Local Light Field Fusion:

Practical View Synthesis with Prescriptive Sampling Guidelines

BEN MILDENHALL", University of California, Berkeley
PRATUL P. SRINIVASAN?, University of California, Berkeley
RODRIGO ORTIZ-CAYON, Fyusion Inc.

NIMA KHADEMI KALANTARI, Texas A&M University
RAVI RAMAMOORTHI, University of California, San Diego
REN NG, University of California, Berkeley
ABHISHEK KAR, Fyusion Inc.

Fast and easy handheld capture with guideline:
closest object moves at most D pixels between views

Promote sampled views to local light field
via layered scene representation

WL

Blend neighboring local light fields
to render novel views

Fig. 1. We present a simple and reliable method for view synthesis from a set of input images captured by a handheld camera on an irregular grid pattern.
We theoretically and empirically demonstrate that our method enjoys a prescriptive sampling rate that requires 4000x fewer input views than Nyquist for
high-fidelity view synthesis of natural scenes. Specifically, we show that this rate can be interpreted as a requirement on the pixel-space disparity of the
closest object to the camera between captured views (Section 3). After capture, we expand all sampled views into layered representations that can render
high-quality local light fields. We then blend together renderings from adjacent local light fields to synthesize dense paths of new views (Section 4). Our
rendering consists of simple and fast computations (homography warping and alpha compositing) that can generate new views in real-time.

We present a practical and robust deep learning solution for capturing and
rendering novel views of complex real world scenes for virtual exploration.
Previous approaches either require intractably dense view sampling or pro-
vide little to no guidance for how users should sample views of a scene to
reliably render high-quality novel views. Instead, we propose an algorithm
for view synthesis from an irregular grid of sampled views that first expands
each sampled view into a local light field via a multiplane image (MPI) scene
representation, then renders novel views by blending adjacent local light
fields. We extend traditional plenoptic sampling theory to derive a bound
that specifies precisely how densely users should sample views of a given
scene when using our algorithm. In practice, we apply this bound to capture
and render views of real world scenes that achieve the perceptual quality
of Nyquist rate view sampling while using up to 4000x fewer views. We

“Denotes equal contribution

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
0730-0301/2019/7-ART1 $15.00

https://doi.org/10.1145/3306346.3322980

demonstrate our approach’s practicality with an augmented reality smart-
phone app that guides users to capture input images of a scene and renders
novel views at up to 720p resolution in real-time.

CCS Concepts: « Computing methodologies — Image-based render-
ing.

Additional Key Words and Phrases: view synthesis, plenoptic sampling, light
fields, image-based rendering, deep learning

ACM Reference Format:

Ben Mildenhall, Pratul P. Srinivasan, Rodrigo Ortiz-Cayon, Nima Khademi
Kalantari, Ravi Ramamoorthi, Ren Ng, and Abhishek Kar. 2019. Local Light
Field Fusion: Practical View Synthesis with Prescriptive Sampling Guidelines.
ACM Trans. Graph. 38, 4, Article 1 (July 2019), 14 pages. https://doi.org/10.
1145/3306346.3322980

1 INTRODUCTION

The most compelling virtual experiences completely immerse the
viewer in a scene, and a hallmark of such experiences is the ability
to view the scene from a close interactive distance. This is currently
possible with synthetically rendered scenes, but this level of inti-
macy has been very difficult to achieve for virtual experiences of
real world scenes.

ACM Trans. Graph., Vol. 38, No. 4, Article 1. Publication date: July 2019.

https://doi.org/10.1145/3306346.3322980
https://doi.org/10.1145/3306346.3322980
https://doi.org/10.1145/3306346.3322980

1:2 « B. Mildenhall, P. P. Srinivasan, R. Ortiz-Cayon, N. Khademi Kalantari, R. Ramamoorthi, R. Ng, and A. Kar

Ideally, we could simply sample the scene’s light field and inter-
polate the relevant captured images to render new views. Such light
field sampling strategies are particularly appealing because they
pose the problem of image-based rendering (IBR) in a signal process-
ing framework where we can directly reason about the density and
pattern of sampled views required for any given scene. However,
Nyquist rate view sampling is intractable for scenes with content at
interactive distances, as the required view sampling rate increases
linearly with the reciprocal of the closest scene depth. For example,
for a scene with a subject at a depth of 0.5 meters, captured by a
mobile phone camera with a 64° field of view, and rendered at 1
megapixel resolution, the required sampling rate is an intractable 2.5
million images per square meter. Since it is not feasible to capture all
the required images, the IBR community has moved towards view
synthesis algorithms that leverage geometry estimation to predict
the missing views.

State-of-the-art algorithms pose the view synthesis problem as
the prediction of novel views from an unstructured set or arbitrar-
ily sparse grid of input camera views. While the generality of this
problem statement is appealing, abandoning a plenoptic sampling
framework sacrifices the crucial ability to rigorously reason about
the view sampling requirements of these methods and predict how
their performance will be affected by the input view sampling pat-
tern. When faced with a new scene, users of these methods are
limited to trial-and-error to figure out whether a set of sampled
views will produce acceptable results for a virtual experience.

Instead, we propose a view synthesis approach that is grounded
within a plenoptic sampling framework and can precisely prescribe
how densely a user must capture a given scene for reliable rendering
performance. Our method is conceptually simple and consists of two
main stages. We first use a deep network to promote each source
view to a layered representation of the scene that can render a lim-
ited range of views, advancing recent work on the multiplane image
(MPI) representation [Zhou et al. 2018]. Next, we blend between
adjacent layered renderings to render novel views.

Our theoretical analysis shows that the number of views required
by our method decreases quadratically with the number of planes
we predict for each layered scene representation, up to limits set
by the camera field of view. We empirically validate our analysis
and apply it in practice to render novel views with the perceptual
quality of Nyquist view sampling while using up to 642 ~ 4000x
fewer images.

It is impossible to break the Nyquist limit with full generality for
arbitrary unnatural scenes, but we show that it is possible to achieve
Nyquist level performance with greatly reduced view sampling
by specializing to the subset of natural scenes. This capability is
primarily due to our high quality local light field estimation by a
deep learning pipeline trained on renderings of natural scenes, and
our use of an intermediate layered scene representation that ensures
consistency among local views.

In summary, our key contributions are:

(1) An extension of plenoptic sampling theory that directly spec-
ifies precisely how users should sample input images for
reliable high quality view synthesis with our method.

(2) A practical and robust solution for capturing and rendering
complex real world scenes for virtual exploration.

ACM Trans. Graph., Vol. 38, No. 4, Article 1. Publication date: July 2019.

(3) A demonstration that carefully crafted deep learning pipelines
using local layered scene representations achieve state-of-the-
art view synthesis results.

We extensively validate our derived prescriptive view sampling
requirements and demonstrate that our algorithm quantitatively
outperforms traditional light field reconstruction methods as well as
state-of-the-art view interpolation algorithms across a range of sub-
Nyquist view sampling rates. We highlight the practicality of our
method by developing an augmented reality app that implements
our derived sampling guidelines to help users capture input images
to produce reliably high-quality renderings with our algorithm.
Additionally, we develop mobile and desktop viewer apps that render
novel views from our predicted layered representations in real-time.
Finally, we qualitatively demonstrate that our algorithm reliably
produces state-of-the-art results across a diverse set of complex
real-world scenes.

2 RELATED WORK

Image-based rendering (IBR) is the fundamental computer graphics
problem of rendering novel views of objects and scenes from sam-
pled views. We find that it is useful to categorize IBR algorithms by
the extent to which they use explicit scene geometry, as done by
Shum and Kang [2000].

2.1 Plenoptic Sampling and Reconstruction

Light field rendering [Levoy and Hanrahan 1996] eschews any geo-
metric reasoning and simply samples images on a regular grid so
that new views can be rendered as slices of the sampled light field.
Lumigraph rendering [Gortler et al. 1996] showed that using approx-
imate scene geometry can ameliorate artifacts due to undersampled
or irregularly sampled views.

The plenoptic sampling framework [Chai et al. 2000] analyzes
light field rendering using signal processing techniques, showing
that the Nyquist view sampling rate for light fields depends on the
minimum and maximum scene depths. Furthermore, they discuss
how the Nyquist view sampling rate can be lowered with more
knowledge of scene geometry. Zhang and Chen [2003] extend this
analysis to show how non-Lambertian and occlusion effects increase
the spectral support of a light field, and also propose more general
view sampling lattice patterns.

Rendering algorithms based on plenoptic sampling enjoy the
significant benefit of prescriptive sampling; given a new scene, it is
easy to compute the required view sampling density to enable high-
quality renderings. Many modern light field acquisition systems
have been designed based on these principles, including large-scale
camera systems [Overbeck et al. 2018; Wilburn et al. 2005] and a
mobile phone app [Davis et al. 2012].

We posit that prescriptive sampling is necessary for practical and
useful IBR algorithms, and we extend prior theory on plenoptic
sampling to show that our deep-learning-based view synthesis strat-
egy can significantly decrease the dense sampling requirements of
traditional light field rendering. Our novel view synthesis pipeline
can also be used in future light field acquisition hardware systems
to reduce the number of required cameras.

