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Abstract—Light-field cameras have now become available in both consumer and industrial applications, and recent papers have
demonstrated practical algorithms for depth recovery from a passive single-shot capture. However, current light-field depth estimation
methods are designed for Lambertian objects and fail or degrade for glossy or specular surfaces. The standard Lambertian
photoconsistency measure considers the variance of different views, effectively enforcing point-consistency, i.e., that all views map to
the same point in RGB space. This variance or point-consistency condition is a poor metric for glossy surfaces. In this paper, we
present a novel theory of the relationship between light-field data and reflectance from the dichromatic model. We present a
physically-based and practical method to estimate the light source color and separate specularity. We present a new photo consistency
metric, line-consistency, which represents how viewpoint changes affect specular points. We then show how the new metric can be
used in combination with the standard Lambertian variance or point-consistency measure to give us results that are robust against
scenes with glossy surfaces. With our analysis, we can also robustly estimate multiple light source colors and remove the specular
component from glossy objects. We show that our method outperforms current state-of-the-art specular removal and depth estimation
algorithms in multiple real world scenarios using the consumer Lytro and Lytro Illum light field cameras.

Index Terms—Light fields, 3D reconstruction, specular-free image, reflection components separation, dichromatic reflection model.
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1 INTRODUCTION

L IGHT-FIELDS [1], [2] can be used to refocus images [3].
Cameras that can capture such data are readily available in

both consumer (e.g. Lytro) and industrial (e.g. Raytrix) markets.
Because of its micro-lens array, a light-field camera enables effec-
tive passive and general depth estimation [4], [5], [6], [7], [8]. This
makes light-field cameras point-and-capture devices to recover
shape. However, current depth estimation algorithms support only
Lambertian surfaces, making them ineffective for glossy surfaces,
which have both specular and diffuse reflections. In this paper, we
present the first light-field camera depth estimation algorithm for
both diffuse and specular surfaces using the consumer Lytro and
Lytro Illum cameras (Fig. 1).

We build on the dichromatic model introduced by Shafer [9],
but extend and apply it to the multiple views of a single point
observed by a light field camera. Since diffuse and specular
reflections behave differently in different viewpoints, we first
discuss four different surface cases (general dichromatic, general
diffuse, Lambertian plus specular, Lambertian only). We show that
different cases lead to different structures in RGB space, as seen
in Fig. 2, ranging from a convex cone (for general dichromatic
case), a line passing through the origin (for general diffuse case),
a general line (for Lambertian plus specular case), to the standard
single point (for Lambertian only case). Notice that standard multi-
view stereo typically measures the variance of different views,
and is accurate only when the data is well modeled by a point
as for Lambertian diffuse reflection. We refer to this as point-
consistency since we measure consistency to the model that all
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views correspond to a single point in RGB space; this distinguishes
from the line-consistency condition we develop in conjunction
with the dichromatic model. The dichromatic model lets us
understand and analyze higher-dimensional structures involving
specular reflection. In practice, we focus on Lambertian plus
specular reflection, where multiple views correspond to a general
line in RGB space (not passing through the origin, see Fig. 2 (c)).

We show that our algorithm works robustly across many
different light-field images captured using the Lytro light-field
camera, with both diffuse and specular reflections. We compare
our specular and diffuse separation against Mallick et al. [10],
Yoon et al. [11], and Tao et al. [6], and our depth estimation
against Tao et al. [5], [6], Wanner et al. [12], and Lytro software
(Figs. 11, and 12). Our main contributions are:
1. Dimensional analysis for dichromatic model (Sec. 3)
We investigate the structure of pixel values of different views in
the color space. We show how different surface models will affect
the structure, when focused to either the correct or incorrect depth.
2. Depth estimation for glossy surfaces (Sec. 4.4, 4.5)
For glossy surfaces, using the point-consistency condition to esti-
mate depth will give us wrong depth. We introduce a new photo-
consistency depth measure, line-consistency, which is derived
from our dichromatic model analysis. We also show how to com-
bine both point-consistency and line-consistency cues providing
us a robust framework for general scenes. Our method is based
on our initial work (Tao et al. [6]), but we have more robust and
better results, and there is no iteration involved.
3. Color estimation and specular-free image (Sec. 4.3, 4.6)
We perform the multiple viewpoint light source analysis by
using and rearranging the light-field’s full 4D epipolar plane
images (EPI) to refocus and extract multiple-viewpoints. Our
algorithm (Algorithm 1) robustly estimates light source color,
and measures the confidence for specular regions. The framework
distinguishes itself from the traditional approach of specular and
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diffuse separation for conventional images by providing better
results (Figs. 8, 9, 10, 11, 12) and supporting multiple light source
colors (Figs. 5, 11).

2 RELATED WORK

Depth estimation and specular removal have been studied exten-
sively in the computer vision community. In our work, we show
that light fields give us more information to remove specularities.
We generalize the photo-consistency measure, introduced by Seitz
and Dyer [14], to both point and line consistency, which supports
both diffuse and glossy surfaces. Our algorithm is able to robustly
estimate depth in both diffuse and specular edges.

2.1 Defocus and correspondence depth estimation
Depth estimation has been studied extensively through multiple
methods. Depth from defocus requires multiple exposures [15],
[16]; stereo correspondence finds matching patches from one
viewpoint to another viewpoint(s) [17], [18], [19], [20]. The
methods are designed for Lambertian objects and fail or degrade
for glossy or specular surfaces, and also do not take advantage of
the full 4D light-field data.

2.2 Multi-view stereo with specularity
Exploiting the dichromatic surface properties, Lin et al. [21]
propose a histogram based color analysis of surfaces. However,
to achieve a similar surface analysis, accurate correspondence
and segmentation of specular reflections are needed. Noise and
large specular reflections cause inaccurate depth estimations. Jin et
al. [22] propose a method using a radiance tensor field approach to
avoid such correspondence problems, but real world scenes do not
follow their tensor rank model. In our implementation, we avoid
the need of accurate correspondence for real scenes by exploiting
the refocusing and multi-viewpoint abilities in the light-field data.

