𝑡 𝑥𝑥  

Without occlusion handling 

With occlusion handling 

Fig. 13. Projection results for scenes with depth variations. Here the basic
light field camera design (α = fm) with ρ = 20 is used. (a) The scene is a
single slanted surface with increasing slope. The texture is a line grating of
period 28µm (1.5x lenslet resolution). For each row, the left is the projec-
tion results and the right is the depth map. (b) The scene consisting of three
separate layers at 700µm, −300µm, and −700um. The texture of each
layer is a solid color. We can see the that rejecting the occluded samples
using (29) significantly suppresses the artifact. Readers are encouraged to
zoom into these figures in the electronic version.

Table III. Lytro Camera parameters
Main lens F-number (F ) 2.0
Main lens focal length 50 mm

Photo sensor count 3280× 3280

Inter-sensor distance (h) 1.4 µm

Photosensor pitch size (p) 1.0 µm

Lenslet focal length (fm) 25 µm

Lenslet-sensor separation (α) 25 µm

Inter-lenslet distance∗ (g) 14.0 µm

Lenslet aperture size (d) 14.0 µm

Angular exponent (σ) 13
∗: Hexagonal packing.

of three separate layers with solid colors. We can see that without
rejecting the samples that would be occluded, the projection result
contains strong artifacts around the layer boundaries. By using the
modified projection, the artifacts can be greatly suppressed. We will
show more projection results for real scenes captured by the Lytro
camera in the next Section.

7. REAL DATA VERIFICATION

In this section, we briefly show some initial results from the first
generation Lytro light field camera, to verify the 2D flatland anal-
ysis in the previous sections. It should be noted that a real device
and actual data has many additional uncertainties (main lens char-
acteristics, diffraction, manufacturing variations, depth estimation
accuracy). Therefore, our goal is not to quantitatively test the pre-
dictions, but to qualitatively verify some key aspects of the theory.

The configuration of the Lytro camera is listed in Table III. It uses
the basic design (α = fm) and the photosensor has a high direc-
tional sensitivity variation. In this configuration, the lenslet resolu-

tion is 330×330, or 330 line widths per image height (LW/PH). We
mount the camera on a tripod and control the focus motor to per-
form a dense sweep of the ISO-12233 chart. We estimate the depth
to be refocused at a few key frames, and fit the λ value versus the
focus-step with a linear function.

We capture and average 32 white images as the approximation of
the effective exposure in (25). We use a simple linear demosaicing
algorithm and only process the green channel. As in the simula-
tion, we use the simple projection-based algorithm for refocusing:
no additional deconvolution or sharpness enhancement is applied to
the images. The target output resolution is 990× 990. The refocus
results and sharpness measurement are shown Figure 14. The re-
sults show a reasonable agreement with the theory. We can clearly
see that all images contain details above the lenslet resolution. This
matches our analysis: the real device indeed does not have a per-
fect bandlimit prefilter, and high-frequency details are preserved.
For certain depths such as λ = 0, aliasing would happen, and an
additional anti-aliasing filter is required.

To measure the sharpness, we use the popular slanted-edge MTF
measurement which is insensitive to framing or focus breathing
[Burns 2000]. We plot the frequencies with 50% and 20% contrast
(MTF50 and MTF20, respectively) in Figure 14 (right). In conven-
tional cameras, the MTF20 value of the optical system is the ref-
erence value for choosing the corresponding photosensor. We can
see that the MTF20 value is above the lenslet resolution for a wide
range of depths, and the peak resolution can be as high as twice the
lenslet resolution, without any deconvolution or enhancement.

All-in-focus Images of General Scenes: In Sect. 6 we show that
the projection algorithm can be modified to generate all-in-focus
images for non-planar scenes with depth discontinuities. Here we
verify that this modification is practical for the real scenes by pro-
cessing the data taken by the Lytro light field camera.

Because the modified algorithm requires per-sample depth infor-
mation, we extract the depth map generated by the Lytro desktop
software. The extracted depth map is at lenslet resolution at the cen-
ter viewpoint, and we warp it to other viewpoints to generate the
full depth map and reject all dis-occluded samples during projec-
tion. For comparison, we use the traditional algorithm of Ng [2006]
to generate the sub-aperture images with equivalent aperture size
(f/20). Again, no post-processing, such as sharpening, denoising,
or deconvolution, is applied to images. For reference, for a con-
ventional camera with the same main lens, its circle-of-confusion
(defocus blur kernel) is larger than the lenslet aperture width (d)
after |λ| > 25µm.