2.2 Geometry-Based View Synthesis

Many IBR algorithms attempt to leverage explicit scene geometry
in efforts to synthesize new views from arbitrary unstructured sets
of input views. These approaches can be meaningfully categorized
as either using global or local geometry.

Techniques that use global geometry generally compute a single
global mesh from a set of unstructured input images. Simply texture
mapping this global mesh can be effective for constrained situa-
tions such as panoramic viewing with mostly rotational and little
translational viewer movement [Hedman et al. 2017; Hedman and
Kopf 2018], but a major shortcoming is that they can only simulate
Lambertian materials. Surface light fields [Wood et al. 2000] are able
to render convincing view-dependent effects, but require accurate
geometry from dense range scans and hundreds of captured images
to sample the outgoing radiance from points on an object’s surface.

Many free-viewpoint IBR algorithms are based upon a strategy
of locally texture mapping a global mesh. The influential view-
dependent texture mapping algorithm [Debevec et al. 1996] pro-
posed an approach to render novel views by blending nearby cap-
tured views that have been reprojected using a global mesh. Work
on Unstructured Lumigraph Rendering [Buehler et al. 2001] focused
on computing per-pixel blending weights for reprojected images
and proposed a heuristic algorithm that satisfied key properties for
high-quality rendering. Unfortunately, it is very difficult to estimate
high-quality meshes whose geometric boundaries align well with
image edges, and IBR algorithms based on global geometry typically
suffer from significant artifacts. State-of-the-art algorithms [Hed-
man et al. 2018, 2016] attempt to remedy this shortcoming with
complicated pipelines that involve both global mesh and local depth
map estimation. However, it is difficult to precisely define view
sampling requirements for robust mesh estimation, and the mesh
estimation procedure typically takes multiple hours, so this strategy
is impractical for casual content capture scenarios.

IBR algorithms that use local geometry [Chaurasia et al. 2013;
Chen and Williams 1993; Kopf et al. 2013; McMillan and Bishop
1995; Ortiz-Cayon et al. 2015] avoid difficult and expensive global
mesh estimation. Instead, they typically compute local detailed ge-
ometry for each input image and render novel views by reprojecting
and blending nearby input images. The state-of-the-art Soft3D algo-
rithm [Penner and Zhang 2017] blends between reprojected local
layered representations to render novel views, which is conceptu-
ally similar to our strategy. However, Soft3D computes each local
layered representation by aggregating heuristic measures of depth
uncertainty over a large neighborhood of views. We instead train a
deep learning pipeline end-to-end to predict each local layered rep-
resentation for optimal novel view rendering quality using a much
smaller neighborhood. Furthermore, we directly pose our algorithm
within a plenoptic sampling framework, and our analysis directly
applies to the Soft3D algorithm as well. We demonstrate that the
high quality of our deep learning predicted local scene representa-
tions allows us to synthesize superior renderings without requiring
aggregating geometry estimates over large view neighborhoods,
as done in Soft3D. This is especially advantageous for rendering
non-Lambertian effects because the apparent depth of specularities
generally varies with the observation viewpoint, so smoothing the

Local Light Field Fusion + 1:3

estimated geometry over large viewpoint neighborhoods prevents
accurate rendering of non-Lambertian effects.

Other IBR algorithms [Anderson et al. 2016] have attempted to
be more robust to incorrect camera poses or scene motion by inter-
polating views using more general 2D optical flow instead of 1D
depth. Local pixel shifts are also encoded in the phase information,
and algorithms have exploited this to extrapolate views from micro-
baseline stereo pairs [Didyk et al. 2013; Kellnhofer et al. 2017; Zhang
et al. 2015] without explicit flow computation. However, these meth-
ods require extremely close input views and are not suited for large
baseline view interpolation.

2.3 Deep Learning for View Synthesis

Other recent methods have trained deep learning pipelines end-to-
end for view synthesis. This includes recent angular superresolution
methods [Wu et al. 2017; Yeung et al. 2018] that effectively inter-
polate dense views within a light field camera baseline, but cannot
handle sparser input view sampling since they do not model scene
geometry. The DeepStereo algorithm [Flynn et al. 2016] performs
unstructured view synthesis by separately predicting a layered scene
representation for each novel view. Deep learning based light field
camera view interpolation [Kalantari et al. 2016] and single view
local light field synthesis [Srinivasan et al. 2017] both predict a
depth map for each novel view. However, separately predicting lo-
cal geometry for each novel view results in inconsistent renderings
across smoothly-varying viewpoints.

Finally, Zhou et al. [2018] introduce a deep learning pipeline to
predict an MPI from a narrow baseline stereo pair for the task of
stereo magnification. As opposed to previous local scene representa-
tions used in deep learning, MPIs can render consistent novel views
by simple alpha compositing into a target viewpoint. We adopt MPIs
as our local light field representation and introduce specific tech-
nical improvements to enable larger-baseline view interpolation
from many input views using multiple MPIs, as opposed to local
view extrapolation from a stereo pair using a single MPI as in [Zhou
et al. 2018]. We train our system end-to-end through a blending
procedure so the resulting MPIs are optimized to be used together
for rendering output views. We propose a 3D CNN architecture that
dynamically adjusts the number of depth planes based on the view
sampling rate, rather than a 2D CNN with a fixed number of output
planes. Additionally, we show that state-of-the-art performance
requires only an easily-generated synthetic dataset and a small real
fine-tuning dataset, rather than a large real dataset. This allows
us to generate training data captured on 2D irregular grids similar
to handheld view sampling patterns, while the YouTube dataset
in [Zhou et al. 2018] is restricted to 1D camera paths.

3 THEORETICAL SAMPLING ANALYSIS

The overall strategy of our method is to use a deep learning pipeline
to promote each sampled view to a layered scene representation
with D depth layers, and render novel views by blending between
renderings from neighboring scene representations. In this section,
we show that the full set of scene representations predicted by our
deep network can be interpreted as a specific form of light field
sampling. We extend prior work on plenoptic sampling to show

ACM Trans. Graph., Vol. 38, No. 4, Article 1. Publication date: July 2019.

1:4 « B. Mildenhall, P. P. Srinivasan, R. Ortiz-Cayon, N. Khademi Kalantari, R. Ramamoorthi, R. Ng, and A. Kar

Table 1. Reference for symbols used in the text.

Symbol | Definition
D Number of depth planes
w Camera image width (pixels)
f Camera focal length

0 Camera field of view
Ay Pixel size (meters)
Ay Baseline between cameras (meters)

Ky Highest spatial frequency in sampled light field
By Highest spatial frequency in continuous light field
Zmin Closest scene depth (meters)
Zmax | Farthest scene depth (meters)
dmax | Maximum disparity between views (pixels)
S Side length of entire viewing plane (meters)
N Number of sampled views

that our strategy can theoretically reduce the number of required
sampled views by up to D?x compared to the number required by
traditional Nyquist view sampling. Section 6.1 empirically shows
that we are able to take advantage of this bound to reduce the
number of required views by up to 64? ~ 4000x.

In the following analysis, we consider a “flatland” light field with
a single spatial dimension x and view dimension u for notational
clarity, but note that all findings apply to general light fields with
two spatial and two view dimensions.

3.1 Nyquist Rate View Sampling

Initial work on plenoptic sampling [Chai et al. 2000] derived that
the Fourier support of a light field, ignoring occlusion and non-
Lambertian effects, lies within a double-wedge shape whose bounds
are set by the minimum and maximum scene depths zmi, and zmax,
as visualized in Figure 2. Zhang and Chen [2003] showed that occlu-
sions expand the light field’s Fourier support because an occluder
convolves the spectrum of the light field due to farther scene content
with a kernel that lies on the line corresponding to the occluder’s
depth. The light field’s Fourier support considering occlusions is
limited by the effect of the closest occluder convolving the line
corresponding to the furthest scene content, resulting in the paral-
lelogram shape illustrated in Figure 3a, which can only be packed
half as densely as the double-wedge. The required maximum camera
sampling interval A,, for a light field with occlusions is:

1
Ay < . 1
“ 2Kx f (1/2zmin — 1/Zmax) @
K is the highest spatial frequency represented in the sampled light
field, determined by the highest spatial frequency in the continuous

light field By and the camera spatial resolution Ay:

Kx = min (Bx, (2)

K) '
3.2 MPI Scene Representation and Rendering

The MPI scene representation [Zhou et al. 2018] consists of a set of
fronto-parallel RGBa planes, evenly sampled in disparity within a
reference camera’s view frustum (see Figure 4). We can render novel

ACM Trans. Graph., Vol. 38, No. 4, Article 1. Publication date: July 2019.

