
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. , NO. , JANUARY 2015 1

Shape Estimation from Shading, Defocus, and Correspondence Using Light-Field Angular
Coherence

Michael W. Tao Pratul P. Srinivasan Sunil Hadap Szymon Rusinkiewicz
Jitendra Malik Ravi Ramamoorthi

Abstract—Light-field cameras are quickly becoming commodity items, with consumer and industrial applications. They capture many
nearby views simultaneously using a single image with a micro-lens array, thereby providing a wealth of cues for depth recovery:
defocus, correspondence, and shading. In particular, apart from conventional image shading, one can refocus images after acquisition,
and shift one’s viewpoint within the sub-apertures of the main lens, effectively obtaining multiple views. We present a principled
algorithm for dense depth estimation that combines defocus and correspondence metrics. We then extend our analysis to the
additional cue of shading, using it to refine fine details in the shape. By exploiting an all-in-focus image, in which pixels are expected to
exhibit angular coherence, we define an optimization framework that integrates photo consistency, depth consistency, and shading
consistency. We show that combining all three sources of information: defocus, correspondence, and shading, outperforms
state-of-the-art light-field depth estimation algorithms in multiple scenarios.

Index Terms—Light fields, 3D reconstruction, specular-free image, reflection components separation, depth cues, shape from shading
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1 INTRODUCTION

L IGHT-FIELDS can be used to refocus images [1]. Light-field
cameras also hold great promise for passive and general depth

estimation and 3D reconstruction in computer vision. Indeed, the
original work by Adelson and Wang [2] showed their applicability
to stereo vision, making the observation that a single exposure
provides multiple viewpoints (sub-apertures on the lens). How-
ever, a light-field contains even more information about depth,
going well beyond the simple stereo (correspondence) cue. We
can synthetically shear and integrate along 2D slices of the 4D
light field to refocus, or change our viewpoint locally, and we can
make use of captured scene color information. Indeed, defocus,
correspondence, and shading cues are all present in a single
exposure. These cues are complementary to standard multiview
stereo, and improve the quality of depth estimation. Our main
contribution is in integrating all three cues as shown in Fig. 1.

We make the common assumption of Lambertian surfaces
under general (distant) direct lighting. We differ from previous
works because we exploit the full angular data captured by the
light-field to utilize defocus, correspondence, and shading cues.
Our algorithm is able to use images captured with the Lytro and
Lytro Illum cameras. We compare our results both qualitatively
and quantitatively against the Lytro Illum software and other state
of the art methods (Figs. 10, 11, and 13), demonstrating that our
results give accurate representations of the shapes captured. Upon
publication, we will release our source code and dataset.

We first describe an approach to extract defocus and corre-
spondence cues using contrast detection from the light-field data
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as shown in Fig. 3. We exploit the epipolar image (EPI) extracted
from the light-field data [3], [4]. EPIs are particular slices of the
light field, that make visualizing scene depth convenient. The
illustrations in the paper use a 2D slice of the EPI labeled as
(x, u), where x is the spatial dimension (image scan-line) and u is
the angular dimension (location on the lens aperture); in practice,
we use the full 4D light-field. We shear to perform refocusing [1],
[5]. For each shear value, we compute the defocus cue response
by considering the spatial x (horizontal) variance, after integrating
over the angular u (vertical) dimension. The defocus response is
computed through the Laplacian operator, where high response
means the point is in focus. We compute the correspondence cue
response by considering the angular u (vertical) variance, where
low variance indicates photo-consistency.

Using contrast techniques for defocus and correspondence
cue measurements is suitable in scenes with high textures and
edges (Fig. 4). However, in scenes with low textures that rely on
shading estimation, using such contrast techniques is more prone
to instabilities in both depth and confidence measurements due to
calibration, micro-lens vignetting, and high frequencies introduced
from the shearing techniques (described in Sec. 3.1 and Fig. 7).

We overcome the shortcomings by improving our cue mea-
sures. Specifically, we use angular coherence to significantly
improve robustness. When refocused to the correct depth, the
angular pixels corresponding to a single spatial pixel represent
viewpoints that converge on one point on the scene, exhibiting
angular coherence. Angular coherence means the captured data
would have photo consistency, depth consistency, and shading
consistency, shown in Fig. 5. We extend these consistency obser-
vations from Seitz and Dyer [6] by finding the relationship be-
tween refocusing and achieving angular coherence. The extracted
central pinhole image from the light-field data helps us enforce the
three properties of angular coherence.

To utilize the shading cue, we first estimate the shading
component of the image by extending a standard Retinex image
decomposition framework introduced by Zhao et al. [7]. By using
the full 4D light-field and angular coherence, our method is robust
against noisy and imperfect data (Fig. 8). The robustness allows
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Fig. 1: Light-field Depth Estimation Using Shading, Defocus, and Correspondence Cues. In this work, we present a novel algorithm
that estimates shading to improve depth recovery using light-field angular coherence. Here we have an input of a real scene with a
shell surface and a camera tilted slightly toward the right of the image (a). We obtain improved defocus (b) and correspondence (c)
depth cues for depth estimation (d,e). However, because local depth estimation is only accurate at edges or textured regions, depth
estimation of the shell appears regularized and planar. We use the depth estimation to estimate shading, which is S (f), the component
in I = AS, where I is the observed image and A is the albedo (g). With the depth and shading estimations, we can refine our depth to
better represent the surface of the shell (h,i). Throughout this paper, we use the scale on the right to represent depth.