The representative results are shown in Figure 15, and more high-
resolution ones are provided in the supplemental material. We can
see that although the Lytro camera uses the basic design, the sub-
aperture image still contains much aliasing due to imperfect pre-
filtering. The simple projection algorithm can successfully recover
those details above the spatial Nyquist frequency. Even when the
assumption of the Lambertian scene is moderately violated (gloss
reflection, light source, etc), or when the depth map is not accurate,
the projection results show few and localized artifacts.

8. INVERSE LIGHT TRANSPORT

We have shown that the projection algorithm creates images above
the lenslet resolution. However, high-frequency details are attenu-
ated, and rendering quality is spatially- and depth-variant. There-
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Fig. 14. The refocus results from the real device (Lytro camera) using the basic light field camera design. The parameters are given in Table III. (Left) The
refocus image of the ISO-12233 chart at λ = 50µm from the projection algorithm (Middle) Closeup of refocus images at various λ’s. (Right) The MTF50
and MTF20 values over λ in line widths per picture height (LW/PH). The gray dotted lines represent the lenslet resolution.

fore, the projection algorithm can at best serve as a preview tool
due to its efficiency. We should not judge the performance of light
field camera designs by only comparing the projection results. The
more critical question is: given the samples {i[c]}, how faithfully
can t(x) be reconstructed? Previous work has formulated light field
rendering as solving such an inverse problem [Georgiev and Lums-
daine 2009; Bishop and Favaro 2012; Marwah et al. 2013]. How-
ever, those works do not consider the full camera model, and only
present the results using their own prototypes. Also, since the in-
verse problem is considered ill-conditioned, they apply distinct im-
age or light field priors as the regularization term, and employ dif-
ferent optimization algorithms. It is therefore difficult to determine
the fundamental performance limit of different light field camera
designs.

In contrast, we analyze the fundamental difficulty of the inverse
process. Inspired by the performance analysis for super-resolution
[Baker and Kanade 2002] and bandlimited light field reconstruc-
tion [Wetzstein et al. 2013], we assume the continuous texture func-
tion t(x) can be represented by a piecewise constant function:

t(k) = t[m], (31)

for all k ∈ (km − P/2, km + P/2], where km is the center of
the piece represented by t[m], and P is the piece width. With this
assumption, we can formulate light field capture as a linear system:

i = Wt, (32)

where i is the vector of all captured samples {i[c]}, t is the vector
of all piecewise constant texture elements {t[m]}, and W is the
forward transport matrix that transforms the texture function to the
samples. Each element in W can be derived by replacing t(k) in
(12) by t[m]:

i[c] =

∫ km+P/2

k=km−P/2
t[m]wc(k)dk

=
(∫ km+P/2

k=km−P/2
wc(k)dk

)
t[m]

= Wc,mt[m], (33)

where wc(k) is given in (13). Note that this W is constructed for
the scene at a specific depth, and Wc,m depends on m due to the
integration domain, and on c and all other camera parameters due
to the integrand. The completeness of the linear system depends on
the resolution of t. Note that even if the resolution of t is set to
be less than that of i, it can still be much higher than the lenslet
resolution.10

Signal and Noise Levels: The signal level of i[c] scales with the
magnitude of Wc,m’s. Therefore, if the photosensor is more picky
(i.e. smaller p and higher σ), the signal level would be lower. The
noise of digital imaging systems consists of many components, and
its variance can be approximated as an affine function of the signal
level [Healey and Kondepudy 1994].

To fully evaluate the imaging systems, the tradeoff between the sig-
nal/noise levels and exposure settings should be considered. Here
we study a relaxed situation: the stability of the inversion process
when the signal-noise levels of different designs are compensated.

Inversion: The inverse process attempts to recover t from i. When
the linear system is square or over-complete, the least-squares solu-
tion can be obtained by the (pseudo-)inverse of W. This process is
called inverse light transport in graphics, or deconvolution in com-
puter vision. Since the inversion undoes the mixing of source sig-
nals, the reconstruction quality can be much higher than that of the
simple projection algorithm discussed in Sec. 6.