Ja

NN

N

(a) (b) (c)

Fig. 2. Traditional plenoptic sampling without occlusions, as derived
in [Chai et al. 2000]. (a) The Fourier support of a light field without occlu-
sions lies within a double-wedge, shown in blue. Nyquist rate view sampling
is set by the double-wedge width, which is determined by the minimum and
maximum scene depths [zmin, Zmax] and the maximum spatial frequency
K. The ideal reconstruction filter is shown in orange. (b) Splitting the light
field into D non-overlapping layers with equal disparity width decreases
the Nyquist rate by a factor of D. (c) Without occlusions, the full light field
spectrum is the sum of the spectra from each layer.

X

Fig. 3. We extend traditional plenoptic sampling to consider occlusions
when reconstructing a continuous light field from MPIs. (a) Considering
occlusions expands the Fourier support to a parallelogram (the Fourier
support without occlusions is shown in blue and occlusions expand the
Fourier support to additionally include the purple region) and doubles the
Nyquist view sampling rate. (b) As in the no-occlusions case, separately
reconstructing the light field for D layers decreases the Nyquist rate by
a factor of D. (c) With occlusions, the full light field spectrum cannot be
reconstructed by summing the individual layer spectra because the union of
their supports is smaller than the support of the full light field spectrum (a).
Instead, we compute the full light field by alpha compositing the individual
layer light fields from back to front in the primal domain.

@

views from an MPI at continuously-valued camera poses within
a local neighborhood by alpha compositing the color along rays
into the novel view camera using the “over” operator [Porter and
Duff 1984]. This rendering procedure is equivalent to reprojecting
each MPI plane onto the sensor plane of the novel view camera and
alpha compositing the MPI planes from back to front. An MPI can
be considered as an encoding of a local light field, similar to layered
light field displays [Wetzstein et al. 2011, 2012].

3.3 View Sampling Rate Reduction

Plenoptic sampling theory [Chai et al. 2000] additionally shows that
decomposing a scene into D depth ranges and separately sampling
the light field within each range allows the camera sampling inter-
val to be increased by a factor of D. This is because the spectrum
of the light field emitted by scene content within each range lies
within a tighter double-wedge that can be packed Dx more tightly
than the full scene’s double-wedge spectrum. Therefore, a tighter
reconstruction filter with a different depth can be used for each
depth range, as illustrated in Figure 2b. The reconstructed light field,
ignoring occlusion effects, is simply the sum of the reconstructions
of all layers, as shown in Figure 2c.

However, it is not straightforward to extend this analysis to han-
dle occlusions, because the union of the Fourier spectra for all depth
ranges has a smaller support than the original light field with oc-
clusions, as visualized in Figure 3c. Instead, we observe that recon-
structing a full scene light field from these depth range light fields
while respecting occlusions would be much easier given correspond-
ing per-view opacities, or shield fields [Lanman et al. 2008], for each
layer. We could then easily alpha composite the depth range light
fields from back to front to compute the full scene light field.

Each alpha compositing step increases the Fourier support by
convolving the previously-accumulated light field’s spectrum with
the spectrum of the occluding depth layer. As is well known in signal
processing, the convolution of two spectra has a Fourier support
equal to the sum of the original spectra’s bandwidths. Figure 3b
illustrates that the width of the Fourier support parallelogram for
each depth range light field, considering occlusions, is:

2Kx f (1/zmin — 1/zmax) /D, (3

so the resulting reconstructed light field of the full scene will enjoy
the full Fourier support width.

We apply this analysis to our algorithm by interpreting the pre-
dicted MPI layers at each camera sampling location as view samples
of scene content within non-overlapping depth ranges, and noting
that applying the optimal reconstruction filter [Chai et al. 2000] for
each depth range is equivalent to reprojecting and then blending
pre-multiplied RGBa planes from neighboring MPIs. Our MPI layers
differ from layered renderings considered in traditional plenoptic
sampling because we predict opacities in addition to color for each
layer, which allows us to correctly respect occlusions while com-
positing the depth layer light fields.

In summary, we extend the layered plenoptic sampling framework
to correctly handle occlusions by taking advantage of our predicted
opacities, and show that this still allows us to increase the required
camera sampling interval by a factor of D:

D
Ay £ .
“ 2Ky f (1/zmin — 1/Zmax)

©

Our framework further differs from classic layered plenoptic
sampling in that each MPI is sampled within a reference camera
view frustum with a finite field of view, instead of the infinite field of
view assumed in [Chai et al. 2000; Zhang and Chen 2003]. In order
for the MPI prediction procedure to succeed, every point within the
scene’s bounding volume should fall within the frustums of at least
two neighboring sampled views. The required camera sampling
interval A, is then additionally bounded by:

A, < WAxZmin
us —Zf

where W is the image width in pixels of each sampled view. The
overall camera sampling interval must satisfy both constraints:

®)

D W AxzZmin
2Ky f (1/zmin — l/zmax), 2f

Ay < min

(6)

Local Light Field Fusion « 1:5

g \ 4& b
Input Sampled View

Fig. 4. We promote each input view sample to an MPI scene representa-
tion [Zhou et al. 2018], consisting of D RGBa planes at regularly sampled
disparities within the input view’s camera frustum. Each MPI can render
continuously-valued novel views within a local neighborhood by alpha
compositing color along rays into the novel view’s camera.

Target RGB

\@ H@

N Predicted MPT -
Predicted MPT
- b — Rendered
@ Target View 71 Target
|

Predicted MPI Target alpha

Predicted MPI

Render target view from neighboring MPIs by
homography warping and alpha compositing

Blend RGBA renderings together
to render final output image

Fig. 5. We render novel views as a weighted combination of renderings from
neighboring MPIs, modulated by the corresponding accumulated alphas.

3.4 Image Space Interpretation of View Sampling

It is useful to interpret the required camera sampling rate in terms
of the maximum pixel disparity dmax of any scene point between ad-
jacent input views. If we set zmax = oo to allow scenes with content
up to an infinite depth and additionally set Ky = 1/2Ax to allow
spatial frequencies up to the maximum representable frequency:

Buf _ dimax < min (D, K)) (7

AxZmin 2

Simply put, the maximum disparity of the closest scene point
between adjacent views must be less than min(D, W /2) pixels. When
D = 1, this inequality reduces to the Nyquist bound: a maximum of
1 pixel disparity between views.

In summary, promoting each view sample to an MPI scene rep-
resentation with D depth layers allows us to decrease the required
view sampling rate by a factor of D, up to the required field of
view overlap for stereo geometry estimation. Light fields for real 3D
scenes must be sampled in two viewing directions, so this benefit
is compounded into a sampling reduction of D?. Section 6.1 em-
pirically validates that our algorithm’s performance matches this
theoretical analysis. Section 7.1 describes how we apply the above
theory along with the empirical performance of our deep learning
pipeline to prescribe practical sampling guidelines for users.

4 PRACTICAL VIEW SYNTHESIS PIPELINE

We present a practical and robust method for synthesizing new
views from a set of input images and their camera poses. Our method
first uses a CNN to promote each captured input image to an MPI,

ACM Trans. Graph., Vol. 38, No. 4, Article 1. Publication date: July 2019.

1:6 « B. Mildenhall, P. P. Srinivasan, R. Ortiz-Cayon, N. Khademi Kalantari, R. Ramamoorthi, R. Ng, and A. Kar

then reconstructs novel views by blending renderings from nearby
MPIs. Figure 1 visualizes this pipeline. We discuss the practical
image capture process enabled by our method in Section 7.

4.1 MPI Prediction for Local Light Field Expansion

The first step in our pipeline is the expansion of each sampled view
to a local light field using an MPI scene representation. We predict
an MPI for each input viewpoint using the sampled view along with
its four nearest neighbors in 3D space. To predict each MPI from
this set of 5 images, we first reproject each image to D depth planes,
sampled linearly in disparity within the reference view frustum, to
form 5 plane sweep volumes (PSVs) each of size H X W X D X 3.

Our MPI prediction CNN takes these 5 PSVs, concatenated along
the channel dimension, as input. This CNN outputs an opacity «
for each MPI coordinate (x, y, d) as well as a set of 5 color selection
weights that sum to 1 at each MPI coordinate. These weights param-
eterize the RGB values in the output MPI as a weighted combination
of the input PSVs. Intuitively, each predicted MPI softly “selects” its
color values at each MPI coordinate from the pixel colors at that
coordinate in each of the input PSVs. We specifically use this RGB
parameterization instead of the foreground+background parameter-
ization proposed by Zhou et al. [2018] because their method does
not allow an MPI to directly use content occluded from the reference
view but visible in other input views.

Furthermore, we enhance the MPI prediction CNN architecture
from the original version to use 3D convolutional layers instead of
the original 2D convolutional layers so that our architecture is fully
convolutional along the height, width, and depth dimensions. This
enables us to predict MPIs with a variable number of planes D so
that we can jointly choose the view and disparity sampling densities
to satisfy Equation 7. Table 2 validates the benefit of being able to
change the number of MPI planes to correctly match our derived
sampling requirements, enabled by our use of 3D convolutions. Our
full network architecture can be found in Appendix B.