us to accurately estimate lighting (Sec. 6.2) and estimate normals
(Sec. 6.3). The angular coherence and combination of defocus,
correspondence, and shading cues provide robust constraints to
estimate the shading normal constraints, previously not possible
with low-density depth estimation.
In summary, our main contributions in this paper are:
1. Analysis of defocus and correspondence (Sec. 3).
We extract defocus and correspondence from a light-field image
and show why using both cues is important.
2. Depth cues with angular coherence (Secs. 4 and 5.1).
We show the relationship between refocusing a light-field image
and angular coherence to formulate improved defocus and corre-
spondence measures and shading estimation constraints.
3. Shading estimation constraints (Secs. 6.1 and 6.2).
We formulate a new shading constraint, which uses angular
coherence and a confidence map to exploit light-field data.
4. Depth refinement with the three cues (Sec. 6.3).
We design a novel framework that uses shading, defocus, and
correspondence cues to refine shape estimation.
5. Quantitative and Qualitative Dataset (Sec. 7).
We quantitatively and qualitatively assess our algorithm with both
synthetic and real-world images (Figs. 10, 11, and 13).

2 PREVIOUS WORK

This paper relates to previous work on shape estimation from
defocus, correspondence, shading, as well as shape from depth
and modified cameras, and light-fields. While simplified depth
information may be adequate for applications like novel view
synthesis, our focus is on fundamental 3D recovery, which can
in turn be used for various applications such as 3D scanning and
printing. We also demonstrate only static scenes; light-field video
and dynamic objects are an interesting direction of future work.
Finally, this paper considers only Lambertian objects and does not

explicitly address occlusion; we refer readers to recent extensions
by our group that begin to address those problems [8], [9].

2.1 Shape from Defocus and Correspondence
Depth from Defocus. Depth from defocus has been achieved
either through using multiple image exposures or a complicated
apparatus to capture the data in one exposure [10], [11], [12].
Defocus measures the optimal contrast within a patch, where
occlusions may easily affect the outcome of the measure, but
the patch-based variance measurements improve stability over
these occlusion regions. However, out-of-focus regions, such as
certain high frequency regions and bright lights, may yield higher
contrast. The size of the analyzed patch determines the largest
sensible defocus size. In many images, the defocus blur can exceed
the patch size, causing ambiguities in defocus measurements. Our
work not only can detect occlusion boundaries, we can provide
dense stereo.

Depth from Correspondences. Extensive work has been done
in estimating depth using stereo correspondence, as the cue allevi-
ates some of the limitations of defocus [13], [14]. Large stereo
displacements cause correspondence errors because of limited
patch search space. Matching ambiguity also occurs at repeating
patterns and noisy regions. Occlusions can cause impossible cor-
respondence. Optical flow can also be used for stereo to alleviate
occlusion problems as the search space is both horizontal and
vertical [15], [16], but the larger search space dimension may lead
to more matching ambiguities and less accurate results. Multi-view
stereo [17], [18] also alleviates the occlusion issues, but requires
large baselines and multiple views to produce good results.

Combining Defocus and Correspondence. Combining both
depth from defocus and correspondence has been shown to provide
benefits of both image search reduction, yielding faster computa-
tion, and more accurate results [19], [20]. However, complicated
algorithms and camera modifications or multiple image exposures
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Fig. 2: Defocus and Correspondence Strengths and Weaknesses. Each cue has its benefits and limitations. Most previous works use one
cue or another, as it is hard to acquire and combine both in the same framework. In our paper, we exploit the strengths of both cues.
Additionally, we provide further refinement, using the shading cue.

are required. In our work, using light-field data allows us to reduce
the image acquisition requirements. Vaish et al. [21] also propose
using both stereo and defocus to compute a disparity map designed
to reconstruct occluders, specifically for camera arrays. Our paper
shows how we can exploit light-field data to not only estimate
occlusion boundaries but also estimate depth by exploiting the
two cues in a simple and principled algorithm.

2.2 Shape from Shading and Photometric Stereo
Shape from shading has been well studied with multiple tech-
niques. Extracting geometry from a single capture [22], [23]
was shown to be heavily under constrained. Many works assumed
known light source environments to reduce the under constrained
problem [23], [24], [25], [26]; some use partial differential equa-
tions, which require near ideal cases with ideal capture, geometry,
and lighting [7], [27], [28]. In general, these approaches are
especially prone to noise and require very controlled settings.
Recently, Johnson and Adelson [29] described a framework to
estimate shape under natural illumination. However, the work
requires a known reflectance map, which is hard to obtain. In
our work, we focus on both general scenes and unknown lighting,
without requiring geometry or lighting priors. To relax lighting
constraints, assumptions about the geometry can be made such as
faces [30], [31] or other data-driven techniques [32]. The method
by Barron and Malik [33], [34] works for real-world scenes and
recovers shape, illumination, reflectance, and shading from an
image. However, many constraints are needed for both geometry
and illumination. In our framework, we do not need any priors and
have fewer constraints.

A second set of works focuses on using photometric
stereo [25], [26], [35], [36], [37], [38]. These works are not passive
and require the use of multiple lights and captures. In contrast,
shape from shading and our technique just require a single capture.