2.3 Diffuse-specular separation and color constancy
In order to render light-field images, Yu et al. [23] propose the idea
that angular color distributions will be different when viewing
at the correct depth, incorrect depth, and when the surface is
occluded in some views. In this paper, we extend the Scam
model to a generalized framework for estimating both depth and
specular and diffuse separation. Separating diffuse and specular
components by transforming from the RGB color space to the
SUV color space such that the specular color is orthogonal to
the light source color has been effective; however, these methods
require an accurate estimation of or known light source color [10],
[24], [25]. Without multiple viewpoints, most diffuse and specular
separation methods assume the light source color is known [10],
[11], [26], [27], [28], [29], [30]. As noted by Artusi et al. [31],
these methods are limited by the light source color, prone to noise,
and work well only in controlled or synthetic settings. To alleviate
the light source constraint, we use similar specularity analyses
as proposed by Sato and Ikeuchi and Nishino et al. [32], [33].
However, prior to our work, the methods require multiple captures
and robustness is dependent on the number of captures. With fewer
images, the results become prone to noise. We avoid both of these
problems by using the complete 4D EPI of the light-field data
to enable a single capture that is robust against noise. Estimating
light source color (color constancy) exhibits the same limitations
and does not exploit the full light-field data [34], [35]. Since we

are estimating the product of light source color and the albedo for
each pixel independently, we can estimate more than just one light
source color.

2.4 Light-field depth estimation

More recent works have exploited the light-field data by using the
epipolar images [4], [5], [6], [7], [8], [12], [36], [37]. Because
all these methods assume Lambertian surfaces, glossy or specular
surfaces pose a large problem. Wanner et al. [38] propose a higher
order tensor structure to estimate geometry of reflecting surfaces.
The method struggles with planarity of reflecting surfaces as
stated in the paper. Heber and Pock [39] propose an optimization
framework that enforces both low rank in the epipolar geometry
and sparse errors that better estimate specular regions. However,
because the framework assumes sparse errors, we show that
the method fails in regions with highly reflective surfaces and
glare (Figs. 11 and 12). Moreover, the optimization framework
is computationally expensive. In our work, we use the full 4D
light-field data to perform specular and diffuse separation and
depth estimation. Using our line-consistency measure, we directly
address the problem of estimating depth of specular regions. In our
comparisons, we show that specularities cause instabilities in the
confidence maps computed in Tao et al. [5]. The instabilities result
from high brightness in specular regions and lower brightness
in diffuse regions. Even at the most point-consistent regions,
the viewpoints do not exhibit the same color. However, because
of the large contrast between the neighborhood regions, these
regions still register as high confidence at wrong depths. The
incorrect depth and high confidence cause the regularization step
by Markov random fields (MRF) to fail or produce incorrect depth
propagation in most places, even when specularities affect only a
part of the image (Figs. 1, 11, and 12).

A preliminary version of our algorithm was described in [6]. In
this paper, we built upon a theoretical foundation as described in
Sec. 3.1 to justify our algorithm. Based on the theory, we improved
results and removed the necessity of an iterative approach.

3 THEORY OF DIMENSION ANALYSIS

In this section, we explain the dichromatic model and its induced
color subspace from multiple views of a point, imaged by a light
field camera (Sec. 3.1). By analyzing the pixel values in color
space, we can get the type of BRDF of the point (Sec. 3.2). Unlike
previous dichromatic analyses, we consider multiple views of a
single point, that allows us to estimate multiple light sources over
the entire object. We show how to use the insights from our color
analysis to develop algorithms for depth estimation from light
fields (Sec. 3.3, 4). Our practical algorithm is described in Sec. 4.

3.1 Dichromatic Reflection Model

We first analyze the color values at multiple views from a
point/pixel on the object. The dichromatic BRDF model [9] states
that light reflected from objects has two independent components,
light reflected from the surface body and at the interface, which
typically correspond to diffuse and specular reflection. The ob-
served colors among the viewpoints are then a part of the span
between the diffuse and specular components,

I(λ,n, l,v) = Id(λ,n, l,v) + Is(λ,n, l,v) (1)
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Fig. 1: Depth Estimation for Glossy Surfaces. Our input is a light-field image. We use PBRT [13] to synthesize a red wood textured
glossy sphere with specular reflectance Ks = [1, 1, 1] and roughness = 0.001 with four light sources of different colors (a). We use two
photoconsistency metrics: point-consistency and line-consistency. By using point-consistency, we obtain depth measures suitable for
diffuse only surfaces, but exhibit erroneous depth (b) and high confidence (c) at glossy regions due to overfitting data. By using the light-
source color estimation (d), we seek a depth where the colors from different viewpoints represent a line, with direction corresponding to
light-source color, which we call line-consistency. The new depth measurement gives correct depths at specular edges (e), but exhibits
low confidence values everywhere else. We highlighted the difference of the edges by highlighting in white. The comparison between the
two can be seen in Fig. 3. We use both of the cues to perform a depth regularization that produces an optimal result by exploiting the
advantages of both cues (g). With the analysis, we can also extract a specular-free image (h) and an estimated specular image (i). In
this paper, we provide the theoretical background of using the two metrics. Note: The specular colors are enhanced for easier visibility
throughout the paper. For depth maps, cool to warm colors represent closer to farther respectively, and for confidence maps, less
confident to more confident respectively, with a scale between 0 and 1.

