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Depth Estimation with Occlusion Modeling Using
Light-field Cameras
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Abstract—Light-field cameras have become widely available in both consumer and industrial applications. However, most previous
approaches do not model occlusions explicitly, and therefore fail to capture sharp object boundaries. A common assumption is that for
a Lambertian scene, a pixel will exhibit photo-consistency, which means all viewpoints converge to a single point when focused to its
depth. However, in the presence of occlusions this assumption fails to hold, making most current approaches unreliable precisely
where accurate depth information is most important – at depth discontinuities.
In this paper, an occlusion-aware depth estimation algorithm is developed; the method also enables identification of occlusion edges,
which may be useful in other applications. It can be shown that although photo-consistency is not preserved for pixels at occlusions, it
still holds in approximately half the viewpoints. Moreover, the line separating the two view regions (occluded object vs. occluder) has the
same orientation as that of the occlusion edge in the spatial domain. By ensuring photo-consistency in only the occluded view region,
depth estimation can be improved. Occlusion predictions can also be computed and used for regularization. Experimental results show
that our method outperforms current state-of-the-art light-field depth estimation algorithms, especially near occlusion boundaries.

Index Terms—Light-fields, 3D reconstruction, occlusion detection
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1 INTRODUCTION

L IGHT-FIELD cameras from Lytro [3] and Raytrix [20]
are now available for consumer and industrial use

respectively, bringing to fruition early work on light field
rendering [10], [16]. An important benefit of light field
cameras for computer vision is that multiple viewpoints
or sub-apertures are available in a single light-field image,
enabling passive depth estimation [4]. Indeed, Lytro Illum
and Raytrix software produces depth maps used for tasks
like refocusing after capture, and recent work [22] shows
how multiple cues like defocus and correspondence can be
combined.

However, very little work has explicitly considered oc-
clusion before. A common assumption is that, when refo-
cused to the correct depth (i.e., the depth of the center view),
angular pixels corresponding to a single spatial pixel repre-
sent viewpoints that converge to the same point in the scene.
If we collect these pixels to form an angular patch (Eq. 6), they
exhibit photo-consistency for Lambertian surfaces, which
means they all share the same color (Fig. 2a). However, this
assumption is not true when occlusion occurs at a pixel;
photo-consistency no longer holds since some viewpoints
will now be blocked by the occluder (Fig. 2b). Enforcing
photo-consistency on these pixels will often lead to incor-
rect depth results, causing smooth transitions around sharp
occlusion boundaries.

In this paper, we explicitly model occlusions, by devel-
oping a modified version of the photo-consistency condition
on angular pixels. Our main contributions are:
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1) An occlusion prediction framework on light field
images that uses a modified angular photo-
consistency.

2) A robust depth estimation algorithm which explic-
itly takes occlusions into account.

We show (Sec. 3) that around occlusion edges, the angu-
lar patch can be divided into two regions, where only one of
them obeys photo-consistency. A key insight (Fig. 3) is that
the line separating the two regions in the angular domain
(correct depth vs. occluder) has the same orientation as the
occlusion edge does in the spatial domain. This observation is
specific to light-fields, which have a dense set of views from
a planar camera array or set of sub-apertures. Although
a stereo camera also satisfies the model, the sampling in
angular domain is not sufficient to observe an orientation of
the occlusion boundary.

We use the modified photo-consistency condition, and
the means/variances in the two regions, to estimate initial
occlusion-aware depth (Sec. 4). We also compute a predictor
for the occlusion boundaries, that can be used as an input to
determine the final regularized depth (Sec. 5). These occlu-
sion boundaries could also be used for other applications
like segmentation or recognition. As seen in Fig. 1, our
depth estimates are more accurate in scenes with complex
occlusions (previous results smooth object boundaries like
the holes in the basket). In Sec. 6, we present extensive
results on both synthetic data (Figs. 9, 10), and on real scenes
captured with the consumer Lytro Illum camera (Fig. 11),
demonstrating higher-quality depth recovery than previous
work [8], [22], [26], [30].