4.2 Continuous View Reconstruction by Blending

As discussed in Section 3, we reconstruct interpolated views as a
weighted combination of renderings from multiple nearby MPIs.
This effectively combines our local light field approximations into
a light field with a near plane spanning the extent of the captured
input views and a far plane determined by the field-of-view of the
input views. As in standard light field rendering, this allows for
a new view path with unconstrained 3D translation and rotation
within the range of views made up of rays in the light field.

One important detail in our rendering process is that we con-
sider the accumulated alpha values from each MPI rendering when
blending. This allows each MPI rendering to “fill in” content that is
occluded from other camera views.

Our MPI prediction network takes in a set of K RGB images
{C k}kK:1 along with their camera poses py to produce a set of MPIs
M (one corresponding to each input image). To render a novel view
with pose p; using the predicted MPI My, we homography warp
each RGBa MPI plane into the frame of reference of the target pose
pr then alpha composite the warped planes together from back to
front. This produces an RGB image and an alpha image, which we

ACM Trans. Graph., Vol. 38, No. 4, Article 1. Publication date: July 2019.

Ground truth

Blended with «

Average of Cy,;

Fig. 6. An example illustrating the benefits of using accumulated alpha to
blend MPI renderings. We render two MPIs at the same new camera pose.
In the top row, we display the RGB images C;,; from each MPI as well as
the accumulated alphas, normalized so that they sum to one at each pixel.
In the bottom row, we see that a simple average of the RGB images C;, ;
preserves the stretching artifacts from both MPI renderings, whereas the
alpha weighted blending combines only the non-occluded pixels from each
input to produce a clean output.

denote C; i and a j respectively (subscript ¢, k indicating that we
rendered the output image at pose p; using the MPI residing at pose
Pk)-

Since a single MPI alone will not necessarily contain all the con-
tent necessary to render the new view, owing to occlusions and field
of view issues, we render the final RGB output C; by blending the
rendered RGB images C; j from multiple MPIs. We use blending
weights w, each modulated by the corresponding accumulated
alpha images @, ; and normalized so that the resulting rendered
image is fully opaque (@ = 1):

c = Lk Wk kCrk ®
Lk WkOLk
For an example where modulating the blending weights by the
accumulated alpha values prevents artifacts, see Figure 6. Table 2
demonstrates that blending with alpha gives quantitatively superior
results over both using a single MPI and blending multiple MPIs
without alpha.

The blending weights wj can be any sufficiently smooth filter.
In the case of data sampled on a regular grid, we use bilinear in-
terpolation from the four nearest MPIs rather than the ideal sinc
function interpolation for effiency and due to the limited number of
sampled views. For irregularly sampled data, we use the five nearest
MPIs and take wy o exp(—ydy), where dj, is the L? distance to the

novel view and y = DLZ() for focal length f, minimum distance to

the scene zg, and number of planes D. (Note that the quantity Jiok

represents dj. converted into units of pixel disparity.)
Our strategy of blending between neighboring MPIs is particu-
larly effective for rendering non-Lambertian effects. For general

Ground truth

Central image (ground truth)

Fig. 7. We demonstrate that a collection of MPIs can approximate a highly
non-Lambertian light field. The curved plate reflects the paintings on the
wall, leading to quickly-varying specularities as the camera moves horizon-
tally, as can be seen in the ground truth epipolar plot (bottom right). A single
MPI (top right) can only place a specular reflection at a single virtual depth,
but multiple blended MPIs (middle right) can much better approximate the
true light field. In this example, we blend between MPIs evenly distributed
at every 32 pixels of disparity along a horizontal path, as indicated by the
dashed lines in the epipolar plot.

curved surfaces, the virtual apparent depth of a specularity changes
with the viewpoint [Swaminathan et al. 2002]. As a result, speculari-
ties appear as curves in epipolar slices of the light field, while diffuse
points appear as lines. Each of our predicted MPIs can represent
a specularity for a local range of views by placing the specularity
at a single virtual depth. Figure 7 illustrates how our rendering
procedure effectively models a specularity’s curve in the light field
by blending locally linear approximations, as opposed to the limited
extrapolation provided by a single MPI.

5 TRAINING OUR VIEW SYNTHESIS PIPELINE
5.1 Training Dataset

We train our view synthesis pipeline using both renderings and real
images of natural scenes. Using synthetic training data crucially
enables us to easily generate a large dataset with input view and
scene depth distributions equivalent to those we expect at test time,
while using real data helps us generalize to real-world lighting and
reflectance effects as well as small errors in pose estimation.

Our synthetic training set consists of images rendered from the
SUNCG [Song et al. 2017] and UnrealCV [Qiu et al. 2017] datasets.
SUNCG contains 45,000 simplistic house and room environments
with texture-mapped surfaces and low geometric complexity. Un-
realCV contains only a few large-scale environments, but they are
modeled and rendered with extreme detail, providing geometric
complexity, texture variety, and non-Lambertian reflectance effects.
We sample views for each synthetic training instance by first ran-
domly sampling a target baseline for the inputs (up to 128 pixels

Local Light Field Fusion + 1:7

of disparity), then randomly perturbing the camera pose in 3D to
approximately match this baseline.

Our real training dataset consists of 24 scenes from our handheld
cellphone captures, with 20-30 images each. We use the COLMAP
structure from motion [Schonberger and Frahm 2016] implementa-
tion to compute poses for our real images.

For each training step, we sample two sets of 5 views each to use
as inputs, and a single held-out target view for supervision.

5.2 Training Procedure

We first use the MPI prediction network to separately predict an
MPI for each set of 5 inputs. Next, we render the target novel view
from each MPI and blend these renderings using the accumulated
alpha values, as described in Equation 8.

The training loss is simply the image reconstruction loss for the
rendered novel view. We follow the original work for MPI predic-
tion [Zhou et al. 2018] and use the VGG network activation percep-
tual loss as implemented by Chen and Koltun [2017], which has been
consistently shown to outperform standard image reconstruction
losses [Huang et al. 2018; Zhang et al. 2018].

We are able to train on the final blended rendering because our
fixed rendering and blending functions are differentiable. Learning
through this fixed blending step trains our MPI prediction network
to leave alpha “holes” in uncertain regions for each MPL, in the
expectation that this content will be better rendered by another
neighboring MPI, as illustrated by Figure 6.

In practice, training through blending is slower than training a
single MPI, so we first train on rendering a new view from one MPI
for 500k iterations, then fine tune through two views blended from
different MPIs for 100k iterations. When running the final network
on real data, we fine tune on our real dataset for an additional 10k
iterations. We use 320 X 240 resolution and up to 128 planes for
SUNCG training data, and 640 X 480 resolution and up to 32 planes
for UnrealCV training data, due to GPU memory limitations. We
implement our full pipeline in Tensorflow [Abadi et al. 2015] and op-
timize the MPI prediction network parameters using Adam [Kingma
and Ba 2015] with a learning rate of 2 x 107 and a batch size of one.
We split the training pipeline across two Nvidia RTX 2080 Ti GPUs,
and use a single GPU for each of the two MPIs whose renderings
are then blended before computing the training loss.

6 EXPERIMENTAL EVALUATION

We quantitatively and qualitatively validate our method’s prescrip-
tive sampling benefits and ability to render high fidelity novel views
of light fields that have been undersampled by up to 4000X%, as
well as demonstrate that our algorithm outperforms state of the art
methods for regular view interpolation. Figure 9 showcases these
qualitative comparisons on scenes with complex geometry (Fern
and T-Rex) and highly non-Lambertian scenes (Air Plants and Pond)
that are not handled well by most view synthesis algorithms.

For all quantitative comparisons (Table 2), we use a synthetic test
set rendered from an UnrealCV [Qiu et al. 2017] environment that
was not used to generate any training data. Our test set contains 8
scenes, each rendered at 640 X 480 resolution and at 8 different view

ACM Trans. Graph., Vol. 38, No. 4, Article 1. Publication date: July 2019.

1:8 « B. Mildenhall, P. P. Srinivasan, R. Ortiz-Cayon, N. Khademi Kalantari, R. Ramamoorthi, R. Ng, and A. Kar

0.6]
—— Ours (8 planes)
054 Ours (16 planes)
— Ours (32 planes)
0.44 — Ours (64 planes)
—— Ours (128 planes)
2]
& —— LFI
= 034
3
0.2
0.1 +-e==
0.0

1 2 4 8 16 32 64 128 256
Maximum disparity (pixels)

Fig. 8. We plot the performance of our method (with varying number of
planes D = 8, 16, 32, 64, and 128) compared to light field interpolation for
different input view sampling rates (denoted by maximum scene disparity
dmax between adjacent input views). Our method can achieve the same
perceptual quality as LFI with Nyquist rate sampling (black dotted line) as
long as the number of predicted planes matches or exceeds the undersam-
pling rate, up to an undersampling rate of 128. At D = 64, this means we
achieve the same quality as LFl with 64> ~ 4000x fewer views. We use the
LPIPS [Zhang et al. 2018] metric (lower is better) because we specifically
care about perceptual quality. The colored dots indicate the point on each
line where the number of planes equals the disparity range, where equality
is achieved in our sampling bound (Equation 7). The shaded region indicates
+1 standard deviation over all 8 test scenes.

sampling densities such that the maximum disparity between adja-
cent input views ranges from 1 to 256 pixels (a maximum disparity
of 1 pixel between input views corresponds to Nyquist rate view
sampling). We restrict our quantitative comparisons to rendered
images because a Nyquist rate grid-sampled light field would need
to have at least 384% camera views to generate a similar test set,
and no such densely-sampled real light field dataset exists to the
best of our knowledge. We report quantitative performance using
the standard PSNR and SSIM metrics, as well as the state-of-the-art
LPIPS [Zhang et al. 2018] perceptual metric, which is based on a
weighted combination of neural network activations tuned to match
human judgements of image similarity (lower is better).