Type of BRDF General diffuse plus specular General diffuse Lambertian diffuse plus specular Lambertian diffuse

Dimension analysis
Convex cone (on a plane) Line passing through the origin Line not passing the origin Point

[L̄d(λ)ρd(v) + L̄s(λ)ρs(v)] · (n · l) L̄d(λ)ρd(v) · (n · l) [c · L̄d(λ) + L̄s(λ)ρs(v)] · (n · l) c · L̄d(λ) · (n · l)

TABLE 1: Dimension analysis of different types of BRDF with one light source.

where I is the radiance. λ is the wavelength of light (in practice,
we will use red, green and blue, as is conventional). n is the
surface normal, and v indicates the viewing direction. We assume
a single light source with l being the (normalized) direction to
the light. Since our analysis applies separately to each point/pixel
on the object, we can consider a separate light source direction
and color at each pixel, which in practice allows us to support
multiple lights. As is common, we do not consider inter reflections
or occlusions in the theoretical model. Next, each component of
the BRDF ρ can be decomposed into two parts [9]:

ρ(λ,n, l,v) = kd(λ)ρd(n, l,v) + ks(λ)ρs(n, l,v) (2)

where kd and ks are diffuse and specular spectral reflectances,
which only depend on wavelength λ. ρd and ρs are diffuse and
specular surface reflection multipliers, which are dependent on
geometric quantities and independent of color. Now, consider
the light source L(λ), which interacts with diffuse and specular
components of the BRDF:

I(λ,n, l,v) = L(λ) ∗ ρ(λ,n, l,v) · (n · l) (3)

= L(λ) ∗ [(kd(λ)ρd(n, l,v) + ks(λ)ρs(n, l,v)] · (n · l)

Here we use ∗ to represent component-wise multiplication for
different wavelengths, usually used as color channels (R,G,B),
and where actual · indicates a dot product with a scalar (or vector).

Now we consider images taken by light-field cameras. For
each point on the object, we can get color intensities from different
views. In other words, for a given pixel, n and l are fixed
while v is changing. Therefore, we can simplify ρd(n, l,v) and
ρs(n, l,v) as ρd(v) and ρs(v). Furthermore, we encapsulate the
spectral dependence for diffuse and specular parts as L̄d(λ) and
L̄s(λ):

I(v) = L(λ) ∗ [(kd(λ)ρd(v) + ks(λ)ρs(v)] · (n · l)

= [L̄d(λ)ρd(v) + L̄s(λ)ρs(v)] · (n · l) (4)

where

L̄d(λ) = L(λ) ∗ kd(λ)

L̄s(λ) = L(λ) ∗ ks(λ)

3.2 Type of BRDF and Dimension Analysis

Assuming the object surface fits the dichromatic reflection model,
we can use Eq. 4 to analyze pixel values from multiple views.
Now we discuss how those pixel values lie in RGB color space,
for various simplifying assumptions on the BRDF. Table 1 shows
a summary. In addition, we use a synthetic sphere to verify the
analysis, as shown in the top two rows of Fig. 2. In practice, we
use the common Lambertian plus specular assumption, but the
theoretical framework applies more generally, as discussed below.
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Type of BRDF General diffuse plus
specular General diffuse Lambertian diffuse plus

specular Lambertian diffuse
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Fig. 2: Synthetic data for dimension analysis of different types of BRDF with one light source. The synthetic data is generated by
PBRT [13] to simulate the Lytro camera. Note that for the general diffuse surface, we use a view-dependent spectral reflectance kd
for the sphere. The center images are linearly scaled for display. The scatter plots are pixel intensities in RGB color space from 49
different views, imaging the location where the red arrow points. All pixel values are scaled to [0, 1]. Synthetic data shows that when
the light field image is refocused to the correct depth, the result corresponds to our dimension analysis (Table 1).

General Diffuse plus Specular For the general dichromatic
case, the pixel values from multiple views are

I(v) = [L̄d(λ)ρd(v) + L̄s(λ)ρs(v)] · (n · l) (5)

as derived from Eq. 4. The color of diffuse component L̄d(λ) is in
general different from the specular part L̄s(λ). In addition, ρd(v)
and ρs(v) are scalars that vary with viewpoint. Therefore, the
pixel value is a linear combination of diffuse color and specular
color. Pixel values from different views of a point will lie on
a convex cone, a plane spanned by diffuse and specular colors.
The synthetic result is shown in Fig. 2(a). Since the variance of
the diffuse component is usually much smaller than the specular
component, most of the variation is dominated by the effect
of specular color. When the viewing direction changes and the
specular component is no longer dominant, the pixel values will
be closer to the diffuse color (around the dashed line), but still on
the convex cone.

General Diffuse

I(v) = L̄d(λ)ρd(v) · (n · l) (6)

If the object surface does not have a specular component, the
dichromatic model can be simplified as Eq. 6. When there is only
one light source, L̄d(λ) is fixed and ρd(v) · (n · l) is a scalar.
Thus, all possible values will lie on a line, which passes through
the origin. Figure 2(b) shows the result.

Lambertian Diffuse plus Specular

I(v) = [c · L̄d(λ) + L̄s(λ)ρs(v)] · (n · l) (7)

Now we consider the most common case, where the diffuse
component is modeled as Lambertian as in most previous work,
and there is a specular component. This is the case we will
consider in our practical algorithm.

In other words, ρd(v) is now a constant (replaced by c here),
independent of the viewing angle. Under this assumption, the
dichromatic model becomes Eq. 7. For different views, L̄d(λ)
is a constant and L̄s(λ)ρs(v) is a line passing through the origin.
Combining the two components, pixel values in color space will
be a line not passing through the origin. Figure 2(c) shows the
result.