2 RELATED WORK

(Multi-View) Stereo with Occlusions: Multi-view stereo
matching has a long history, with some efforts to handle
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Fig. 1: Comparison of depth estimation results of different algorithms from a light field input image. Darker represents closer and
lighter represents farther. It can be seen that only our occlusion-aware algorithm successfully captures most of the holes in the basket,
while other methods either smooth over them, or have artifacts as a result.

angular
patch

(a) Non-occluded pixels

angular
patch

(b) Occluded pixels

Fig. 2: Non-occluded vs. occluded pixels. (a) At non-occluded
pixels, all view rays converge to the same point in the scene if
refocused to the correct depth. (b) However, photo-consistency
fails to hold at occluded pixels, where some view rays will hit
the occluder.

occlusions. For example, the graph-cut framework [13] used
an occlusion term to ensure visibility constraints while
assigning depth labels. Woodford et al. [29] imposed an ad-
ditional second order smoothness term in the optimization,
and solved it using Quadratic Pseudo-Boolean Optimiza-
tion [21]. Based on this, Bleyer et al. [5] assumed a scene is
composed of a number of smooth surfaces and proposed a
soft segmentation method to apply the asymmetric occlu-
sion model [28]. However, significant occlusions still remain
difficult to address even with a large number of views.
Depth from Light Field Cameras: Perwass and Wiet-
zke [20] proposed using correspondence techniques to esti-
mate depth from light-field cameras. Tao et al. [22] combined
correspondence and defocus cues in the 4D Epipolar Image
(EPI) to complement the disadvantages of each other. Nei-
ther method explicitly models occlusions. McCloskey [18]
proposed a method to remove partial occlusion in color
images, which does not estimate depth. Wanner and Gold-
luecke [26] proposed a globally consistent framework by
applying structure tensors to estimate the directions of fea-
ture pixels in the 2D EPI. Yu et al. [30] explored geometric
structures of 3D lines in ray space and encoded the line
constraints to further improve the reconstruction quality.

However, both methods are vulnerable to heavy occlusion:
the tensor field becomes too random to estimate, and 3D
lines are partitioned into small, incoherent segments. Kim
et al. [12] adopted a fine-to-coarse framework to ensure
smooth reconstructions in homogeneous areas using dense
light fields. Jeon et al. [11] proposed a phase-based inter-
polation method to increase the accuracy for sub-pixel shift.
We build on the method by Tao et al. [22], which works with
consumer light field cameras, to improve depth estimation
by taking occlusions into account. Although Tao et al. have
a more recent method for depth estimation [23], it aims at
combining the shading cue which is not applicable in our
case. Compared to the work by Wang et al. [25], we added
the comparisons to Jeon et al. [11] and results by Lytro Illum,
which make the validation more complete.

Chen et al. [8] proposed a new bilateral metric on an-
gular pixel patches to measure the probability of occlusions
by their similarity to the central pixel. However, as noted in
their discussion, their method is biased towards the central
view as it uses the color of the central pixel as the mean of
the bilateral filter. Therefore, the bilateral metric becomes
unreliable once the input images get noisy. In contrast,
our method uses the mean of about half the pixels as the
reference, and is thus more robust when the input images
are noisy, as shown in our result section.

3 LIGHT-FIELD OCCLUSION THEORY

We first develop our new light-field occlusion model, based
on the physical image formation. We show that at occlu-
sions, some of the angular patch remains photo-consistent,
while the other part comes from occluders and exhibits no
photo consistency. By treating these two regions separately,
occlusions can be better handled.

For each pixel on an occlusion edge, we assume it
is occluded by only one occluder among all views. We
also assume that we are looking at a spatial patch small
enough, so that the occlusion edge around that pixel can
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Fig. 3: Light field occlusion model. (a) Pinhole model for central
camera image formation. An occlusion edge on the imaging plane
corresponds to an occluding plane in the 3D space. (b) The
“reversed” pinhole model for light field formation. It can be seen
that when we refocus to the occluded plane, we get a projection
of the occluder on the camera plane, forming a reversed pinhole
camera model.

be approximated by a line. We show that if we refocus to
the occluded plane, the angular patch will still have photo-
consistency in a subset of the pixels (unoccluded). Moreover,
the edge separating the unoccluded and occluded pixels in
the angular patch has the same orientation as the occlusion
edge in the spatial domain (Fig. 3). In Secs. 4 and 5, we use
this idea to develop a depth estimation and regularization
algorithm.