Stability: The feasibility and stability of inversion is related to
the condition number of the matrix W [Horn and Johnson 2012].
We show condition numbers of different designs in Figure 16, for
λ ∈ [−1200µm, 1200µm], with numerical simulation used to con-
struct W and the resolution of t set to 300 as in the projection algo-
rithm (i.e. P = 7µm in (33)). When the condition number is large,
the noise in the observed t will be significantly amplified. In such
ill-conditioned cases, a regularization term based on the prior of t is
required to obtain satisfactory results. Therefore, light field camera

10It is simple to generalize the derivation here to represent t(x) by other
bases, such as Fourier series or higher-order splines.

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: MM YYYY.



16 • Liang and Ramamoorthi
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Fig. 15. The all-in-focus images from the first generation Lytro camera. (Left) The sub-aperture image (330× 330), (Middle) the depth map extracted from
the Lytro desktop software, and (Right) the results using the modified projection algorithm (990 × 990). The bottom of each row shows the estimated depth
range of the scene.
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Fig. 16. Condition numbers of forward transport matrices of different light field camera designs using the parameters in Table II. The smaller the condition
number, the better conditioned is the inverse process, and it requires a weaker prior or regularization. Condition numbers drop as σ increases for most λ’s in
all designs.
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Fig. 17. The condition number of the generalized light field camera with
photosensor pitch size p = 2µm (fill factor 1.0). Compared to Figure 16
(middle), the peak of condition number is lowered, but the overall condition
number increases.

designs with lower condition numbers are better. Besides the condi-
tion number, one can also evaluate the performance of a linear sys-
tem by other metrics such as the structure of the covariance matrix
(WTW)−1 or the noise amplification factor trace((WTW)−1)
[Wetzstein et al. 2013]. We observed that the relative performance
of different designs remains similar in those metrics.

The first observation from Figure 16 is that the condition number
is strongly correlated with the refocusing quality of the projection
algorithm (Figures 9 and 10). At the λ’s with sharp projection re-
sults, the condition number is low. In contrast, when the condition
number is high, the projection results show serious artifacts.

Condition Number at λ = 0: In the basic design, the condition
number is infinity at λ = 0 when σ = 0. This is because the shapes
of kernel functions for all c’s are identical, and there is no offset
between those kernels when λ = 0. In other words, all photosen-
sors under a lenslet collect the same information, and thus W is
singular, unless the resolution of t is at lenslet resolution or lower.

However, the condition number at λ = 0 drops quickly as σ in-
creases. This is because increasing σ not only reduces the kernel
width, but also adds variation among the photosensors. Each pho-
tosensor integrates the source light field in a slightly different way,
and hence the chance to have linearly-dependent rows in W is re-
duced. A similar concept has been exploited in super-resolution to
replace the regular sensor layout by aperiodic Penrose tiling [Ben-
Ezra et al. 2011].

Generalized/Focused Light Field Cameras: The generalized or
focused light field camera designs behave as we expect. The con-
dition numbers decrease gradually as σ increases. Compared to the
basic design, the comfortable region with low condition numbers
shifts toward negative λ in the generalized design, and towards pos-
itive λ in the focused one. However, neither of these two designs
would effectively widen the region. At λ = 0, both designs would
have difficulty in the inverse process.

Perhaps surprisingly, the condition number in both designs can be
very large at certain λ, and it does not change much as σ increases!
At those depths, the kernel width can be smaller than the offset of
each kernel, and thus certain regions of t(k) are not involved in the
integration at all. In other words, for certain m’s, Wc,m is zero for
all c, and it is not possible to recover t[m] from i.

If we carefully trace light rays from those regions toward the photo-
sensor array, we would find that the rays would hit the non-sensing
area in-between photosensors. Therefore, one straightforward way
to fix the problem is to increase the photosensor pitch size p, and
the resulting condition number is shown in Figure 17. We can see
that the peak condition number decreases significantly. However,
because the filter kernel becomes wider, the condition number in-
creases for most λ’s. Also, the quality of rendering results from
the simple projection-based algorithm would decrease significantly
(see contrast profiles of the middle and bottom rows in Figure 12).
Therefore, this solution basically trades off the overall system per-
formance for improving the worst case.