A further simplification is achieved for dielectric materials,
where the specular reflection takes the light source color, or ks(λ)
is a constant, independent of wavelength. In this case, L̄s(λ)
corresponds directly to the light source color, and our practical
algorithm is able to estimate the color of the light. In fact, we can
handle multiple light sources, since we can assume a separate light
affects the specular component for each pixel or group of pixels.
Note that the common dielectric assumption is not fundamental to
our algorithm, and is needed only to relate the light source color
to that of the highlight.
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Lambertian Diffuse

I(v) = c · L̄d(λ) · (n · l) (8)

Next, we consider the BRDF with Lambertian diffuse component
only. In Eq. 7, c and (n · l) are all constants. Therefore, all
the color intensities should be the same for different views of a
point. Indeed, this is just re-stating the notion of diffuse photo-
consistency. In effect, we have a single point in RGB space, and
we call this point-consistency in the rest of the paper, to distinguish
from the line-consistency model we later employ for Lambertian
plus specular surfaces.

3.3 Depth Estimation
Figures 2(a-d) verify the dichromatic model applied to light field
data, considering multiple views of a single point. However, this
analysis assumes we have focused the light field camera to the
correct depth, when in fact we want to estimate the depth of a
glossy object. Therefore, we must conduct a novel analysis of
the dichromatic model, where we understand how multiple views
behave in color space, if we are focused at the incorrect depth.
This is shown in the bottom row of Fig. 2, and to our knowledge
has not been analyzed in prior work.

For a depth estimation method to be robust, the structure when
focused to the incorrect depth must be intrinsically different from
that at the correct depth; otherwise depth estimation is ambiguous.
Indeed, we will see in Fig. 2(e-h) that pixel values usually either
lie in a higher-dimensional space or have higher variance.

General Diffuse plus Specular
When the image is refocused to the incorrect depth, different
views will actually come from different geometric locations on
the object. Since our test image is a sphere with a point light, each
point has a different value for ρd(v) and (n · l). In addition, some
of the neighboring points have only the diffuse part (since ρs(v)
is close to 0). Therefore, the pixel values have a wider span on the
convex cone, as shown in Fig. 2(e), where fitting a line will result
in larger residuals.

General Diffuse
Since each view has a different intensity due to different (n · l)
and ρd(v), pixel values from different views will usually span a
wider section of a line, as shown in Fig. 2(f).

Lambertian Diffuse plus Specular
The specular color component at neighboring points will have
differing ρs(v), similar to the case when focused at the correct
depth. However, the variations are larger. The diffuse color com-
ponent also now varies in intensity because of different (n · l)
values at neighboring points.

When focused at the correct depth, the points lie in a line,
which we call line-consistency. At an incorrectly focused depth,
the RGB plot diverges from a line. However, as seen in Fig. 2(g),
this signal is weak; since the diffuse intensity variation is much
less than the specular component, different views still lie almost on
a line in RGB space for incorrect depth, but usually with a larger
variation than when focused to the correct depth. Therefore, we
need to combine point-consistency for Lambertian-only regions.
We will use this observation in our practical algorithm.

Lambertian Diffuse
Different views have different values for the (n · l) fall-off term
(the sphere in Fig. 2 is not textured). However, all the points
have the same diffuse color. Thus, pixel values lie on a line
passing through the origin, as shown in Fig. 2(h). Again, point-
consistency is a good photo-consistency measure for Lambertian

diffuse surfaces, since it holds when focused at the correct depth
and not at incorrect depths.

4 DEPTH ESTIMATION ALGORITHM

We now describe our practical algorithm, that builds on the
theoretical model. We assume Lambertian plus specular materials,
as in most previous work. The photo-consistency condition can be
generalized to line-consistency, that estimates a best fit line. This
provides a better measure than the point-consistency or simple
variance in the Lambertian case. We then use a new regularization
scheme to combine both photo-consistency measures, as seen in
Fig. 1. We show in Sec. 4, how point and line-consistency can be
combined to obtain robust depth estimation for glossy surfaces.
If we want higher order reflection models, we can use best-fit
elements at higher dimensions for the analysis.

We will also assume dielectric materials where the specular
component is the color of the light source for most of our results,
although it is not a limitation of our work, and Eq. 7 is general. The
assumption is needed only for relating light source color to that of
the highlight, and does not affect depth estimation. In Tao et al. [6],
we used an iterative approach of estimating the light source color
line direction to generate the specular free and specular images and
depth estimation just using Lambertian point-consistency. This
iterative approach may lead to convergence problems in some
images and artifacts associated with specular removal affect depth
results. In this paper, we designed our new algorithm that uses both
light source color estimation and depth estimation that exploits
photo-consistency. We show that this eliminates the need for an
iterative approach and achieves higher quality results in Figs. 10
and 11.

Since we now use the generalized photo-consistency term for
specular edges, the new depth-error metric is as follows:
• Lambertian only surfaces, the error metric is the variance across

the viewpoints (point-consistency measure).1

• Lambertian plus specular surfaces, the error metric is the
residual of the best fit line, where the slope of the line represents
the scene light source chromaticity (line-consistency measure).

The depth metrics have strengths and weaknesses, as summa-
rized in Fig. 3. For point-consistency, diffuse edges exhibit high
confidence and meaningful depth. However, for specular edges,
the error is large with high confidence. The high confidence is
caused by the fact that the specular regions are much brighter
than the neighborhood pixels. Although true point-consistency
does not exist, the point-consistency metric between close to
point-consistency and otherwise is large among depths. Therefore,
incorrect high confidence is common. With line-consistency, the
measure is accurate at specular edges with high confidence. But,
with the line-consistency measure, the depth estimation for diffuse
regions is unstable. Even at incorrect depth (Fig. 2(h)), the points
lie in a line. The line-consistency measure will register both
correct and incorrect depth as favorable due to the low residuals
of a best fit line. Texture also will introduce multiple lines as
different colors from neighborhood pixels may register new best-
fit-lines. Therefore, depth values are noisy and confidence is lower.
For both point and line-consistency, it is important to note that

1. In our implementation, we used both the Lambertian photo-consistency
and defocus measure from Tao et al [5]. We then combine the two as a
measure by using the depth values with maximum confidence. This provided
us cleaner results. For simplicity of the paper, we will still call the measure
point-consistency.
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Fig. 3: Point-consistency vs Line-Consistency. For point-consistency, diffuse edges exhibit high confidence and meaningful depth.
However, for specular regions, the error is large with high confidence. With line-consistency, diffuse regions register depth values that
are noisy and lower confidence. For specular regions, line-consistency is accurate at the edges with high confidence. For both, it is
important to note that the metrics have high confidence where edges are present. Therefore, saturated pixels, often observed in large
specular patches, and smooth surfaces require data propagation. Although saturated specular regions still have high errors, we can
see that line-consistency has a much lower confidence than the point-consistency metric.