Consider a pixel at (x0, y0, f) on the imaging focal plane
(the plane in focus), as shown in Fig. 3a. An edge in the
central pinhole image with 2D slope γ corresponds to a
plane P in 3D space (the green plane in Fig. 3a). The normal
n to this plane can be obtained by taking the cross-product,

n = (x0, y0, f)× (x0 + 1, y0 + γ, f) = (−γf, f, γx0 − y0). (1)

Note that we do not need to normalize the vector. The plane
equation is P (x, y, z) ≡ n · (x0 − x, y0 − y, f − z) = 0,

P (x, y, z) ≡ γf(x−x0)−f(y−y0)+(y0−γx0)(z−f) = 0. (2)

In our case, one can verify that n ·(x0, y0, f) = 0 so a further
simplification to n · (x, y, z) = 0 is possible,

P (x, y, z) ≡ γfx− fy + (y0 − γx0)z = 0. (3)

Now consider the occluder (yellow triangle in Fig. 3a).
The occluder intersects P (x, y, z) with z ∈ (0, f) and lies
on one side of that plane. Without loss of generality, we
can assume it lies in the half-space P (x, y, z) ≥ 0. Now
consider a point (u, v, 0) on the camera plane (the plane
where the camera array lies on). To avoid being shadowed
by the occluder, the line segment connecting this point and
the pixel (x0, y0, f) on the image must not hit the occluder,

P (s0 + (s1 − s0)t) ≤ 0 ∀t ∈ [0, 1], (4)

where s0 = (u, v, 0) and s1 = (x0, y0, f). When t = 1,
P (s1) = 0. When t = 0,

P (s0) ≡ γfu− fv ≤ 0. (5)

The last inequality is satisfied if v ≥ γu, i.e., the critical slope
on the angular patch v/u = γ is the same as the edge orientation
in the spatial domain. If the inequality above is satisfied, both
endpoints of the line segment lie on the other side of the
plane, and hence the entire segment lies on that side as well.
Thus, the light ray will not be occluded.

We also give an intuitive explanation of the above proof.
Consider a plane being occluded by an occluder, as shown
in Fig. 3b. Consider a simple 3×3 camera array. When we re-
focus to the occluded plane, we can see that some views are
occluded by the occluder. Moreover, the occluded cameras
on the camera plane are the projection of the occluder on the
camera plane. Thus, we obtain a “reversed” pinhole camera
model, where the original imaging plane is replaced by the
camera plane, and the original pinhole becomes the pixel
we are looking at. When we collect pixels from different
cameras to form an angular patch, the edge separating the
two regions will correspond to the same edge the occluder
has in the spatial domain.

Therefore, we can predict the edge orientation in the
angular domain using the edge in the spatial image. Once
we divide the patch into two regions, we know photo
consistency holds in one of them since they all come from
the same (assumed to be Lambertian) spatial pixel.

4 OCCLUSION-AWARE INITIAL DEPTH

In this section, we show how to modify the initial depth
estimation from Tao et al. [22], based on the theory above.
First, we apply edge detection on the central view image.
Then for each edge pixel, we compute initial depths using
a modified photo-consistency constraint. The next section
will discuss computation of refined occlusion predictors and
regularization to generate the final depth map.

4.1 Edge detection

We first apply Canny edge detection on the central view
(pinhole) image. Then an edge orientation predictor is ap-
plied on the obtained edges to get the orientation angles at
each edge pixel. These pixels are candidate occlusion pixels
in the central view. However, some pixels are not occluded
in the central view, but are occluded in other views, as
shown in Fig. 4, and we want to mark these as candidate
occlusions as well. We identify these pixels by dilating the
edges detected in the center view.
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(a) Occlusion in central view (b) Occlusion in other views

Fig. 4: Occlusions in different views. The insets are the angular
patches of the red pixels when refocused to the correct depth. At
the occlusion edge in the central view, the angular patch can
be divided evenly into two regions, one with photo-consistency
and one without. However, for pixels around the occlusion edge,
although the central view is not occluded, some other views will
still get occluded. Hence, the angular patch will not be photo-
consistent, and will be unevenly divided into occluded and visible
regions.

4.2 Depth Estimation

For each pixel, we refocus to various depths using a 4D
shearing of the light-field data [19],

Lα(x, y, u, v) = L(x+ u(1− 1

α
), y + v(1− 1

α
), u, v), (6)

where L is the input light field image, α is the ratio of
the refocused depth to the currently focused depth, Lα
is the refocused light field image, (x, y) are the spatial
coordinates, and (u, v) are the angular coordinates. The
central viewpoint is located at (u, v) = (0, 0). This gives
us an angular patch for each depth, which can be averaged
to give a refocused pixel. In our implementation, we use
a simple linear interpolation to perform the resampling in
Eq. 6. However, more advanced resampling techniques, e.g.
the phase-based method in [11], could be used and could
potentially lead to better results.