Finally, our accompanying video shows results on over 50 addi-
tional real-world scenes. These renderings were created completely
automatically by a script that takes only the set of captured images
and desired output view path as inputs, highlighting the practicality
and robustness of our method.

6.1 Sampling Theory Validation

Our method is able to render high-quality novel views while signif-
icantly decreasing the required input view sampling density. The
graph in Figure 8 shows that our method is able to render novel
views with Nyquist level perceptual quality up to and including
D = 64 pixels of disparity between input view samples, as long as
we match the number of planes in each MPI to the maximum pixel
disparity between input views. We postulate that our inability to

ACM Trans. Graph., Vol. 38, No. 4, Article 1. Publication date: July 2019.

match Nyquist quality from input images with a maximum of 128
pixels of disparity is due to the following factors:

(1) As the maximum disparity between adjacent views increases,
any non-foreground scene point is likely sampled by fewer in-
put views, which makes it harder for the CNN to find matches
in the plane sweep volume and correctly estimate its depth.

(2) At our test resolution of 640 x 480 and 128 pixels of disparity,
the field of view overlap between neighboring images is close
to the limit of our inequality in Equation 5.

Figure 8 also shows that once our sampling bound is satisfied, adding
additional planes does not increase performance. For example, at 32
pixels of disparity, increasing from 8 to 16 to 32 planes decreases the
LPIPS error, but performance stays constant from 32 to 128 planes.
This verifies that for scenes up to 64 pixels of disparity, adding
additional planes past the maximum pixel disparity between input
views is of limited value, in accordance with our theoretical claim
that partitioning a scene with disparity variation of D pixels into D
depth ranges is sufficient for continuous reconstruction.

6.2 Comparisons to Baseline Methods

We quantitatively (Table 2) and qualitatively (Figure 9) demonstrate
that our algorithm produces superior renderings, particularly for
non-Lambertian effects, without the artifacts seen in renderings
from competing methods. We urge readers to view our accompany-
ing video for convincing rendered camera paths that highlight the
benefits of our approach compared to competing methods.

We use the synthetic test set described above to compare our
method to state-of-the-art view synthesis techniques as well as view-
dependent texture-mapping using a global mesh proxy geometry.
Please refer to Appendix A for additional implementation details
regarding baseline methods.

Soft3D [Penner and Zhang 2017]. Soft3D is a state-of-the-art view
synthesis algorithm that is similar to our approach in that it also
computes a local layered scene representation for each input view
and projects and blends these volumes to render each novel view.
However, it uses a hand-crafted pipeline based on classic local stereo
and guided filtering to compute each layered representation. Fur-
thermore, since classic stereo methods are unreliable for smooth
or repetitive image textures and non-Lambertian materials, Soft3D
relies on smoothing their geometry estimation across many (up to
25) input views.

Table 2 quantitatively demonstrates that our approach outper-
forms Soft3D overall. In particular, Soft3D’s performance degrades
much more rapidly as the input view sampling rate decreases since
their aggregation is less effective as fewer input images view the
same scene content. Our method is able to maintain high-quality
performance and predict “complete” and “smooth” geometry in sce-
narios where Soft3D suffers from noisy and erroneous results of
local stereo because we leverage deep learning to learn implicit
priors on natural world geometry. This is in line with recent work
that has shown the benefits of deep learning over traditional stereo
for depth estimation [Huang et al. 2018; Kendall et al. 2017].

Figure 9 qualitatively demonstrates that Soft3D generally con-
tains blurred geometry artifacts due to errors in local depth estima-
tion, and that Soft3D’s approach fails for rendering non-Lambertian

Local Light Field Fusion + 1:9

Table 2. We qualitatively show that our method outperforms state-of-the-art baselines and specific ablations of our method, across a wide range of input
sampling rates (denoted as the maximum pixel disparity between adjacent input views), on a synthetic test set. We display results using the standard PSNR
and SSIM metrics (higher is better) as well as the LPIPS perceptual metric [Zhang et al. 2018] (lower is better). The best measurement for each column is
bolded. See Sections 6.2 and 6.3 for details on each comparison.

Maximum disparity dmax (pixels)

16 32 64 128

Algorithm | PSNRT SSIMT LPIPS| | PSNRT SSIMT LPIPS| | PSNRT SSIMT LPIPS| | PSNRT SSIMT LPIPS |

LFI 26.21 0.7776 ~ 0.2541 23.35 0.6982 0.3198 20.60 0.6243 0.3971 18.32 0.5560 0.4665
Baselines ULR 28.17 0.8320 0.1510 26.43 0.7987 0.1820 24.34 0.7679 0.2311 21.24 0.7062 0.3215

Soft3D 34.48 0.9430 0.1345 32.33 0.9216 0.1795 27.97 0.8588 0.2652 23.11 0.7382 0.3979

BW Deep 34.18 0.9433 0.1074 34.00 0.9476 0.1128 31.88 0.9192 0.1573 27.59 0.8363 0.2591
Ablations Single MPI | 31.11 0.9482 0.1007 29.38 0.9424 0.1111 26.88 0.9250 0.1363 24.20 0.8734 0.1980

Avg. MPIs 32.67 0.9560 0.1140 31.34 0.9532 0.1248 29.31 0.9400 0.1423 27.02 0.8999 0.1961

Ours 34.57 0.9568 0.0942 3448 0.9569 0.0954 33.58 0.9530 0.1012 3196 0.9323 0.1374

effects because their aggregation procedure blurs the specularity
geometry, which changes with the input image viewpoint.

Backwards warping deep network (BW Deep). This baseline sub-
sumes recent deep learning view synthesis techniques [Flynn et al.
2016; Kalantari et al. 2016], which use a CNN to estimate geometry
for each novel view and then backwards warp and blend nearby
input images to render the target view. We train a network that uses
the same 3D CNN architecture as our MPI prediction network but
instead outputs a single depth map at the pose of the new target
view. We then backwards warp the five input images into the new
view using this depth map and use a second 2D CNN to composite
these warped input images into a single output rendered view.

As shown in Table 2, performance for this method degrades
quickly as the maximum disparity increases. Although this ap-
proach produces comparable images for scenes with small disparities
(dmax = 16,32), the renderings suffer from extreme inconsistency
when rendering video sequences.

BW Deep methods use a CNN to estimate depth separately for
each output viewpoint, so artifacts appear and disappear over only a
few frames, resulting in rapid flickers and pops in the rendered cam-
era path. This inconsistency is visible as corruption in the epipolar
plots in Figure 9 and can be clearly seen in our supplemental video.
Furthermore, backwards warping incentivizes incorrect depth pre-
dictions to fill in disocclusions, so BW Deep methods also contain
errors around thin structures and occlusion edges.

Unstructured Lumigraph Rendering (ULR) [Buehler et al. 2001].
This baseline is representative of view dependent texture mapping
using an estimated global mesh as a geometry proxy. We reconstruct
a global mesh from all inputs using the screened poisson surface
reconstruction algorithm [Kazhdan and Hoppe 2013], and use the
heuristic Unstructured Lumigraph blending weights [Buehler et al.
2001] to blend input images reprojected into the novel viewpoint
with the global mesh geometry. We use a plane at the mean scene
disparity as a proxy geometry to fill in holes in the mesh.

It is particularly difficult to reconstruct a global mesh with ge-
ometry edges that are well-aligned with image edges, which causes
perceptually jarring artifacts. Furthermore, mesh reconstruction

often fails to fill in large portions of the scene, resulting in ghosting
artifacts similar to those seen in light field interpolation.

Light Field Interpolation (LFI) [Chai et al. 2000]. This baseline is
representative of classic signal processing based continuous view
reconstruction. Following the method of plenoptic sampling [Chai
et al. 2000], we render novel views using a bilinear interpolation
reconstruction filter sheared to the mean scene disparity.

Figure 9 demonstrates that increasing the camera spacing beyond
the Nyquist rate results in extreme aliasing and ghosting artifacts
when using this method.

6.3 Ablation Studies

We validate our overall strategy of blending between multiple MPIs
as well as our specific blending procedure that considers accumu-
lated alphas through the following ablation studies:

Single MPIL The fifth row of Table 2 shows that using only one MPI
to produce new views results in significantly decreased performance
due to the limited field of view represented in a single MPI as well as
depth discretization artifacts as the target view moves far from the
MPI reference viewpoint. Additionally, Figure 7 shows an example
of complex non-Lambertian reflectance that cannot be represented
by a single MPI. This can be considered an upper bound on the
performance of [Zhou et al. 2018], since we use only one MPI but
generate it with a higher capacity 3D CNN.