Algorithm 1 Depth Estimation with Specular Removal

1: αp, Cp = PointConsistency(I) . Sec. 4.2
2: L∗ = LightSourceColor(I, αp) . Sec. 4.3
3: αl, Cl = LineConsistency(I, L∗) . Sec. 4.4
4: Z∗ = DepthRegularization(αp, Cp, αl, Cl) . Sec. 4.5
5: D,S = SpecularFree(I, L∗) . Sec. 4.6

more prominent edges yield higher confidence and meaningful
depth estimations. Therefore, saturated pixels, often observed in
large specular patches, and smooth diffuse surfaces require data
propagation.

Our algorithm addresses the following challenges of using the
two metrics:
• Identifying Diffuse Only and Glossy Surfaces. We need to

identify which pixels are part of a diffuse only or glossy surface
to determine which depth-error metric better represents each
surface or region.

• Combining the Two Measures. Point-consistency is a good
measure for diffuse surfaces and line-consistency is a good
measure for specular surfaces. We need to combine the two
measures effectively.

• Angularly Saturated Pixels. Because of the small base-line of
light-field cameras, at specular regions, surfaces with all view
points saturated are common. We mitigate this problem through
hole-filling, as described in Sec. 4.6.

4.1 Algorithm Overview
Our algorithm is shown in Algorithm 1. The input is the light-
field image I(x, y, u, v) with (x, y) spatial pixels and, for each
spatial pixel, (u, v) angular pixels (viewpoints). The output of the
algorithm is a refined depth, Z∗, and specular S and diffuse D
components of the image, where I = D + S.
The algorithm consists of five steps:

1. Point-consistency measure. We first find a depth estimation
using the point-consistency measure for all pixels. For diffuse
surfaces, this error metric will give us accurate depth to
distinguish between Fig. 2(d)(h) (line 1, Sec. 4.2).

2. Estimate light-source color. For specular surfaces, analyzing
the angular pixels (u, v) allows us to estimate the light-source
color(s) of the scene and determine which pixels are specular
or not. (line 2, sec. 4.3).

3. Line-consistency measure. Given the light-source color, we
then find a depth estimation using the line-consistency measure
for all pixels. For specular edges, we will then obtain the correct
depth to distinguish between Fig. 2(c)(g) (line 3, sec. 4.4).

4. Depth regularization. We then regularize by using the depth
and confidences computed from steps 1 and 3 (line 4, sec. 4.5).

5. Separate specular. Because we are able to identify the light-
source color, we are able to estimate the intensity of the
specular term for each pixel. We use this to estimate a specular-
free separation (line 5, sec. 4.6).

4.2 Point-consistency Depth Measure [Line 1]
Given the input image I(x, y, u, v), with (x, y) spatial pixels and
(u, v) angular pixels, as an initial depth estimation, we use the
point-consistency metric that measures the angular (viewpoint)
variance for each spatial pixel. We first perform a focus sweep
by shearing. As explained by Ng et al. [3], we can remap the
light-field input image given the desired depth as follows:

Iα(x, y, u, v) = I(x′, y′, u, v)

x′ = x+ u(1− 1

α
)

y′ = y + v(1− 1

α
)

(9)

where α is proportional to depth. We take α = 0.2 + 0.007 ∗ Z
where, Z is a number from 1 to 256.
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Fig. 4: Line Estimation. With the same input image scene as Fig. 1
and sampled point (a), we plot the the angular pixels at the point-
consistency depth, Iαp(u,v) (b). By using the angular pixels, we
can estimate the light source color (estimated line shown in blue)
accurately (ground truth shown in red). With point-consistency,
we reduce the influence of colors from neighboring points but still
have enough color variation to estimate the light-source color (c).
Without using the point-consistency set of angular pixels, we can
see that neighborhood pixels from the sphere throw off the line
estimations (shown in dotted green lines) (d).

As proposed by Tao et al. [40], we compute a point-
consistency measure for each spatial pixel (x, y) at each depth
α by computing the variance across the angular viewpoints, (u, v)
as follows,

Ep(x, y, α) = σ2
(u,v)(Iα(x, y, u, v)) (10)

where σ2
(u,v) is the variance measure among (u, v). To find

αp(x, y), we find the α that corresponds to the lowest Ep for each
(x, y). The confidence Cp(x, y) of αp(x, y) is the Peak Ratio
analysis of the responses [41]. However, the point-consistency
error metric is a poor metric for specular regions because point-
consistency cannot be achieved with the viewpoint dependent
specular term, as shown in Eq. 7 and Figs. 2, 3.

4.3 Estimating Light Source Chromaticity, L∗ [Line 2]
Before we can use the line-consistency depth measure in Line 3,
we need to reduce overfitting by finding the light source color
from point-consistency depth, and then optimizing the depth for
line-consistency with the estimated light source color.

Although point-consistency does not provide us a correct depth
measure for specular edges, the small variance in the (u, v)
provides us enough information to estimate a line, as shown in
Fig. 4. At a depth that is far from the point-consistency depth, the
viewpoints contain neighboring points with different albedo colors
(Fig. 4(d)). This throws off light source color estimation. By using
the viewpoints from a point-consistency depth, the influence from
neighboring points is reduced and we get a line with a slope that
is very close to the true light source color (Fig. 4(c)).