When an occlusion is not present at the pixel, the ob-
tained angular patch will have photo-consistency, and hence
exhibits small variance and high similarity to the central
view. For pixels that are not occlusion candidates, we can
simply compute the variance and the mean of this patch to
obtain the correspondence and defocus cues, similar to the
method by Tao et al. [22].

However, if an occlusion occurs, photo-consistency will
no longer hold. Instead of dealing with the entire angular
patch, we divide the patch into two regions. The angular
edge orientation separating the two regions is the same as
in the spatial domain, as proven in Sec. 3. Since at least half
the angular pixels come from the occluded plane (otherwise
it will not be seen in the central view), we place the edge
passing through the central pixel, dividing the patch evenly.
Note that only one region, corresponding to the partially
occluded plane focused to the correct depth, exhibits photo-
consistency. The other region contains angular pixels that
come from the occluder, which is not focused at the proper

(a) Spatial image (b) Angular patch
(correct depth)

(c) Angular patch
(incorrect depth)

p
1

p
2

R
1

R
2spatial patch

angular patch

(d) Color consistency (e) Focusing to
correct depth

angular
patch

(f) Focusing to
incorrect depth

Fig. 5: Color consistency constraint. (b)(e) We can see that when
we refocus to the correct depth, we get low variance in half the
angular patch. However, in (c)(f) although we refocused to an
incorrect depth, it still gives low variance response since the
occluded plane is very textureless, so we get a “reversed” angular
patch. To address this, we add another constraint that p1 and p2
should be similar to the averages ofR1 andR2 in (d), respectively.

depth, and might also contain some pixels from the oc-
cluded plane. We therefore replace the original patch with
the region that has the minimum variance to compute the
correspondence and defocus cues.

To be specific, let (u1, v1) and (u2, v2) be the angular co-
ordinates in the two regions, respectively. We first compute
the means and the variances of the two regions,

L̄α,j(x, y) =
1

Nj

∑
uj ,vj

Lα(x, y, uj , vj), j = 1, 2 (7)

Vα,j(x, y) =
1

Nj − 1

∑
uj ,vj

(
Lα(x, y, uj , vj)− L̄α,j(x, y)

)2
,

(8)
where Nj is the number of pixels in region j. Let

i = arg min
j=1,2

{
Vα,j(x, y)

}
(9)

be the index of the region that exhibits smaller variance.
Then the correspondence response is given by

Cα(x, y) = Vα,i(x, y) (10)

Similarly, the defocus response is given by

Dα(x, y) =
(
L̄α,i(x, y)− L(x, y, 0, 0)

)2
(11)

Finally, the optimal depth is determined as

α∗(x, y) = arg min
α

{
Cα(x, y) +Dα(x, y)

}
(12)

4.3 Color Consistency Constraint

When we divide the angular patch into two regions, it is
sometimes possible to obtain a “reversed” patch when we
refocus to an incorrect depth, as shown in Fig. 5. If the
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(a) Central input image (b) Depth cue (F=0.58)

(c) Corresp. cue (F=0.53) (d) Refocus cue (F=0.57)

(e) Combined cue (F=0.65) (f) Occlusion ground truth

Fig. 6: Occlusion Predictor (Synthetic Scene). The intensities are
adjusted for better contrast. F-measure is the harmonic mean of
precision and recall compared to the ground truth. By combining
three cues from depth, correspondence and refocus, we can obtain
a better prediction of occlusions.

occluded plane is very textureless, this depth might also
give a very low variance response, even though it is obvi-
ously incorrect. To address this, we add a color consistency
constraint that the averages of the two regions should have
a similar relationship with respect to the current pixel as
they have in the spatial domain. Mathematically,

|L̄α,1−p1|+ |L̄α,2−p2| < |L̄α,2−p1|+ |L̄α,1−p2|+δ, (13)

where p1 and p2 are the values of the pixels shown in Fig. 5d,
and δ is a small value (threshold) to increase robustness.
If refocusing to a depth violates this constraint, this depth
is considered invalid, and is automatically excluded in the
depth estimation process.

5 OCCLUSION-AWARE DEPTH REGULARIZATION

After the initial local depth estimation phase, we refine the
results with global regularization using a smoothness term.
We improve on previous methods by reducing the effect
of the smoothness/regularization term in occlusion regions.
Our occlusion predictor, discussed below, may also be useful
independently for other vision applications.