2.3 Shape from Depth Cameras and Sensors
More recent work has been done using Kinect data [39]. Barron
and Malik [32] introduce SIRFS that reconstructs depth, shading,
and normals. However, the approach requires multiple shape and
illumination priors. Moreover, the user is required to assume
the number of light sources and objects in the scene. Chen and
Koltun [40] introduce a more general approach to perform intrinsic
image decomposition. However, the method does not optimize
depth and, given sparse input depth with poor normal estimations
at smooth surfaces, their shading estimation is poor and unsuitable
for refining depth. Other works [41], [42] introduce an efficient
method to optimize depth using shading information. The limi-
tations of these approaches are that they require very dense and

accurate depth estimation, achieved by active depth cameras. Even
in non-textured surfaces, these active systems provide meaningful
depth estimations. With passive light-field depth estimation, the
local depth output has no or low-confidence data in these regions.

2.4 Shape from Modified Cameras

To achieve high quality depth and reduce algorithmic complexity,
modifying conventional camera systems such as adding a mask to
the aperture has been effective [43], [44]. The methods require a
single or multiple masks to achieve depth estimation. The general
limitation of these methods is that they require modification of the
lens system of the camera, and masks reduce incoming light to the
sensor.

2.5 Shape from Light-Fields and Multi-View Stereo

Hasinoff and Kutulakos [45] explain how focus and aperture pro-
vide shape cues and Van Doorn et al. [46] explain how light-fields
provide useful shading information. To estimate and use these
depth cues from light-field images, Perwass and Wietzke [47]
propose correspondence techniques, while others [2], [5] have
proposed using contrast measurements. Kim et al. and Wanner
et al. [48], [49] propose using global label consistency and slope
analysis to estimate depth. Their local estimation of depth uses
only a 2D EPI to compute local depth estimates, while ours uses
the full 4D EPI. Because the confidence and depth measure rely
on ratios of tensor structure components, their result is vulnerable
to noise and fails at very dark and bright image features.

Since light-fields and multi-view stereo are passive systems,
these algorithms struggle with the accuracy of depth in low-
textured regions [48], [49], [50], [51], [52], [53], [54], [55], [56],
[57], [58] because they rely on local contrast, requiring texture and
edges. With traditional regularizers [59] and light-field regulariz-
ers, such as one proposed by Wanner et al. [60], depth labeling is
planar in these low-textured regions. Kamal et al. [53] and Heber et
al. [51], [52] propose complex regularization to correct for errors.
In this paper, we show how the angular coherence of light-field
data can produce better 1) depth estimation and confidence levels,
and 2) regularization that explicitly addresses shading constraints.

In this paper, we extend Tao et al. [56] and Tao et al. [61].
We integrated the two papers to show the importance of angular
coherence for normals estimation for scenes with low texture.
We added quantitative datasets and results through 3D scanning;
expanded comparisons against state-of-the-art algorithms; and
extended our comparisons with albedo changes and real-world
scenes. We will release our dataset and code upon publication.
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Fig. 3: Defocus and Correspondence Framework. This setup shows three different poles at different depths with a top view (a) and
camera view (b). The light-field camera captures an image (c) with its epipolar image (EPI). By processing each row’s EPI (d), we
shear the EPI to perform refocusing. Our contribution lies in computing both defocus analysis (e), which integrates along angle u
(vertically) and computes the spatial x (horizontal) gradient, and correspondence (f), which computes the angular u (vertical) variance.
The response to each shear value is shown in (g) and (h). By combining the two cues through regularization, the algorithm produces
high quality depth estimation (i). In Sections 4 and 5, we refine the defocus and correspondence measure and incorporate shading
information to our regularization to produce better shape and normal estimation results by using angular coherence. With angular
coherence, our defocus and correspondence measures are more robust in scenes with less texture and edges.

3 INTUITION: DEFOCUS AND CORRESPONDENCE

By using both defocus and correspondence depth cues for local
depth estimation, the algorithm benefits from the advantages of
each cue, as shown in Fig. 2. Defocus cues are better with occlu-
sions, repeating patterns, and noise; correspondence is more robust
in bright/darker features of the image and has more defined depth
edges. In this section, we provide intuition by briefly summarizing
a simple contrast-based approach (Fig. 3) to compute the response
of both cues, as per our initial work [56] (called the contrast-based
method in what follows). However, because of the limitations of
the contrast-based methods in scenes with low texture and edges,
in Sec. 4, we refine the approach, and also include shading.

Light-field cameras capture enough angular resolution to per-
form refocusing. The contrast-based defocus measure estimates
the optimal depth α at each pixel as that with the highest spatial
contrast. For illustration, consider a 2D slice of the EPI labeled by
spatial coordinate x and angular dimension u (the actual algorithm
refocuses the entire 4D light field). For each shear value, we
integrate over the angular u (vertical) dimension of the EPI. We
then consider the spatial x (horizontal) variation, determined by
the Laplacian operator, with higher responses indicating a sharper
in-focus image (Fig. 3e). Light-field cameras also capture multiple
pinhole images from different perspectives in one exposure, and
this allows one to use the correspondence cue for depth estimation.
The contrast-based correspondence measure estimates the optimal
depth α at each pixel as that with the lowest angular u (vertical)
variance (Fig. 3f).

The defocus and correspondence cues might not agree on
the optimal shear, and we address this by computing measures
of confidence for each cue, followed by regularization. To mea-
sure the confidence of defocus/correspondence cues, we found
Attainable Maximum Likelihood (AML), explained in Hu and
Mordohai [62], to be the most effective. To combine the two
responses and propagate the local depth estimation, we used the
same optimization scheme, which is described later in Sec. 5.2. In
Fig. 4, we show four depth estimation results using the contrast

based depth cue measurement. We captured the images in four
different scenarios (indoors and outdoors, low and high ISO, and
different focal lengths). Throughout the examples, the defocus
cue is less affected by noise and repeating patterns while the
correspondence cue provides more edge information.