Fig. 5: Estimating Multiple Light-Sources. By using our L∗ esti-
mation on the scene with two highly glossy cans with two light
sources (a), we can see that the estimated L∗ (b) is consistent
with the ground truth (e). The RMSE for the green and red light-
sources are 0.063 and 0.106 respectively. Even with semi-glossy
crayons (c), the light source estimation is consistent (d). The
RMSE for the green and red light-sources are 0.1062 and 0.0495
respectively. We took photos directly of the light sources for ground
truth.

To find the set of angular pixels that represent αp, we use the
following remapping,

Iαp(x, y, u, v) = I(x′(αp(x, y)), y′(αp(x, y)), u, v) (11)

We estimate Li, where i represents each color channel (R,G,
or B). For a spatial pixel (x, y), we estimate the slope of the RGB
line formed by Iαp(u, v). For each (x, y), we find the direction
of the best fit line by using the SVD of the color values across
(u, v) for each (x, y). The first column of the right singular vector
contains the RGB slope. Since we are interested in just the line
direction, we measure the chromaticity, Li = Li/(L1+L2+L3).

L now gives us the light source chromaticity measure for each
spatial pixel, (x, y) in the image. Theoretically, we are now able
to estimate N light source colors given N spatial pixels in the
image. However, in most cases, such estimation tends to be noisy
in real data. We perform k-means clustering to the number of light
sources, which is set by the user. For simplicity of the paper, we
will use L∗ as one light-source color. In Fig. 5, we show two
real-world examples where we have two light sources. In both
scenarios, our algorithm estimates L∗ that is very similar to the
ground truth. In Fig. 6, we can see that the four light source colors
are estimated from the sphere input.

4.4 Line-Consistency Depth Measurement [Line 3]
Given the chromaticity of the light source, L∗(x, y), we can then
compute the line-consistency measure. For each α, we have two
parts to the error metric: first, is to find depths that have angular
pixels that observe the same L∗ chromaticity and second, is to find
the residual of the estimated line.

We compute a light-source similarity metric to prevent other
lines, such as the diffuse only line, occlusions, and neighborhood
points from influencing our depth measurement. We first compute
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Fig. 6: Light-Source Estimation. With input image (a), we estimate
the light-source color, L, for each pixel as shown in (b). We
use the k-means clustering method to estimate the light-source
color, L∗ of the scene (c). The light source colors match the
ground-truth, starting from top left to bottom right, with RMSE
of 0.0676, 0.0790, 0.0115, and 0.0555. In sec. 4.6.1, we show how
we measure the specular intensity (d) of each pixel to estimate
specular-free images.

the estimated light-source color at α to compare against our
estimatedL∗. To do so, we use the same formulation as in Sec. 4.3,
where we used SVD to estimate the line direction. Given the
estimated L∗, we compute the measure,

ELs Similarity = ||Lα(x, y)− L∗(x, y)|| (12)

For each (x, y) and α, we then compute the residual of the
line defined by Lα, where smaller residuals represent a better line
fitting.

Eres =
∑

i=(u,v)

r2i (13)

where ri is the residual of each angular pixel in (u, v).
Given the two measures, we can then compute the line-

consistency error metric.

El(x, y) = ELs Similarity · Eres (14)

To find αl(x, y), we find the α that corresponds to the lowest El
for each (x, y). The confidence Cl(x, y) of αl(x, y) is the Peak
Ratio analysis of the responses.

4.5 Depth Regularization [Line 4]

Given the two depth estimations from point-consistency, αp, and
line-consistency, αl and their respective confidences, Cp and
Cl, we need to combine the two depth measures. We use these
confidences in a Markov Random Field (MRF) propagation step
similar to the one proposed by Janoch et al. [42].

Z∗ = argmin
Z

λp

∑
i

Cp|Z(i)− αp(i)|

+λl

∑
i

Cl|Z(i)− αl(i)|

+λflat

∑
i

(∣∣∣∣∂Z(i)

∂x

∣∣∣∣
(x,y)

+

∣∣∣∣∂Z(i)

∂y

∣∣∣∣
(x,y)

)
+λsmooth

∑
i

|(∆Z(i))|(x,y)

(15)

Fig. 7: Specular removal. With just using the angular information,
we are able to reduce speckles. However, with large specular
regions such as the one from the sphere, the specular removal
from angular information can only remove partially (reducing
the size of the specular highlight). Therefore, spatial Poisson
reconstruction hole filling is needed to completely remove large
saturated specular regions.

where i ∈ (x, y), λp is a multiplier for enforcing the data term,
λflat is a multiplier for enforcing horizontal piecewise depth, and
λsmooth is multiplier for enforcing the second derivative smooth-
ness. Given the confidences, we are able to propagate two data
terms. The MRF enables us to retain the benefits of both depth
measures and mitigate the disadvantages, as shown in Fig. 3. Cp

is high and Cl is low in diffuse regions, giving us the advantages
of the point-consistency measure. However, Cl is high in specular
regions, giving us the advantages of the line-consistency measure.
After combining the two measures, in Fig. 1, we show that depth
estimation artifacts from glossy regions are reduced.

In our implementation, we use λp = λl = 1, λflat = 2, and
λsmooth = 1.

4.6 Estimating Specular Free Image [Line 5]

So far we have light source chromaticity and depth estimation.
Separating diffuse and specular components is useful in some
applications but not required for depth. To separate the two
components, we need to estimate the specular intensity to separate
diffuse and specular. From Eq. 7, for each (u, v),

IZ∗ = [c · L̄d(λ) + L∗i ρs(v)] · (n · l)
= [c · L̄d(λ) · (n · l) + L∗i · w]

(16)

where IZ∗ is the light-field image mapped to Z∗, L∗i is the light-
source chromaticity and w is the specularity intensity measure
dependent on (u, v). The L∗i estimated in Sec. 4.3 takes place of
the L̄s(λ) in Eq. 7. The goal is to estimate w, as shown in Fig. 6.