5.1 Occlusion Predictor Computation

We compute a predictor Pocc for whether a particular pixel
is occluded, by combining cues from depth, correspondence
and refocus.

5.1.1 Depth Cues
First, by taking the gradient of the initial depth, we can
obtain an initial occlusion boundary,

P docc = f
(
∇dini/dini

)
(14)

where dini is the initial depth, and f(·) is a robust clipping
function that saturates the response above some threshold.
We divide the gradient by dini to increase robustness since
for the same normal, the depth change across pixels be-
comes larger as the depth gets larger.

5.1.2 Correspondence Cues
In occlusion regions, we have already seen that photo-
consistency will only be valid in approximately half the
angular patch, with a small variance in that region. On
the other hand, the pixels in the other region come from
different points on the occluding object, and thus exhibit
much higher variance. By computing the ratio between the
two variances, we can obtain an estimate of how likely the
current pixel is to be at an occlusion,

P var
occ = f

(
max

{
Vα∗,1

Vα∗,2
,
Vα∗,2

Vα∗,1

})
, (15)

where α∗ is the initial depth we get.

5.1.3 Refocus Cues
Finally, note that the variances in both the regions will be
small if the occluder is textureless. To address this issue,
we also compute the means of both regions. Since the two
regions come from different objects, their colors should be
different, so a large difference between the two means also
indicates a possible occlusion occurrence. In other words,

P avg
occ = f(|L̄α∗,1 − L̄α∗,2|) (16)

Finally, we compute the combined occlusion response or
prediction by the product of these three cues,

Pocc = N (P d
occ) · N (P var

occ ) · N (P avg
occ ) (17)

where N (·) is a normalization function that subtracts the
mean and divides by the standard deviation. The threshold
values of the f function for depth, correspondence and
refocus cues are set to 1, 100, and 0.01, respectively.

5.2 Depth Regularization

Finally, given initial depth and occlusion cues, we regularize
with a Markov Random Field (MRF) for a final depth map.
We minimize the energy:

E =
∑
p

Eunary(p, d(p)) + λ
∑
p,q

Ebinary(p, q, d(p), d(q)).

(18)
where d is the final depth p, q are neighboring pixels, and
λ is a weight which we set to 5. We adopt the unary term
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similar to Tao et al. [22]. The binary energy term is defined
as

Ebinary(p, q, d(p), d(q)) =

exp

[
− (d(p)− d(q))2/(2σ2)

]
(|∇I(p)−∇I(q)|+ k|Pocc(p)− Pocc(q)|)

(19)

where ∇I is the gradient of the central pinhole image,
and k is a weighting factor. The numerator encodes the
smoothness constraint, while the denominator reduces the
strength of the constraint if two pixels are very different or
an occlusion is likely to be between them. The minimization
is solved using a standard graph cut algorithm [6], [7], [14].
We can then apply the occlusion prediction procedure again
on this regularized depth map. A sample result is shown
in Fig. 6. In this example, the F-measure (harmonic mean
of precision and recall compared to ground truth) increased
from 0.58 (depth cue), 0.53 (correspondence cue), and 0.57
(refocus cue), to 0.65 (combined cue).

6 RESULTS

In this section, we first show results of different stages of our
algorithm (Sec. 6.1), and then demonstrate the superiority
of our method by comparing to different state-of-the-art
algorithms (Sec. 6.2). Finally, we show limitations and some
failure cases of our method (Sec. 6.3).

6.1 Algorithm Stages

We show results of different stages of our algorithm in Fig. 7.
First, edge detection is applied on the central pinhole image
(Fig. 7a) to give all possible edge boundaries (Fig. 7b). As
can be seen, although the output captures the occlusion
boundaries, it also contains lots of false positives. We then
compute the initial depth (Fig. 7c) and occlusion prediction
(Fig. 7d) using the method described in Sec. 4. Note that
the false positives in the obtained occlusion are dramati-
cally reduced. Finally, using the initial depth and occlusion
detection, we further regularize the depth (Sec. 5) to get the
final depth (Fig. 7e) and occlusion detection (Fig. 7f). Note
that the final occlusion detection realistically captures the
true occlusion boundaries. For runtime, on a 2.4 GHz Intel
i7 machine with 8GB RAM, our MATLAB implementation
takes about 3 minutes on a Lytro Illum Image (7728× 5368
pixels). This is comparable to [22], since all the additional
steps are marginal to the computation.