3.1 Discussion and Limitations

By using both defocus and correspondence, we are able to improve
robustness of the system in high texture situations, as shown in
Fig. 4. However, using these measures is not ideal for scenes where
the object is mainly textureless. Some of the reasons are:

Shearing to refocus may introduce high frequencies. This can
be due to miscalibration of micro-lenses, vignetting, and other lens
imperfections. In Fig. 7, we can see this effect on the top with the
dinosaur example.

Noise and small features create low-confidence measures.
Noise creates undesirable low-confidence measures, and this is
especially noticeable in smooth regions, which is not ideal for our
depth results. In Fig. 7, we can see that angular variance measures
fail for small features, because they do not produce measures with
high enough confidence.

Using these measures without shading constraints is not suit-
able for estimating surface normals, as they introduce errors in
smooth regions, as seen in Fig. 11. The depth and confidence of
the contrast-based measures result in inconsistent regularization.
Therefore, we use angular coherence to improve robustness in
such scenes.

4 4D ANGULAR COHERENCE AND REFOCUSING

Angular coherence: the enforcement of photo consistency, depth
consistency, and shading consistency, plays a large role in our
algorithm to establish formulations for both the improved defocus-
correspondence depth estimation and shading constraints. Our
goal is to solve for the depth map, α∗(x, y), and the shading S in
P (x, y) = A(x, y)·S(x, y), where P is the central pinhole image
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Fig. 4: Contrast-Based Defocus and Correspondence Results. Defocus consistently shows better results at noisy regions and repeating
patterns, while correspondence provides sharper results. By combining both cues, our method provides more consistent results in
real-world examples. The two low light images on the top show how our algorithm is able to estimate depth even at high ISO settings.
The flowers (bottom left and right) show how we recover complicated shapes and scenes. By combining both cues, our algorithm still
produces reasonable results. However, we can see that the contrast-based defocus and correspondence measures perform poorly in
scenes where textures and edges are absent (Figs. 10, 11, and 13). Therefore, we develop more robust cue measurements with angular
coherence in Sec. 5.

of the light-field input L, A is the albedo, and S is shading (the
multiplication is a point or pixel-wise product). Here, we explain
why a light-field camera’s central pinhole image provides us with
an important cue to obtain angular coherence. To shear the full
4D light-field image [1], [5] in order to refocus it to depth α, we
remap the light field as follows,

Lα (x, y, u, v) = L
(
xf (α), yf (α), u, v

)
xf (α) = x+ u

(
1− 1

α

)
yf (α) = y + v

(
1− 1

α

) (1)

where L is the input light-field image, Lα is the refocused image,
(x, y) are the spatial coordinates, and (u, v) are the angular
coordinates. The central viewpoint is located at (u, v) = (0, 0).

Given the depth α∗(x, y) for each spatial pixel (x, y), we
calculate Lα∗ by refocusing each spatial pixel to its respective
depth. All angular rays converge to the same scene point when
refocused at α∗, as shown in Fig. 5. We write this observation as

Lα∗(x, y, u, v) = L
(
xf (α∗(x, y)), yf (α∗(x, y)), u, v

)
(2)

We call this angular coherence. Effectively, Lα∗ represents the
remapped light-field data of an all-in-focus image. However,
utilizing this relationship is difficult because α∗ is unknown. From
Eqn, 1, the center pinhole image P , where the angular coordinates
are at (u, v) = (0, 0), exhibits a unique property: the sheared
xf (α), yf (α) are independent of (u, v). At every α,

Lα(x, y, 0, 0) = P (x, y) (3)

The central angular coordinate always images the same point in the
scene, regardless of the focus. This property of refocusing allows
us to exploit photo consistency, depth consistency, and shading
consistency, shown in Fig. 5. The motivation is to use these
properties to formulate depth estimation and shading constraints.

Photo consistency. In Lα∗ , since all angular rays converge to
the same point in the scene at each spatial pixel, the angular pixel

colors converge to P (x, y). Therefore, we represent the photo
consistency measure as,

Lα∗(x, y, u, v) = P (x, y) (4)

In high noise scenarios, we use a simple 3 × 3 median filter to
de-noise P (x, y), which we found adequate for our experiments.

Depth consistency. Additionally, the angular pixel values
should also have the same depth values. In other words,
ᾱ∗(x, y, u, v) = α∗(x, y), where ᾱ∗ is just an up-sampled α∗

with angular pixels (u, v) sharing the same depth for each (x, y).
Shading consistency. Following from the photo consistency

of angular pixels for each spatial pixel in Lα∗ , shading consis-
tency also applies, since shading is viewpoint independent for
Lambertian surfaces. Therefore, when solving for shading across
all views, shading consistency gives us,

S
(
xf (α∗(x, y)), yf (α∗(x, y)), u, v

)
= S (x, y, 0, 0) (5)

4.1 Inverse Mapping

For all three consistencies, the observations only apply to the
coordinates in Lα∗ . To map these observations back to the space
of L, we need to use the coordinate relationship between Lα∗ and
L, as shown in Fig. 5 on the bottom.

L
(
xi(α∗), yi(α∗), u, v

)
= Lα∗ (x, y, u, v)

xi(α) = x− u
(

1− 1

α

)
yi(α) = y − v

(
1− 1

α

)
(6)

We use this property to map depth and shading consistency to L.