Average MPIs. The sixth row of Table 2 shows that blending multi-
ple MPI outputs for each novel view without using the accumulated
alpha channels results in decreased performance. Figure 6 visual-
izes that this simple blending leads to ghosting in regions that are
occluded from the inputs of any of the MPIs used for rendering,
because they will contain incorrect content in disoccluded regions.

7 PRACTICAL USAGE

We present sampling guidelines to assist users in sampling views
that enable high-quality view interpolation with our algorithm, and
showcase our method’s practicality with a smartphone camera app
that guides users to easily capture such input images. Furthermore,
we implement a fast mobile viewer that renders novel views from our
predicted MPIs in real-time. Figure 9 showcases example rendered

ACM Trans. Graph., Vol. 38, No. 4, Article 1. Publication date: July 2019.

1:10 « B. Mildenhall, P. P. Srinivasan, R. Ortiz-Cayon, N. Khademi Kalantari, R. Ramamoorthi, R. Ng, and A. Kar

e
Blended MPIs (ours)

Blended MPlIs (ours)

Whole scene (T-Rex)

x

New view path Soft3D BW Deep Blended MPIs (ours)

Fig. 9. Results on real cellphone datasets. We render a sequence of new views and show both a crop from a single rendered output and an epipolar slice of
the sequence. We show 2D projections of the input camera poses (blue dots) and new view path (red line) along the z and y axes of the new view camera
in the lower left of each row. LFI fails to cleanly represent objects at different depths because it only uses a single depth plane for reprojection, leading to
ghosting (leaves in Fern, lily pads in Pond) and depth inconsistency visible in all epipolar images. Mesh reconstruction failures cause artifacts visible in
both the crops and epipolar images for ULR. Soft3D’s depth uncertainty leads to blur, and geometry aggregation across large view neighborhoods results
in incorrect specularity geometry (brown and blue reflections in Pond). BW Deep’s use of a CNN to render every novel view causes depth inconsistency,
visible as choppiness across the rows of the epipolar images in all examples. Additionally, BW Deep selects a single depth per pixel, leading to errors for
transparencies (glass rim in Air Plants) and reflections (Pond). BW Deep also uses backwards warping, which causes errors around occlusion boundaries (thin
ribs in T-Rex). We urge the reader to refer to our supplemental video for high quality videos of these rendered camera paths and additional discussion.

ACM Trans. Graph., Vol. 38, No. 4, Article 1. Publication date: July 2019.

results from handheld smartphone captures. Our accompanying
video contains a screen capture of our app in use, as well as results
on over 50 real-world scenes generated by an automated script.

7.1 Prescriptive Scene Sampling Guidelines

In a typical capture scenario, a user will have a camera with a
field of view 6 and a view plane with side length S that bounds
the viewpoints they wish to render. Based on this, we prescribe
the design space of image resolution W and number of images to
sample N that users can select from to reliably render novel views
at Nyquist level perceptual quality.

Section 6.1 shows that the empirical limit on the maximum dis-
parity dmax between adjacent input views for our deep learning
pipeline is 64 pixels. Substituting Equation 7:

Auf
AxZmin
We translate this into user-friendly quantities by noting that
Ay, =S/ \/ﬁ and that the ratio of sensor width to focal length
WA /f =2tan6/2:

< 64)

w < 1282 min tan(6/2) (10)

VN S

Using a smartphone camera with a 64° field of view, this is simply:

W 80%min (11)

VN S
Intuitively, once a user has determined the extent of viewpoints
they wish to render and the depth of the closest scene point, they can
choose any target rendering resolution W and number of images to
capture N such that the ratio W/VN satisfies the above expression.

7.2 Asymptotic Rendering Time and Space Complexity

Within the possible choices of rendering resolution W and number of
sampled views N that satisfy the above guideline, different users may
value the capture time, rendering time, and storage costs differently.
We derive the asymptotic complexities of these quantities to further
assist users in choosing correct parameters for their application.

First, the capture time is simply O(N). The render time of each
MPI generated is proportional to the number of planes times the
pixels per plane:

3
wip=—— WS _omiNi, (12)
2VNzpmin tan(6/2)

Note that the rendering time for each MPI decreases as the number
of sampled images N increases, because this allows us to use fewer
planes per MPIL. The total MPI storage cost is proportional to:

W3sVN

_ 3
T tan(@y7) = W VN). (13)

w?D-N =

Practically, this means that users should determine their spe-

cific rendering time and storage constraints, and then maximize

the image resolution and number of sampled views that satisfy

their constraints as well as the guideline in Equation 10. Figure 10
visualizes these constraints for an example user.

Local Light Field Fusion « 1:11

MPI rendering time and storage space complexity

.
— 001 S 3
o1 o 3
D =}
2 150 1 R g
2 — 04
- gﬂ
H 3
3 — 10 =3
< . o0
= — 20 g-
£ 100 e
8
‘E 0.1 §’$
2 1.0 %5
1 I A A A N 10 E%
z 5o
0 2%
C)ﬁ
...... 20 gﬂ)
0 .

T T T T
0 200 400 600 800 1000
Rendering image width {pixels)

Fig. 10. Time and storage cost tradeoff within the space of rendering reso-
lution and number of sampled views that result in Nyquist level perceptual
quality (space above the thick blue curve signifying D = dmax < 64, as in
Equation 11). We plot isocontours of rendering time and storage space for
an example scene with close depth zpin = 1.0m and target view plane with
side length 0.5m, captured with a camera with a 64° field of view. We use
the average rendering speed from our desktop viewer and the storage re-
quirement from uncompressed 8-bit MPIs. Users can select the point where
their desired rendering speed and storage space isocontours intersect to
determine the minimum required number of views and maximum affordable
rendering resolution.

(a) Grid of guides shows user
where to move phone

(b) Image automatically captured when
phone aligns with guide

Fig. 11. Equation 7 prescribes a simple sampling bound related only to the
maximum scene disparity. We take advantage of the augmented reality
toolkits available in modern smartphones to create an app that helps the
user sample a real scene for rendering with our method. (a) We use built-in
software to track the phone’s position and orientation, providing sampling
guides that allow the user to space photos evenly at the target disparity. (b)
Once the user has centered the phone so that the RGB axes align with one
of the guides, the app automatically captures a photo.

7.3 Smartphone Capture App

We develop an app for iOS smartphones, based on the ARKit frame-
work, that guides users to capture input views for our view synthesis
algorithm. The user first taps the screen to mark the closest object,
and the app uses the corresponding scene depth computed by ARKit
as zmin- Next, the user selects the size of the view plane S within
which our algorithm will render novel views. We fix the rendering
resolution for the smartphone app to W = 500 which therefore fixes
the prescribed number and spacing of required images based on
Equation 11 and the definition A, = S/VN. Our app then guides the
user to capture these views using the intuitive augmented reality
overlay visualized in Figure 11. When the phone detects that the
camera has been moved to a new sample location, it automatically
records an image and highlights the next sampling point.

ACM Trans. Graph., Vol. 38, No. 4, Article 1. Publication date: July 2019.

1:12 « B. Mildenhall, P. P. Srinivasan, R. Ortiz-Cayon, N. Khademi Kalantari, R. Ramamoorthi, R. Ng, and A. Kar

7.4 Preprocessing

After capturing the required input images, the only preprocessing
required before being able to render novel views is estimating the
input camera poses and using our trained network to predict an MPI
for each input view. Unfortunately, camera poses from ARKit are
currently not accurate enough for acceptable results, so we use the
open source COLMAP software package [Schonberger and Frahm
2016; Schonberger et al. 2016], which takes about 2-6 minutes for
sets of 20-30 input images.

We use the deep learning pipeline described in Section 4.1 to
predict an MPI for each input sampled view. On an Nvidia GTX
1080Ti GPU, This takes approximately 0.5 seconds for a small MPI
(500 % 350 X 32 ~ 6 megavoxels) or 12 seconds for a larger MPI that
must be produced in patches (1000 X 700 X 64 ~ 45 megavoxels). In
total, our method only needs about 10 minutes of preprocessing to
estimate poses and predict MPIs before being able to render novel
views at a 1 megapixel image resolution.

With the increasing investment in smartphone AR and on-device
deep learning accelerators, we expect that smartphone pose estima-
tion will soon be accurate enough and on-device network inference
will be powerful enough for users to go from capturing images to
rendering novel views within a few seconds.

7.5 Real-Time Viewers

We implement rendering novel views from a single MPI as rasteriz-
ing each plane from back to front as texture-mapped rectangles in 3D
space, and using a standard shader API to correctly handle the alpha
compositing, perspective projection, and texture resampling. For
each new view, we determine the MPIs to be blended, as discussed in
Section 4.2, and render them into separate framebuffers. We then use
a simple fragment shader to perform the alpha-weighted blending
described in Section 4.2. We implement this rendering pipeline as
desktop viewer using OpenGL which renders views with 1000 X 700
resolution at 60 frames per second, as well as an iOS mobile viewer
using the Metal API which renders views with 500 X 350 resolu-
tion at 30 frames per second. Please view our included video for
demonstrations of these real-time rendering implementations.