6.2 Comparisons

We compare our results to the methods by Wanner et al. [26],
Tao et al. [22], Yu et al. [30], Chen et al. [8], Jeon et al. [11],
and the results by Lytro Illum. For Chen et al., since code is
not available, we used our own implementation. Compared
to Wang et al. [25], we added the comparisons to Jeon et
al. [11] and results by Lytro Illum (for real images), which
make the validation more complete. Since ground truth at
occlusions is difficult to obtain, we perform extensive tests
using the synthetic dataset created by Wanner et al. [27] as
well as new scenes modeled by us. Our dataset is generated
from 3dsMax [1] using models from the Stanford Computer

Graphics Laboratory [9], [15], [24] and models freely avail-
able online [2]. Upon publication of this work, the dataset
will be available online. While the dataset by [27] only
provides ground truth depth, ours provides ground truth
depth, normals, specularity, lighting, etc, which we believe
will be useful for a wider variety of applications. In addition
to synthetic datasets, we also validate our algorithm on real-
world scenes of fine objects with occlusions, taken by the
Lytro Illum camera.

6.2.1 Occlusion Boundaries

For each synthetic scene, we compute the occlusion bound-
aries from the depth maps generated by each algorithm,
and report their precision-recall curves by picking different
thresholds. For our method, the occlusions are computed us-
ing only the depth cue instead of the combined cue in Sec. 5,
to compare the depth quality only. A predicted occlusion
pixel is considered correct if its error is within one pixel. The
results on both synthetic datasets are shown in Figs. 8a,8b.
Our algorithm achieves better performance than current
state-of-the-art methods. Next, we validate the robustness
of our system by adding noise to a test image, and report
the F-measure values of each algorithm, as shown in Fig. 8c.
Although Chen et al. [8] performs very well in the absence
of noise, their quality quickly degrades as the noise level
is increased. In contrast, our algorithm is more tolerant to
noise.

6.2.2 Depth Maps for Synthetic Scenes

Figure 9 shows the recovered depths on the synthetic dataset
by Wanner et al. [27]. It can be seen that our results show
fewer artifacts in heavily occluded areas. We obtain the cor-
rect shape of the door and window in the top row, accurate
boundaries along the twig and leaf in the second row, and
realistic antenna shape and wing boundaries in the bottom
row. Other methods smooth the object boundaries and are
noisy in some regions. Figure 10 shows the results on our
synthetic dataset. Notice that we capture the boundaries of
the leaves, fine structures like the lamp and holes in the
chair, and thin shapes of the lamp and the chandelier. Other
methods smooth over these occlusions or generate thicker
structures. The RMSE of the depth maps compared to the
ground truth are also shown in Table 1. However, note that
RMSE is not the best metric for the improvements on thin
occluded structures provided by our method.

6.2.3 Depth Maps for Real Scenes

Figures 1 and 11 compare results on real scenes with fine
structures and occlusions, captured with Lytro Illum light
field camera. Our method performs better around occlusion
boundaries, especially for thin objects. Ours is the only
method that captures the basket holes in Fig. 1. In Fig. 11,
our method properly captures the thin structure of the lead
(first row), reproduces the fine petals of the flower (second
row), captures the holes behind the leafs without over-
smoothing (third and fourth row), obtains realistic shape
of the stem(fifth row), and reproduces the complicated
structure of the strap (final row).
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(a) Light-field input (b) Edge detection (c) Initial depth (d) Initial occlusion (e) Final depth (f) Final occlusion

Fig. 7: Real-world results of different stages of our algorithm. We first apply edge detection on the central input, run our depth
estimation algorithm on the light-field image to get an initial depth and an occlusion response prediction, and finally use the occlusion
to regularize the initial depth to get a final depth map. We can then run the occlusion predictor on this final depth again to get a refined
occlusion.
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Fig. 8: (a) PR-curve of occlusion boundaries on dataset of Wanner et al. [27] (b) PR-curve on our dataset. (c) F-measure vs. noise level.
Our method achieves better results than current state-of-the-art methods, and is robust to noise.