5 ALGORITHM

Our algorithm is shown in Algorithm 1 and Fig. 6. We discuss
local estimation using angular coherence (5.1) and regularization
(5.2), corresponding to lines 2 and 3 of the algorithm. Section 6.1
describes shading and lighting estimation and the final optimiza-
tion.
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Fig. 5: Angular Coherence and Refocusing. In a scene where the
main lens is focused to point X with a distance α∗ from the
camera, the micro-lenses enable the sensor to capture different
viewpoints represented as angular pixels as shown on the bottom.
As noted by Seitz and Dyer [6], the angular pixels exhibit angular
coherence, which gives us photo, depth, and shading consistency.
In our paper, we extend this analysis by finding a relationship
between angular coherence and refocusing, as described in Sec. 4.
In captured data, pixels are not guaranteed to focus at α (shown
on the top). Therefore, we cannot enforce angular coherence
on the initial captured light-field image. We need to shear the
initial light-field image using Eq. 1 from Sec. 4, use the angular
coherence constraints from Sec. 4, and remap the constraints back
to the original coordinates using Eq. 6 from Sec. 4.1.

5.1 Depth Cues using Angular Coherence [Line 2]
We start with local depth estimation, where we seek to find the
depth α∗ for each spatial pixel. We improve the robustness of the
contrast-based defocus and correspondence cues. We use photo
consistency (Eq. 4) to formulate an improved metric for defocus
and correspondence. From angular coherence (Eq. 2), we want to
find α∗ such that

α∗(x, y) = argmin
α

∣∣∣L(xf (α), yf (α), u, v
)
− P (x, y)

∣∣∣ (7)

The equation enforces all angular pixels of a spatial pixel to equal
the center view pixel color, because regardless of α the center pixel
color P does not change. We will now formulate the defocus and
correspondence measures to increase the robustness.

Defocus. Instead of using a spatial contrast measure to find the
optimal depth, we use Eq. 7 for our defocus measure. The first
step is to average across the angular (u, v) pixels,

L̄α(x, y) =
1

N(u,v)

∑
(u′,v′)

Lα(x, y, u′, v′) (8)

where N(u,v) denotes the number of angular pixels (u, v). Finally,
we compute the defocus response by using a measure:

Dα(x, y) =
1

|WD|
∑

(x′,y′)∈WD

∣∣L̄α(x′, y′)− P (x′, y′)
∣∣ (9)

where WD is the window size (to improve robustness). For each
pixel in the image, we compare a small neighborhood patch of

Algorithm 1
Depth from Shading, Defocus, and Correspondence

1: procedure DEPTH(L)
2: Z,Zconf = LocalEstimation(L) . Sec. 5.1
3: Z∗ = OptimizeDepth(Z,Zconf) . Sec. 5.2
4: S = EstimateShading(L) . Sec. 6.1
5: l = EstimateLighting(Z∗, S) . Sec. 6.2
6: Z∗ = OptimizeDepth(Z∗, Zconf, l, S) . Sec. 6.3
7: return Z∗

8: end procedure

the refocused image and its respective patch at the same spatial
location of the center pinhole image. An interesting future direc-
tion is to apply confocal constancy [45], synthetically generating
multiple apertures and focus settings from the light field.

Even with refocusing artifacts or high frequency out-of-focus
blurs, the measure produces low values for non-optimal α. In
Fig. 7, we can see that the new measure responses are more robust
than simply using the spatial contrast.

Correspondence. By applying the same concept as Eqn. 7, we
can also formulate a new correspondence measure. To measure
photo consistency, instead of measuring the variance of the angular
pixels, we measure the difference between the refocused angular
pixels at α and their respective center pixel. This is represented by

Cα(x, y) =
1

N(u′,v′)

∑
(u′,v′)

|Lα(x, y, u′, v′)− P (x, y)| (10)

The advantage is the measurement is more robust against small
angular pixel variations such as noise. See Fig. 7 bottom, where
at an incorrect depth, the angular pixels are similar to neighboring
pixels. Measuring the variance will give an incorrect response as
opposed to our approach of comparing against the center view.

5.2 Regularization w/ Confidence Measure [Line 3]
α?D(x) and α?C(x) are the minimum of the responses for defocus
and correspondence respectively. To reduce complexity of our
minimization, we only use the minimum responses instead of the
whole cost volume. To measure the confidence of α?D(x) and
α?C(x), we use Attainable Maximum Likelihood (AML) [62].

The goal now is to propagate the local depth estimation
to regions with low confidence. For each spatial pixel, we use
a simple average of the defocus and correspondence responses
weighted by their respective confidences. To find the optimal depth
value for each spatial pixel, we use the depth location of the
minimum of the combined response curve, which we will label
as Z . We used the same AML measure for the new combined
response to compute the overall confidence level for local depth
estimation, which we then label as Zconf. Z and α are in the same
scale; therefore, all equations above can be used with Z.

In our optimization scheme, given Z , the local depth estima-
tion, and its confidence, Zconf, we want to find a new Z∗ that
minimizes

E(Z∗) =
∑
(x,y)

λdEd(x, y) + λvEv(x, y) (11)

where Z∗ is the optimized depth, Ed is our data constraint, and
Ev is our smoothness constraint. In our final optimization, we also
use Es, our shading constraint (line 6). In our implementation, we
used λd = 1 and λv = 4.
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Fig. 6: Pipeline. The pipeline of our algorithm contains multiple steps to estimate the depth of our input light-field image (a). The first
is to locally estimate the depth (line 2), which provides us both confidence (b) and local depth estimation (c). We use these two to
regularize depth without shading cues (d) (line 3). The depth is planar, which motivates us to use shading information to refine our
depth. We first estimate shading (e) (line 4), which is used to estimate lighting (f) (line 5). We then use the lighting, shading, initial
depth, and confidence to regularize into our final depth (g) (line 6).