4.6.1 Estimating Specular Intensity, w
A straightforward way to estimate specular intensity is to use the
fitted-line with L∗ and subtract each (u, v) based on their position
on the line. However, the results become noisy and introduce
artifacts. To alleviate the artifacts, we categorize each (u, v) pixel
in IZ∗ as diffuse only or diffuse plus specular angular pixels. We
used a conservative approach by clustering the pixels on the line
into the two groups. From Eq. 1, for each spatial pixel (x, y), we
categorize the pixels as

〈c · L̄d(λ) · (n · l)〉(u, v) = min IZ∗(u, v)

〈L̄s(λ)ρs(v) · (n · l)〉(u, v) = w(u, v) · L∗
(17)
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where 〈.〉 denotes expected value. To estimate the specular inten-
sity, we compute w as follows,

w(u, v) = (IZ∗(u, v)−min IZ∗(u, v))/L∗ (18)

In a Lambertian diffuse plus specular case, (u, v) pixels that
deviate more from the minimum will have a higher w(u, v).
In a diffuse only case, since all the spatial pixels have point-
consistency, w(u, v) = 0. In Fig. 6, we show that our method
estimates both the light source colors and the specular intensity.

4.6.2 Removing specularities angularly
We want to average diffuse pixels in (u, v) to replace the spec-
ularity pixels, while preserving the diffuse pixels. To remove
specularities, we use a weighted average approach by averaging
angular pixels (u, v) within the same spatial coordinate (x, y).

D(x, y, u, v) =
1

||W ||
∑
(u,v)

W (x, y, u, v) · IZ∗(x, y, u, v)

W (x, y, u, v) = 1− w(x, y, u, v)

S(x, y, u, v) = IZ∗(x, y, u, v)−D(x, y, u, v)
(19)

where D is diffuse and S is specular.
Hole Filling: Removing specularities angularly only works

for local estimation (edges of specular and diffuse regions). This
method does not support angularly saturated pixels, where change
in light-field viewpoints is ineffective towards distinguishing pix-
els with both terms or just the diffuse term. Since the baseline of
a light-field camera is small, angularly saturated specular terms
happen often. Therefore, to remove specularities entirely, we used
simple hole filling methods, as shown in Fig. 7.

In our implementation, we used a Poisson reconstruction
method, proposed by Perez et al. [43]. We seek to construct a
diffuse only image with gradients of the input image multiplied
by W in Eq. 20. The gradient of the final diffuse image is the
following,

∇D(x, y, u, v) = (1− w(x, y, u, v)) · ∇I(x, y, u, v) (20)

5 RESULTS

We verified our results with synthetic images, where we have
ground truth for the light source, and diffuse and specular com-
ponents. For all real images in the paper, we used both the Lytro
classic and Illum cameras. We tested the algorithms across images
with multiple camera parameters, such as exposure, ISO, and focal
length, and in controlled and natural scenes.

5.1 Run-Time
On an i7-4790 3.6GHz machine implemented in MATLAB, our
previous implementation in MATLAB [6] has a runtime of 29
minutes per iteration per Lytro Illum Image (7728×5368 pixels).
To obtain reasonable results, at least two iterations are needed,
making the total runtime 100 minutes per image (including the
2 iterations and MRF). Because of our new framework of using
point-consistency, we reduce the need of several neighborhood
searches. Our depth estimation takes only 2 minutes and 10
seconds. With our spatial specular-free generation, the whole

process takes 2 minutes and 30 seconds per Lytro Illum image.
Compared to Heber and Pock [39], their GPU implementation
takes about 5-10 minutes per image.

5.2 Quantitative validation
We use PBRT [13] to synthesize a red wood textured glossy
sphere with specular reflectance Ks = [1, 1, 1] and roughness
0.001 and four different colored light sources as seen in Fig. 1.
In Fig. 8, we added Gaussian noise to the input image with mean
of 0 and variance between 0 and 0.02. Our depth RMSE shows
significant improvement over Tao et al. [6]. We can see that the
other methods are prone to both noise, especially Wanner et al. [4]
and glossy surfaces. Hebert and Pock [39] show instabilities in
RMSE at high noise. For the diffuse RMSE, we can see that
although noise does affect the robustness of our separation result,
we still outperform previous work. The quantitative validation is
reflected by the qualitative results, where we see both depth and
diffuse and specularity separation is robust across noise levels,
even at high noise variance, 0.02.

In Figs. 5 and 6, we computed the RMSE against the ground
truth light source colors. In both real world scenes with the glossy
cans and semi-glossy crayons, the light-source estimation exhibits
low RMSE. The RMSE for the green and red light-sources with
the glossy cans are 0.063 and 0.106 respectively. The RMSE for
the green and red light sources with the semi-glossy crayons
are 0.1062 and 0.0495. We computed difference between our
estimated light source color and the ground truth synthetic image
in Fig. 6. The four estimated light source colors match the ground-
truth, starting from the top left to bottom right, with RMSE of
0.0676, 0.0790, 0.0115, and 0.0555.

In Fig. 9, we have a flat glossy surface that is perpendicular
to the camera. The ground truth depth is flat. With our method,
the depth estimation resembles the ground truth with an RMSE
of 0.0318. With the line-consistency measure, we can see that
diffuse areas cause unevenness in the depth estimation with an
RMSE of 0.0478. With the point-consistency measure, because of
the specularities, we can see strange patterns forming along the
specularities with an RMSE of 0.126. This result is similar to the
Lytro depth estimation, where the RMSE is also high at 0.107.