Wanner et al. Tao et al. Yu et al. Chen et al. Jeon et al. Our method
Dataset by Wanner et al. 0.0470 0.0453 0.0513 0.0375 0.0443 0.0355

Our dataset 0.1256 0.1253 0.1006 0.1019 0.1062 0.0974

TABLE 1: Depth RMSE on synthetic scenes. Our method achieves lowest RMSE on both datasets. Note that RMSE is not the best
metric for the improvements on thin occluded structures provided by our method.
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LF input Wanner et al. Tao et al. Yu et al.

Ground truth Our result Chen et al. Jeon et al.

LF input Wanner et al. Tao et al. Yu et al.

Ground truth Our result Chen et al. Jeon et al.

LF input Wanner et al. Tao et al. Yu et al.

Ground truth Our result Chen et al. Jeon et al.

Fig. 9: Depth estimation results on synthetic data by Wanner et al. [27]. Some intensities in the insets are adjusted for better contrast.
In the first example, note that our method correctly captures the shape of the door/window, while all other algorithms fail and produce
smooth transitions. Similarly, in the second example our method reproduces accurate boundaries along the twig/leaf, while other
algorithms generate smoothed results or fail to capture the details, and have artifacts. Finally, in the last example, our method is the
only one which can capture the antennas of the butterfly, and preserve the boundary of the wings, while other methods fail or generate
smoothed results.
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LF input Wanner et al. Tao et al. Yu et al.

Ground truth Our result Chen et al. Jeon et al.

LF input Wanner et al. Tao et al. Yu et al.

Ground truth Our result Chen et al. Jeon et al.

LF input Wanner et al. Tao et al. Yu et al.

Ground truth Our result Chen et al. Jeon et al.

Fig. 10: Depth estimation results on our synthetic dataset. Some intensities in the insets are adjusted for better contrast. In the first
example, our method successfully captures the shapes of the leaves, while all other methods generate smoothed results. In the second
example, our method captures the holes in the chair as well as the thin structure of the lamp, while other methods obtain smoothed or
thicker structures. In the last example, our method captures the thin structure of the lamp and the chandelier, while other methods fail
or generate thickened results.
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LF input Wanner et al. Tao et al. Yu et al.

Our result Chen et al. Jeon et al. Lytro Illum

LF input Wanner et al. Tao et al. Yu et al.

Our result Chen et al. Jeon et al. Lytro Illum

LF input Wanner et al. Tao et al. Yu et al.

Our result Chen et al. Jeon et al. Lytro Illum

Fig. 11: Depth estimation results on real data taken by the Lytro Illum light field camera. It can be seen that our method realistically
captures the thin structures and occlusion boundaries, while other methods fail, or generate dilated structures.
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LF input Wanner et al. Tao et al. Yu et al.

Our result Chen et al. Jeon et al. Lytro Illum

LF input Wanner et al. Tao et al. Yu et al.

Our result Chen et al. Jeon et al. Lytro Illum

LF input Wanner et al. Tao et al. Yu et al.

Our result Chen et al. Jeon et al. Lytro Illum

Fig. 11: Depth estimation results on real data taken by the Lytro Illum light field camera (continued). It can be seen that our method
realistically captures the thin structures and occlusion boundaries, while other methods fail, or generate dilated structures.



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. , NO. , JANUARY 2016 12

(a) Small area occlusion (b) Multi-occluder occlusion

Fig. 12: Limitations. The upper insets show close-ups of the red
rectangle, while the lower insets show the angular patches of the
green (central) pixels when refocused to the correct depth. (a) Our
algorithm cannot handle occlusions where the occluded area is
very small, so that there is no simple line that can separate the
angular patch. (b) Also, if more than one occluder is present
around the pixel, it is not enough to just divide the angular
domain into two regions.

6.3 Limitations and Future Work

First, our algorithm cannot handle situations where the
occluded plane is very small relative to the angular patch
size, or if the single occluder assumption fails to hold
(Fig. 12). If the occluded area is very small, there is no
simple line that can separate the angular patch into two
regions. If we have multiple edges intersecting at a point,
its angular patch needs to be divided into more than two
regions to achieve photo consistency. This may be addressed
by inspecting the spatial patch around the current pixel
instead of just looking at the edges. Second, our algorithm
cannot perform well if the spatial edge detector fails or
outputs an inaccurate orientation. We also assume the light-
field is bandlimited [17], so aliasing does not occur and we
can always find consistent correspondences in the original
light-field representation. Finally, similar to previous stereo
methods, our algorithm cannot perform well at textureless
regions. In addition, since we only use half the angular patch
around edges, it might introduce some confusion in certain
cases. For example, a special case would be a plane which is
uniform on one side and textured on the other side. Using
previous methods, the depth around the separating edge
can be uniquely determined using the entire angular patch.
However, no matter which depth we refocus to, the angular
patch will be uniform on one side, and our method will not
be able to find the correct depth. In this case, the unary cost
will be indiscernible, and we will rely on neighboring pixels
in the textured region to determine its depth (by smoothness
constraint), just as previous methods rely on neighboring
pixels to determine the depths in uniform regions.