Fig. 7: Depth estimation using angular coherence. On the top, we
have a scene with a dinosaur. Even refocused to a non-optimal
depth, not equal to α∗, high contrast still exists. By using a
contrast based defocus measure, the optimal response is hard to
distinguish. On the bottom, we have a scene with a black dot in
the center. When refocused at a non-optimal depth, the angular
pixels may exhibit the same color as the neighboring pixels.
Both the optimal and non-optimal α measures would have low
variance. However, by using angular coherence to compute the
measures, we can see that, in both cases, the resulting measure
better differentiates α∗ from the rest, giving us better depth
estimation and confidence (also in Fig. 10). Note: For defocus
measurement, we inverted the contrast-based defocus response for
clearer visualization.

Data constraint (Ed). To weight our data constraint, we want
to optimize depth to retain the local depth values with high
confidence. Note that since we use light-field data, we have a
confidence metric from defocus and correspondence, which may
not always be available with other RGBD methods. Therefore, we
can establish the data term as follows,

Ed(x, y) = Zconf(x, y) · ||Z∗(x, y)− Z(x, y)||2 (12)

Smoothness constraint (Ev) The smoothness term is the fol-
lowing:

Ev(x, y) =
∑

i=1,2,3

||(Z∗ ⊗ Fi)(x, y)||2 (13)

In our implementation, we use three smoothness kernels,

F1 =

 0 −1 0

−1 4 −1

0 −1 0

F2 =
[
−1 0 1

]
F3 =

−1

0

1

 (14)

where F1 is the second derivative and F2 and F3 are horizontal
and vertical first derivatives respectively.

Discussion: Note that the data term seeks to preserve the local
depth estimation, and errors in that may propagate; moreover,
the smoothed depth Z∗ is used as a data term in the next
section. However, our shading and angular coherency constraints,
described next, alleviate the initial depth inaccuracies and are
robust against accumulation of error. A more complex iterative
energy minimization, considering the entire cost volume, could be
developed; however, we found the sequential procedure described
in this paper to be simpler and adequate in our examples.

6 FINDING SHADING CONSTRAINTS

The problem with just using the data and smoothness terms is
that the smoothness terms do not accurately represent the shape
(Fig. 6d). Since smoothness propagates data with high local
confidence, depth regularization becomes planar and incorrect
(See Fig. 1). Shading information provides important shape cues
where our local depth estimation does not. Before we can add a
shading constraint to the regularizer, we need to estimate shading
and lighting. Thereafter, we will develop an optimization method,
adding a shading term. Note that all optimization terms have an
L2 form, which enables using a simple non-linear least-squares
solver. More sophisticated optimization formulations that account
for discontinuities and L1 errors are left for future work.

6.1 Shading with Angular Coherence [Line 4]
Our goal is to robustly estimate shading with light-field data. We
use the standard decomposition, P = A ·S, where P is the central
pinhole image, A is the albedo, and S is the shading. However to
improve robustness, we extend this Retinex image decomposition
framework [7] to use the full light-field data L = A · S by
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Fig. 8: Angular Coherence and Robust Shading. From the shading
image we generate (a), without angular coherency causes noise
and unwanted artifacts (b). With angular coherence, the noise
reduces. Quantitatively, we can see these effects in Fig. 9.

introducing a new angular coherence term. Angular coherence
increases robustness against noise, as shown in Fig. 8.

Our optimization solves for S(x, y, u, v). In this section,
to simplify our notation, we use I to denote L, following
the standard intrinsic image notation. We use the log space
log I = log (A · S). We also use a = i − s where the lower
case (i, a, s) are the log of (I, A, S) RGB values. We solve for s
by using the following error metric,

E(s) =
∑

t=(x,y,u,v)

Els(t) + Ela(t) + Ens(t)

+ Ena(t) + Eac(t).

(15)

We use a least squares solver to optimize for s(x, y, u, v). To map
to s(x, y) (the shading decomposition of P ), we take the central
viewpoint, s(x, y, 0, 0). We use the shading component of P for
lighting and depth refinement for Secs. 6.2 and 6.3.

Depth propagation. Since the shading constraints depend on
normals of the entire (x, y, u, v) space, we need to propagate
depth and constraints from Z∗(x, y) to Z∗(x, y, u, v). By looking
at Fig. 5, we need to map Z∗(x, y) to Z̄∗(x, y, u, v) by using
Eqn. 5. To map Z̄∗(x, y, u, v) back to the inverse coordinates,

Z∗(xi(α∗), yi(α∗), u, v) = Z̄∗(x, y, u, v) (16)

Local shading and albedo constraint (Els, Ela). To smooth
local shading, we look at the 4-neighborhood normals. If the
normals are similar, we enforce smoothness.

Els(t) = wls(t) · ||(s⊗ F1)(t)||2

Ela(t) = wla(t) · ||((i− s)⊗ F1)(t)||2
(17)

where wls is the average of the dot product between normal of
p and wla is the average of the dot product between the pairwise
center pixel’s and its neighbors’ RGB chromaticities. F1 is the
second derivative kernel from Eqn. 14.

Nonlocal shading and albedo constraint (Ens, Ena). To
smooth nonlocal shading, we search for the global closest normals
and enforce smoothness. For the pixels with similar normals, we
enforce similarity.