9. DISCUSSION AND FUTURE WORK

In this paper, we have used analytic models and numerical sim-
ulation to provide many important insights into the resolution
performance of current light field camera designs, and render-
ing/reconstruction algorithms. Our paper is theoretical—no new
light field camera design is presented. However, the relationships
of resolution to various parameters in a number of light field cam-
era designs does provide important guidance for practitioners.

Our model shows that the prefiltering kernel in most light field cam-
era designs is depth-dependent, and spatially variant even for con-
stant depth. We also show that these variations in the light field
would make the quality or stability of the rendering algorithms spa-
tially or depth-dependent.

Our simulations clearly show that the photosensor profile, includ-
ing both the pitch size and the angular sensitivity profile, can sig-
nificantly affect the system performance. However, while reduc-
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ing the pitch size or the sensitivity profile can preserve more high-
frequency contents, the effective exposure is reduced and the sam-
ples would be noisier. It would be an interesting avenue to extend
our framework to consider the noise-sharpness tradeoff and design
the optimal photosensor profile for light field cameras. Also, the
real photosensor profile is generally neither separable nor analytic,
and how to accurately model and calibrate the 4D photosensor pro-
file would be a challenging problem.

When the prefilter kernel does not fully bandlimit the signal, even
the simple projection algorithm can generate output beyond the
lenslet resolution. In the basic design, the prefilter can be adjusted
by the photosensor pitch size or angular sensitivity profile. In the
focused or generalized designs where α 6= fm, the peak resolu-
tion can be even higher at the expense of refocusable range re-
duction. Moreover, the peak resolution of these designs is lower
than expected when the photosensor pitch size is finite (Figure 6),
and sometimes the narrower kernel makes the inverse process ill-
conditioned (Figure 16). Since a wide refocusable range with con-
sistent resolution is as important as the peak resolution, the choice
of the light field camera design is application-dependent.

Our framework can be extended to handle mask-based light field
cameras [Veeraraghavan et al. 2007; Lanman et al. 2008; Marwah
et al. 2013]. One can disable the lenslet by setting fm = ∞, and
replace the masking function b in (10) with general mask functions,
while still considering all other optical parameters. Similar to the
lenslet-based designs, it is possible to recover high resolution re-
sults as long as the prefilter kernel is not perfectly bandlimited.
From this perspective, the mask-based light field camera is similar
to the coded aperture imaging system [Levin et al. 2007]. The main
difference is that each photosensor has its own aperture shape, and
this diversity may provide unique advantages over the coded aper-
ture cameras.

It is straightforward to extend the analysis to the 3D space and
4D light field. In practice, the masking function is circular instead
of rectangular, but the derivation of the kernel function remains
largely unchanged. However, the 2D lenslet and photosensor array
can be constructed in various ways, which may affect the charac-
teristics of the forward transport matrix. We focus on the filtering
and reconstruction in this framework, and leave the analysis of 4D
sampling patterns as future work. Similarly, we leave an analysis of
resolution performance for non-Lambertian scenes as future work.

Finally, our light field analysis is based on geometric optics. Most
steps in our derivation can be replaced with the equivalent tools
(such as the Wigner distribution) in wave optics [Zhang and Levoy
2009; Levin et al. 2009]. While a more accurate model for the ker-
nels can be obtained, we believe the main insights of our analysis
would remain, and the relative performance of different light field
camera designs would not be affected.

10. CONCLUSION

In this paper, we have revisited many different aspects of lenslet-
based light field camera designs. We have shown that the general
space-angle tradeoff usually does not matter when the scene depth
is locally constant. Therefore, the prefilter design for the light field
camera can be more flexible than the simple limit set by the spatial
Nyquist rate.

Second, we have derived a more accurate model for light field im-
age formation by considering the full photosensor profile and all

other parameters in the system. With this model, it is possible to
compare various lenslet cameras, as we have demonstrated via sim-
ulation. We have used our model to explain the success of the sim-
ple projection algorithm, and identified a few unique properties of
the light field camera in the inverse light transport analysis.

We believe that our analysis provides a new way to think about how
light field cameras work, and how to reconstruct images from the
captured light field. We expect these new insights to inspire further
research in light field imaging and computational photography.
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