7.6 Limitations

A main limitation of our algorithm is that our MPI network some-
times assigns high opacity to incorrect layers in regions of am-
biguous or repetitive texture and regions where the scene moves
between input images. This can cause floating or blurred patches in
the rendered output sequence (see the far right side of the fern in
our video), which is a common failure mode in methods that rely
on texture matching cues to infer depth. These artifacts could po-
tentially be ameliorated by using more input views to disambiguate
stereo matching and by encouraging the network to learn stronger
global priors on 3D geometry.

Another limitation is the difficulty of scaling to higher image
resolutions. As evident in Equations 12 and 13, layered approaches
such as our method are limited by complexities that scale cubically
with the image width in pixels. Furthermore, increasing the image
resolution requires a CNN with a larger receptive field. This could
be addressed by exploring multiresolution CNN architectures and

ACM Trans. Graph., Vol. 38, No. 4, Article 1. Publication date: July 2019.

heirarchical volume representations such as octrees, or by predicting
a more compact local scene representation such as layered depth
images [Shade et al. 1998] with opacity.

8 CONCLUSION

We have presented a simple and practical method for view syn-
thesis that works reliably for complex real-world scenes, including
non-Lambertian materials. Our algorithm first promotes each input
image into a layered local light field representation, then renders
novel views in real time by blending outputs generated by nearby
representations. We extend traditional plenoptic sampling analysis
to handle occlusions, and provide a theoretical sampling bound on
how many views are needed for our method to render high-fidelity
views of a given scene. We quantitatively validate this bound and
demonstrate that we match the perceptual quality of dense Nyquist
rate view sampling while using ~ 4000x fewer input images. Our
accompanying video demonstrates that we thoroughly outperform
prior work, and showcases results on over 60 diverse and complex
real-world scenes, where our novel views are rendered with a fully
automated capture-to-render pipeline. We believe that our work
paves the way for future advances in image-based rendering that
combine the performance benefits of empirical data-driven machine
learning methods with the robust reliability guarantees of traditional
geometry and signal processing analysis.

ACKNOWLEDGMENTS

We thank the SIGGRAPH reviewers for their constructive comments.
The technical video was created with help from Julius Santiago, Mi-
los Vlaski, Endre Ajandi, and Christopher Schnese. The augmented
reality app was developed by Alex Trevor.

Ben Mildenhall is funded by a Hertz Foundation Fellowship.
Pratul Srinivasan is funded by an NSF Graduate Fellowship. Ravi
Ramamoorthi is supported in part by NSF grant 1617234, ONR grant
N000141712687, and Google Research Awards. Ren Ng is supported
in part by NSF grant 1617794 and an Alfred P. Sloan Foundation
Fellowship.

A BASELINE METHODS IMPLEMENTATION DETAILS

Here we provide additional implementation details regarding the
baseline comparison methods described in Section 6.2.

Soft3D [Penner and Zhang 2017]. We implemented this algorithm
from the description provided in the original paper, since no open-
source implementation is currently available. We provide Soft3D’s
local stereo stage with the same 5 input images used to compute
each of our MPIs, for fair comparison. Next, we aggregate Soft3D’s
computed vote volumes across 25 viewpoints, as suggested in their
paper for 2D view captures. Finally, we compute each rendered
novel view using the Soft3D volumes corresponding to the same 5
viewpoints whose MPIs we use for our algorithm. The guided filter
parameters are not specified in the original Soft3D paper, but we
find that best results were obtained using a window size of 8 and
€ = 20 for images with values in the range (0,255). Please refer to
our supplemental video to see results of our Soft3D implementation
on a scene shown in the original paper’s video to verify that our
implementation is of similar quality.

Table 3. Our network architecture. k is the kernel size, s the stride, d the
kernel dilation, chns the number of input and output channels for each
layer, in and out are the accumulated stride for the input and output of each
layer, input denotes the input of each layer with + meaning concatenation,
and layers starting with “nnup” perform 2x nearest neighbor upsampling.

Layer k s d chns in out input
convi_1 3 1 1 15/8 1 1 PSVs
convl 2 3 2 1 8/16 1 2 convl_1
conv2.1 3 1 1 16/16 2 2 convl 2
conv2. 2 3 2 1 16/32 2 4 conv2_1
conv3_1 3 1 1 32/32 4 4 conv2_2
conv3 2 3 1 1 32/32 4 4 conv3_1
conv3 3 3 2 1 32/64 4 8 conv3_2
convd 1 3 1 2 64/64 8 8 conv3_3
convd 2 3 1 2 64/64 8 8 conv4_1
convd. 3 3 1 2 64/64 8 8 conv4_2

nnup5 128/256 8 4 conv4_3 + conv3_3
conv5_.1 3 1 1 256/32 4 4 nnup5
convs 2 3 1 1 32/32 4 4 conv5_1
convG 3 3 1 1 32/32 4 4 convb_2

nnup6 64/128 4 2 conv5_3 + conv2_2
conv_1 3 1 1 128/16 2 2 nnup6
conv6_2 3 1 1 16/16 2 2 convé_1
nnup? 32/64 2 1 conv6_2 + convl_2
conv7_1 3 1 1 64/8 1 1 nnup?7
conv7_.2 3 1 1 8/8 1 1 conv7_1
conv7_.3 3 1 1 8/5 1 1 conv7_2

Backwards warping deep network (BW Deep). This baseline is very
similar to [Kalantari et al. 2016] in overall structure. However, it uses
a much larger CNN architecture (same architecture as our method)
and takes five images as input rather than four. In addition, since our
network is 3D rather than 2D, we can run with a variable number
of planes in the plane sweep volumes rather than fixing D = 100.
When generating our quantitative results (Table 2), we set D = dax,
as in our method. We train this baseline with the same synthetic
and real datasets as our network.

Unstructured Lumigraph Rendering (ULR) [Buehler et al. 2001;
Gortler et al. 1996]. We use COLMAP’s multiview stereo imple-
mentation [Schonberger and Frahm 2016; Schonberger et al. 2016]
to generate dense depths and estimate a global triangle mesh of
the scene from all input images using the screened poisson surface
reconstruction algorithm [Kazhdan and Hoppe 2013]. For each pixel
in a new target view, we implement the heuristic blending weights
from [Buehler et al. 2001] to blend input images reprojected using
the global mesh geometry.

Light Field Interpolation (LFI) [Chai et al. 2000]. This baseline is
representative of classic signal processing based continuous view
reconstruction. Following the method of plenoptic sampling [Chai
et al. 2000], for data on a regular 2D grid, we render novel views
using a bilinear interpolation reconstruction filter sheared to the
mean scene disparity. With unstructured real data, we blend together

Local Light Field Fusion « 1:13

5 nearby views reprojected to the mean scene disparity, using the
same blending weights as our own method.

Note that for methods that depend on a plane sweep volume
(Soft3D, BW Deep, and all versions of our method), we set the
number of depth planes used in the PSVs to dmax.

B NETWORK ARCHITECTURE

Table 3 contains a detailed specification of our 3D CNN architecture.

REFERENCES

Martin Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig
Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, et al. 2015.
TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. (2015).
https://www.tensorflow.org/

Robert Anderson, David Gallup, Jonathan T. Barron, Janne Kontkanen, Noah Snavely,
Carlos HernAgandez, Sameer Agarwal, and Steven M Seitz. 2016. Jump: Virtual
Reality Video. In SIGGRAPH Asia.

Chris Buehler, Michael Bosse, Leonard McMillan, Steven Gortler, and Michael Cohen.
2001. Unstructured Lumigraph Rendering. In SIGGRAPH.

Jin-Xiang Chai, Xin Tong, Sing-Chow Chan, and Heung-Yeung Shum. 2000. Plenoptic
Sampling. In SIGGRAPH.

Gaurav Chaurasia, Sylvain Duchéne, Olga Sorkine-Hornung, and George Drettakis.
2013. Depth Synthesis and Local Warps for Plausible Image-based Navigation. In
SIGGRAPH.

Qifeng Chen and Vladlen Koltun. 2017. Photographic Image Synthesis With Cascaded
Refinement Networks. In ICCV.

Shenchang Eric Chen and Lance Williams. 1993. View Interpolation for Image Synthesis.
In SIGGRAPH.

Abe Davis, Marc Levoy, and Fredo Durand. 2012. Unstructured Light Fields. In Computer
Graphics Forum.

Paul Debevec, Camillo J. Taylor, and Jitendra Malik. 1996. Modeling and Rendering
Architecture from Photographs: A Hybrid Geometry-and Image-Based Approach.
In SIGGRAPH.

Piotr Didyk, Pitchaya Sitthi-Amorn, William T. Freeman, Fredo Durand, and Woj-
ciech Matusik. 2013. 3DTV at Home: Eulerian-Lagrangian Stereo-to-Multiview
Conversion. In SIGGRAPH Asia.