Ens(t) =
∑

p,q∈ℵns

wns(p, q) · ||s(p)− s(q)||2

Ena(t) =
∑

p,q∈ℵna

wna(p, q) · ||(i− s)(p)− (i− s)(q)||2

(18)

where p and q represent two unique (x, y, u, v) coordinates within
ℵns and ℵna, the top 10 pixels with nearest normal and chromatic-
ity respectively. wns and wna are the dot product between each
pairwise normals and chromaticities.

Angular coherence constraint (Eac). So far, we are operat-
ing largely similar to shape from shading systems in a single
(non light-field) image. We only constrain spatial pixels for the
same angular viewpoint. Just like our depth propagation, we
can enforce shading consistency. We do this by the constraints
represented by Eq. 5, as shown in Fig. 5. For each pair of the set
of (x, y, u, v) coordinates, we impose the shading constraint as
follows,

Eac(t) =
∑

p,q∈ℵac

||s(p)− s(q)||2 (19)

where p, q are the coordinate pairs (x, y, u, v) in ℵac, all the
pixels within the shading constraint. The term plays a large role
in keeping our shading estimation robust against typical artifacts
and noise associated with light-field cameras. Without the term,
the shading estimation becomes noisy and creates errors for depth
estimation (Figs. 8, 9).

6.2 Lighting Estimation [Line 5]

With shading, S, we use spherical harmonics to estimate general
lighting as proposed by Ramamoorthi and Hanrahan [63] and
Basri and Jacobs [64].

P = A(x, y)
8∑
k=0

lkHk(Z∗(x, y)) (20)

where P is the central pinhole image, A is the albedo, l are the
spherical harmonic coefficients of the lighting, and Hk are the
spherical harmonics basis functions that take a unit surface normal
(nx, ny, nz) derived from Z∗(x, y).

We have computed S. A is estimated as P = AS. Therefore,
l is the only unknown and can be estimated from these equations
using a linear least squares solver.

6.3 Regularization w/ Shading Constraints [Line 6]

With both shading S and lighting l, we can regularize with the
shading cue. The new error metric is

E(Z∗) =
∑
(x,y)

λdEd(x, y) + λvEv(x, y) + λsEs(x, y) (21)

where Ed and Ev are the same as Eq. 11 and Es is our shading
constraint. We use λs = 2 in our implementation. We use a
non-linear least squares approach, with a 8 nearest-neighbors
numerical Jacobian computation, to solve for the minimization.

Shading constraint (Es). To constrain the depth with shading,

we want Z∗ to satisfy
8∑
k=0

lkHk(Z∗(x, y)) = S. Hence, the error

term is

Es(x, y) = ws(x, y) · ||
8∑
k=0

lkHk(Z∗(x, y))− S||2 (22)

where ws(x, y) = (1 − Zconf(x, y)) to enforce the shading
constraint where our local depth estimation is not confident.
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Fig. 9: Qualitative and quantitative synthetic measurement. We have a simple diffuse ball lit by a distant point light-source (a). With just
regularization without shading information, our depth estimation does not represent the shape (b,c). With our shading image (d), our
depth estimation recovers the ball’s surface (e,f). We added a Gaussian noise with a variable variance. Without the shading constraint,
the RMSE against ground truth shading and depth are high. Angular coherence results lower RMSE for both shading and depth.

7 RESULTS AND VALIDATION

We validated our algorithm (depth regularized without shading
constraints, shading estimation, and depth regularized with shad-
ing constraints) using a synthetic light-field image (Fig. 9), and
we compare our depth results to the state-of-the-art methods by
the Lytro Illum Software, Wanner et al. [49], and Jeon et al. [54]
(Figs. 10, 11, 13). We quantitively evaluated both uniform and
non-uniform albedo examples on real images. To capture all the
natural images in the paper, we reverse engineered the Lytro Illum
decoder and used varying camera parameters to capture scenes
under different lighting conditions. The decoder has been posted
publicly as one of the first open source Illum decoders1.

7.1 Quantitative Analysis

7.1.1 Synthetic: Noise
To validate the depth and shading results of our algorithm,
we compare our results to the ground truth depth and shading
for a synthetic light-field image of a Lambertian white sphere
illuminated by a distant point light source. We added Gaussian
noise (zero mean with variance from 0 to 0.03) to the input
image. In Fig 9, we see that using shading information helps us
better estimate the shape of the sphere. With angular coherence
constraints on our shading, both depth and shading RMSE are
reduced, especially with increased noise.

7.1.2 Lytro Illum Images
Approach. In Figures 10 and 11, we first 3D scanned all four
figurines (cupcake, flat cat, standing dog, and standing cat), using
the NextEngine 3D scanner. We used the three-bracket mode with
40 points per square inch. For each of the algorithms, we used
an iterative closest point (ICP) approach to map the depth maps
to the ground truth scan [65]. We compute the point-to-point
error for each point of the ground-truth scan points, as well as
the root-mean-squared error (RMSE). The parameters we used
for the ICP are point-to-point minimization metric, Euclidean
distance tolerance of 0.01, Radian distance tolerance of 0.009,
and maximum of 100 iterations. We will release both the dataset
and code to generate the RMSE and visualizations.
Analysis. The plot below each example shows the point-to-point
error of each point of the ground truth scan and RMSE.