7 CONCLUSION

In this paper, we propose an occlusion-aware depth esti-
mation algorithm. We show that although pixels around
occlusions do not exhibit photo-consistency in the angular
patch when refocused to the correct depth, they are still
photo-consistent for part of the patch. Moreover, the line
separating the two regions in the angular domain has the
same orientation as the edge in the spatial domain. Utilizing
this information, the depth estimation process can be im-
proved in two ways. First, we can enforce photo-consistency

on only the region that is coherent. Second, by exploiting
depth, correspondence and refocus cues, we can perform
occlusion prediction, so smoothing over these boundaries
can be avoided in the regularization. We demonstrate the
benefits of our algorithm on various synthetic datasets as
well as real-world images with fine structures, extending the
range of objects that can be captured in 3D with consumer
light-field cameras.
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and benchmarks for densely sampled 4D light fields. In Annual
Workshop on Vision, Modeling and Visualization, pages 225–226, 2013.
6, 7, 8

[28] Yichen Wei and Long Quan. Asymmetrical occlusion handling
using graph cut for multi-view stereo. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2005.
2

[29] Oliver Woodford, Philip Torr, Ian Reid, and Andrew Fitzgibbon.
Global stereo reconstruction under second-order smoothness pri-
ors. IEEE Transactions on Pattern Analysis and Machine Intelligence
(PAMI), 31(12):2115–2128, 2009. 2

[30] Zhan Yu, Xinqing Guo, Haibing Ling, Andrew Lumsdaine, and
Jingyi Yu. Line assisted light field triangulation and stereo match-
ing. In Proceedings of the IEEE International Conference on Computer
Vision (ICCV), 2013. 1, 2, 6

Ting-Chun Wang received his B.S. degree in
2012 at National Taiwan University and is cur-
rently pursuing a PhD at U.C. Berkeley, Electri-
cal Engineering and Computer Science Depart-
ment, advised by Ravi Ramamoorthi and Alexei
Efros. His research interest is in computational
photography and computer vision problems, par-
ticularly light-field technologies with both com-
puter vision and computer graphics applications.

Alexei A. Efros received his BS degree in Com-
puter Science from the University of Utah in 1997
and PhD from UC Berkeley in 2003. Following a
postdoc at Oxford University, he was nine years
on the faculty of Carnegie Mellon University,
while also been affiliated with cole Normale Su-
prieure/INRIA. He is now an associate professor
at EECS Department at UC Berkeley. He is a
recipient of CVPR Best Paper Award (2006),
NSF CAREER award (2006), Sloan Fellowship
(2008), Guggenheim Fellowship (2008), Okawa

Grant (2008), Finmeccanica Career Development Chair (2010), SIG-
GRAPH Significant New Researcher Award (2010), ECCV Best Paper
Honorable Mention (2010), and the Helmholtz Test-of-Time Prize (2013).

Ravi Ramamoorthi received his BS degree in
engineering and applied science and MS de-
grees in computer science and physics from the
California Institute of Technology in 1998. He re-
ceived his PhD degree in computer science from
Stanford University Computer Graphics Labora-
tory in 2002, upon which he joined the Columbia
University Computer Science Department. He
was on the UC Berkeley EECS faculty from
2009-2014. Since July 2014, he is a Professor
of Computer Science and Engineering at the

University of California, San Diego and Director of the UC San Diego
Center for Visual Computing. His research interests cover many areas
of computer vision and graphics, with more than 100 publications. His
research has been recognized with a number of awards, including the
2007 ACM SIGGRAPH Significant New Researcher Award in computer
graphics, and by the white house with a Presidential Early Career
Award for Scientists and Engineers in 2008 for his work on physics-
based computer vision. He has advised more than 20 Postdoctoral, PhD
and MS students, many of whom have gone on to leading positions in
industry and academia; and he has taught the first open online course
in computer graphics on the EdX platform in fall 2012, with more than
80,000 students enrolled in that and subsequent iterations.