John Flynn, Ivan Neulander, James Philbin, and Noah Snavely. 2016. DeepStereo:
Learning to Predict New Views From the World’s Imagery. In CVPR.

Steven J. Gortler, Radek Grzeszczuk, Richard Szeliski, and Michael F. Cohen. 1996. The
Lumigraph. In SIGGRAPH.

Peter Hedman, Suhib Alsisan, Richard Szeliski, and Johannes Kopf. 2017. Casual 3D
Photography. In SIGGRAPH Asia.

Peter Hedman and Johannes Kopf. 2018. Instant 3D Photography. In SIGGRAPH.

Peter Hedman, Julien Philip, True Price, Jan-Michael Frahm, George Drettakis, and
Gabriel Brostow. 2018. Deep Blending for Free-Viewpoint Image-Based Rendering.
In SIGGRAPH Asia.

Peter Hedman, Tobias Ritschel, George Drettakis, and Gabriel Brostow. 2016. Scalable
Inside-Out Image-Based Rendering. In SIGGRAPH Asia.

Po-Han Huang, Kevin Matzen, Johannes Kopf, Narendra Ahuja, and Jia-Bin Huang.
2018. DeepMVS: Learning Multi-view Stereopsis. In CVPR.

Nima Khademi Kalantari, Ting-Chun Wang, and Ravi Ramamoorthi. 2016. Learning-
Based View Synthesis for Light Field Cameras. In SIGGRAPH Asia.

Michael Kazhdan and Hugues Hoppe. 2013. Screened poisson surface reconstruction.
In SIGGRAPH.

Petr Kellnhofer, Piotr Didyk, Szu-Po Wang, Pitchaya Sitthi-Amorn, William Freeman,
Fredo Durand, and Wojciech Matusik. 2017. 3DTV at Home: Eulerian-Lagrangian
Stereo-to-Multiview Conversion. In SIGGRAPH.

Alex Kendall, Hayk Martirosyan, Saumitro Dasgupta, Peter Henry, Ryan Kennedy,
Abraham Bachrach, and Adam Bry. 2017. End-to-End Learning of Geometry and
Context for Deep Stereo Regression. In ICCV.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Optimization.
In ICLR.

Johannes Kopf, Fabian Langguth, Daniel Scharstein, Richard Szeliski, and Michael
Goesele. 2013. Image-Based Rendering in the Gradient Domain. In SIGGRAPH Asia.

Douglas Lanman, Ramesh Raskar, Amit Agrawal, and Gabriel Taubin. 2008. Shield
Fields: Modeling and Capturing 3D Occluders. In SIGGRAPH Asia.

Marc Levoy and Pat Hanrahan. 1996. Light Field Rendering. In SIGGRAPH.

Leonard McMillan and Gary Bishop. 1995. Plenoptic Modeling: An Image-Based
Rendering System. In SIGGRAPH.

Rodrigo Ortiz-Cayon, Abdelaziz Djelouah, and George Drettakis. 2015. A Bayesian
Approach for Selective Image-Based Rendering using Superpixels. In International
Conference on 3D Vision (3DV).

ACM Trans. Graph., Vol. 38, No. 4, Article 1. Publication date: July 2019.

https://www.tensorflow.org/

1:14 « B. Mildenhall, P. P. Srinivasan, R. Ortiz-Cayon, N. Khademi Kalantari, R. Ramamoorthi, R. Ng, and A. Kar

Ryan S. Overbeck, Daniel Erickson, Daniel Evangelakos, Matt Pharr, and Paul Debevec.
2018. A System for Acquiring, Processing, and Rendering Panoramic Light Field
Stills for Virtual Reality. In SIGGRAPH Asia.

Eric Penner and Li Zhang. 2017. Soft 3D Reconstruction for View Synthesis. In SIG-
GRAPH Asia.

Thomas Porter and Tom Duff. 1984. Compositing Digital Images. In SIGGRAPH.

Weichao Qiu, Fangwei Zhong, Yi Zhang, Siyuan Qiao, Zihao Xiao, Tae Soo Kim, Yizhou
Wang, and Alan Yuille. 2017. UnrealCV: Virtual Worlds for Computer Vision. In
ACM Multimedia Open Source Software Competition.

Johannes Lutz Schonberger and Jan-Michael Frahm. 2016. Structure-from-Motion
Revisited. In CVPR.

Johannes Lutz Schénberger, Enliang Zheng, Marc Pollefeys, and Jan-Michael Frahm.
2016. Pixelwise View Selection for Unstructured Multi-View Stereo. In ECCV.

Jonathan Shade, Steven J. Gortler, Li wei He, and Richard Szeliski. 1998. Layered depth
images. In SIGGRAPH.

Heung-Yeung Shum and Sing Bing Kang. 2000. A Review of Image-Based Rendering
Techniques. In Proceedings of Visual Communications and Image Processing.

Shuran Song, Fisher Yu, Andy Zeng, Angel X Chang, Manolis Savva, and Thomas
Funkhouser. 2017. Semantic Scene Completion from a Single Depth Image. In CVPR.

Pratul P. Srinivasan, Tongzhou Wang, Ashwin Sreelal, Ravi Ramamoorthi, and Ren Ng.
2017. Learning to Synthesize a 4D RGBD Light Field from a Single Image. In ICCV.

Rahul Swaminathan, Sing Bing Kang, Richard Szeliski, Antonio Criminisi, and Shree K.
Nayar. 2002. On the Motion and Appearance of Specularities in Image Sequences.
In ECCV.

Gordon Wetzstein, Douglas Lanman, Wolfgang Heidrich, and Ramesh Raskar. 2011.
Layered 3D: Tomographic Image Synthesis for Attenuation-based Light Field and

ACM Trans. Graph., Vol. 38, No. 4, Article 1. Publication date: July 2019.

High Dynamic Range Displays. In SIGGRAPH.

Gordon Wetzstein, Douglas Lanman, Matthew Hirsch, and Ramesh Raskar. 2012. Ten-
sor Displays: Compressive Light Field Synthesis using Multilayer Displays with
Directional Backlighting. In SSIGGRAPH.

Bennett Wilburn, Neel Joshi, Vaibhav Vaish, Eino-Ville Talvala, Emilio Antunez, Adam
Barth, Andrew Adams, Marc Levoy, and Mark Horowitz. 2005. High Performance
Imaging Using Large Camera Arrays. In SSIGGRAPH.

Daniel N. Wood, Daniel I. Azuma, Ken Aldinger, Brian Curless, Tom Duchamp, David H.
Salesin, and Werner Stuetzle. 2000. Surface Light Fields for 3D Photography. In
SIGGRAPH.

Gaochang Wu, Mandan Zhao, Liangyong Wang, Qionghai Dai, Tianyou Chai, and Yebin
Liu. 2017. Light Field Reconstruction Using Deep Convolutional Network on EPI In
CVPR.

Henry Wing Fung Yeung, Junhui Hou, Jie Chen, Yuk Ying Chung, and Xiaoming Chen.
2018. End-to-End Learning of Geometry and Context for Deep Stereo Regression.
In ECCV.

Cha Zhang and Tsuhan Chen. 2003. Spectral Analysis for Sampling Image-Based
Rendering Data. In IEEE Transactions on Circuits and Systems for Video Technology.

Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. 2018.
The Unreasonable Effectiveness of Deep Features as a Perceptual Metric. In CVPR.

Zhoutong Zhang, Yebin Liu, and Qionghai Dai. 2015. Light field from micro-baseline
image pair. In CVPR.

Tinghui Zhou, Richard Tucker, John Flynn, Graham Fyffe, and Noah Snavely. 2018.
Stereo Magnification: Learning View Synthesis using Multiplane Images. In SIG-
GRAPH.

	Abstract
	1 Introduction
	2 Related Work
	2.1 Plenoptic Sampling and Reconstruction
	2.2 Geometry-Based View Synthesis
	2.3 Deep Learning for View Synthesis

	3 Theoretical Sampling Analysis
	3.1 Nyquist Rate View Sampling
	3.2 MPI Scene Representation and Rendering
	3.3 View Sampling Rate Reduction
	3.4 Image Space Interpretation of View Sampling

	4 Practical View Synthesis Pipeline
	4.1 MPI Prediction for Local Light Field Expansion
	4.2 Continuous View Reconstruction by Blending

	5 Training Our View Synthesis Pipeline
	5.1 Training Dataset
	5.2 Training Procedure

	6 Experimental Evaluation
	6.1 Sampling Theory Validation
	6.2 Comparisons to Baseline Methods
	6.3 Ablation Studies

	7 Practical Usage
	7.1 Prescriptive Scene Sampling Guidelines
	7.2 Asymptotic Rendering Time and Space Complexity
	7.3 Smartphone Capture App
	7.4 Preprocessing
	7.5 Real-Time Viewers
	7.6 Limitations

	8 Conclusion
	Acknowledgments
	A Baseline Methods Implementation Details
	B Network Architecture
	References