For the uniform albedo results in Fig. 10, on the top, we
have an input image of the cupcake with decorations. We can see

1. http://cseweb.ucsd.edu/~ravir/illum_full.zip

that our shape estimation captures the curvature of the cupcake.
Our defocus and correspondence using angular coherence from
Sec. 5.1 gives a flatter result, but an improvement over using the
contrast based defocus and correspondence from Sec. 3, which
shows noisier results; Wanner and Goldluecke [49] also shows
high errors in smooth regions; Jeon et al. [54] show benefits from
interpolated sub-apertures but errors in low frequency regions;
and the Lytro Illum software shows noisier results that are not
suitable for estimating normals. Quantitatively, these observations
are consistent with the point-to-point error, where our method
shows low errors for the cupcake with a low RMSE. We observe
the same on the bottom rows with the cat example. Although all
examples show difficulties resolving the shape of the nose, our
shape estimation still performs better with a low RMSE.

For non-uniform albedo results in Fig. 11, we have two
different captured images: one for uniform albedo and one with
varying albedo, painted on the figurines. With the cat example, we
can see that our algorithm is robust, even with the painted colors.
Because of our shading estimation, we are still able to retain the
curvature of the cat. Although some errors are introduced in the
shading result, our RMSE is still lower than the other methods’.
Note that contrast-based methods run into regularization errors,
due to low confidence regions.

7.2 Qualitative Analysis
3D Printing. In Fig. 12, we qualitatively assess our shape esti-
mation by comparing the three printed objects (standing cat, flat
cat, and cupcake) against the original figurines. We first converted
our depth estimation to a 3D point cloud and then used MeshLab
to compute the normals for the set of points. We then created
the mesh using Poisson Surface Reconstruction [66], and used the
Makerbot Replicator Z18 3D printer to print the figurines. We
scale our prints such that they can fit in a 50mm cube. We can see
with the three prints, given the limited spatial resolution (430x539)
of the Lytro Illum Camera and 0.2mm printing precision, we are
able to print low resolution 3D prints of the original figurines.
Therefore, the surfaces still look smooth. However, with higher
spatial resolution cameras, more points can result in higher quality
prints. For normals computation, we used 10 neighbors with 0
smooth iterations. For the surface reconstruction, we used the
poisson method with an octree depth of 6, solver divide of 6, 1
sample per node, and 1 surface offsetting.
Natural Images. In Fig. 13, we show that our algorithm works with
natural images across different camera settings. On the top, we
have an orange plastic shell, illuminated by an indoor lighting. The
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Fig. 10: Uniform Albedo Comparisons We compare qualitative and quantitative measures with two different examples against Lytro
Illum Software, Wanner and Goldluecke [49], Jeon et al. [54], contrast-based defocus and correspondence from Sec. 3, and angular
coherence based defocus and correspondence from Sec. 5.1. On the top, we have an example of a cupcake, where our algorithm is
able to estimate the contours of the cupcake decorations. On the bottom, we have an image of a flat cat figurine. We can see that
our algorithm is able to recover the curvature of the body and face. For comparison against ground truth, we use the NextEngine
3D scanner to obtain the ground truth and align each of the resulting depth maps using the iterative closest point (ICP) algorithm.
The color diagram shows the Euclidean distance of each ground truth point to the closest point after the ICP transformation for each
algorithm. We can see that we align closely with the ground truth with the lowest RMSE.
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Fig. 11: Varying Albedo Comparisons: Cat. In this figure, we took two pictures of the same figurine of the standing cat. Starting from
the uniform albedo results, our algorithm is able to recover the contours of the cat, with nice side curvature. Our point-to-point errors
also show low errors across the cat. On the bottom, we painted the cat with different colors. Our algorithm was able to recover a
reasonable shading estimation from the image. We can also see that our depth estimation can still resolve the contours of the cat with
low RMSE.
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Fig. 12: 3D Printing. We 3D printed the standing cat, flat cat, and cupcake examples. The printed examples showcase the potential of
one capture from a passive camera system. Note: we scaled the figurines to fit in a 50mm cube with 0.2mm precision.

Illum software produces noisy results. Wanner and Goldlucke’s
regularization propagates errors in regions where local estimation
fails. In the contrast-based results, we see stronger fluctuations in
confidence measure, causing depth blockiness in some areas. Even
without shading constraints, we produce a less noisy result. Our
depth estimation recovers the shell shape, including the ridges and
curvature. In the middle, we have an example of a dinosaur toy
with varying albedo. The dinosaur teeth, claws, and neck ridges
are salient in our results, while other algorithms have trouble
recovering these shapes. Using shading gives a significant benefit
in recovering the object shapes. On the bottom, we have an outdoor
image of leaves. Our algorithm captures the shape of the leaf while
other algorithms produce noise and spikes.

8 CONCLUSION AND FUTURE WORK

We have proposed and provided quantitative validation for a new
shape estimation framework that uses just a single-capture passive
light-field image. Our optimization framework can be used for
consumer grade light-field images to incorporate all three cues:
defocus, correspondence, and shading.

For future work, more robust approaches could be used for
scenes with more varying albedos and occlusions. Additionally,
as seen in Fig. 9, image noise still corrupts both our depth and
shading estimations; more advanced de-noising could be used in
the future. Our shape-from-shading technique does not account
for inter-reflections, shadows, or specularities; therefore, future
work includes incorporating better specularity detection such as
that in [57] and occlusion detection such as that in [67].

In summary, we have proposed a shape estimation algorithm
for light-field cameras that incorporates the cues of defocus,
correspondence, and shading, suitable for passive point-and-shoot
acquisitions from consumer light-field cameras. We will make our
datasets and code available upon publication.
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