5.3 Depth Map Comparisons
We show our depth estimation result in Figs. 10, 11, and 12. To
qualitatively assess our depth estimation, we compare our work
against Lytro software, Heber et al. [39], Tao et al. (13,14) [5], [6],
and Wanner et al. [4]. We tested our algorithm through multiple
scenarios involving specular highlights and reflections.

In Fig. 10, we show three diverse examples of typical glossy
surfaces. On the top, we have a smooth cat figurine with gen-
erally small glossy speckles. The paw is the most noticeable
feature where the specularity affects depth estimations that assume
Lambertian surfaces. Our depth estimation preserves the details
of the glossy paw, whereas the other methods show strange paw
shapes and missing details around the body. In the princess
example, we have several area light sources with large glossy
highlights. We can see our depth result does not contain erroneous
depth registrations at these specular regions, especially at the bow.
In the Lytro depth estimation, we can see the large patches of
specularities affect the result on the bow and face. We also can
resolve the contours of the dress and that the left arm is behind
the body. Lytro and the previous works fail to resolve the change
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Fig. 8: Qualitative and Quantitative Synthetic Results. We added Gaussian noise with zero mean and variance as the variable parameter
to the input image of Fig. 1. We compute the RMSE of our results against the ground truth diffuse image and depth map. On the left, even
with high noise, we can see that our diffuse and specular separation closely resembles the ground truth. In both cases, the algorithm is
able to extract all four specular regions. For depth maps, we can see that the depth estimation at high noise still reasonably resembles
the ground truth sphere. On the right, we can see that these qualitative results reflect the quantitative result. We see that our results
outperform prior works by a significant margin.

Fig. 9: Flat Glossy Surface Results. We have a completely flat glossy surface with specular sequins throughout the image that we placed
directly perpendicular to the camera (a). For the ground truth, the depth should be flat (b). We can see that our final result is also smooth
and flat (c). The line-consistency provides the smoothness, but has some errors in the non-glossy regions (d). The point-consistency
is thrown off by some of the glossy regions of the image (e). With the Lytro’s depth estimation, we also see that the specular regions
throw-off the depth estimation (f).

in depth, misrepresenting the glossy figurine. We observe similar
results with the Chip and Dale figurine with multiple colors. Our
depth result is not thrown off by the specular regions and is able
to recover the shape of the figurine (as shown in the feet on the
right). Other methods show incorrect depths for the large specular
regions. Heber et al. show errors in larger specular regions. In the
Lytro depth estimation, we can see large patches of depth errors
on the face.

In Fig. 11, we show more difficult examples of shooting
through glare on glass. We can see that in both examples, we are
able to recover clean depth results whereas the other algorithms
exhibit spikes and errors throughout the image. In the mouse
example, our method is able to estimate the outline of the mouse
without the glare affecting regularization results. We can see
all previous results have non-plausible depth estimations. In the
figurine of the couple, we observe the same result. Notice on the
left side of the image where there are bright glare and reflections.
In previous works’ and Lytro’s depth estimation, large patches of
errors exist in the specular regions.

5.4 Specular-free Image Comparisons
We first compare our specular and diffuse separation against the
ground truth in Fig. 8. We also show that our results accurately
estimate multiple light sources of real scenes in Fig. 5. We
compare our specular removal result against Tao et al. [6], Yoon
et al. [11] Mallick et al. [10] in Figs. 10, 11, and 12. With one
light-source color examples of Fig. 10, our specularity removal
accurately removes specular regions. In both the small speckle
glossy regions (cat) and large specular regions (princess and Chip
and Dale) examples, Mallick et al. fail to remove specular regions,
Yoon et al. incorrectly remove most of the image colors, and Tao et
al. struggle with large specularities. Both Yoon et al. and Mallick
et al. incorrectly estimates the light source color as [1, 1, 1], which
becomes problematic with scenes with non-white light source
colors (e.g. examples that were shot through glass in Fig. 11). We
mitigate the glare from the glass and remove the specularities from
the figurines (coin from the mouse and the reflective speckles on
the couple). In both examples, our most prominent L∗ estimations
resemble the glare observed through the window. Even though we
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Fig. 10: Our Results. We compare our depth estimation results against Lytro software, Heber et al. [39], Tao et al. 14 [6], Tao et al.
13 [5], and Wanner et al. [4]; we compare our specular removal results against Mallick et al. [10], Yoon et al. [11], and Tao et al.
14 [6]. On the top, we have an example of a smooth cat with texture and speckles. Our final depth is smooth and contains plausible
shape details on the paw. We also can see that we remove the large specularities on the stomach of the cat. In the second example, we
have a figurine of a princess holding her skirt with the left arm tilted behind her body. We can see that our depth estimation exhibits less
errors at the large patches of specularities whereas the Lytro result shows erroneous patches. Our depth algorithm is able to recover
the contours of the dress and resolve depth where the left arm is behind the body. Our algorithm removes the large specularities on the
bow. With the third example of Chip and Dale, we show that our depth result resembles the shape of the figurine. The method is able to
recover the shape of the feet on the right and does not exhibit specularity depth artifacts. The specularities throw off previous methods.
Our result also successfully removes the glossy regions throughout the whole figurine. The red box indicated in the input image is where
our insets are cropped from.
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Fig. 11: Scenes with Glare. We have a different scenario where we took photos through a window glass, where glare becomes a
prominent problem (highlighted in green). Our algorithm is robust against glare from the glass, while regularization from other
algorithms propagates inconsistent results. We also see that our algorithm removes specularities on the figurines while reducing the
glare on the glass (although, does not completely remove), while Mallick et al. and Yoon et al. struggle due to multiple colors associated
with the glass. The results are made possible because we are able to estimate multiple light-source colors, up to the number of spatial
pixels in the image; whereas, traditional specular removal algorithms can only remove a small set number of light source colors, not
suitable for glare cases. In both examples, we show the six most prominent L∗ estimates. The estimation closely resembles the glare
from the window. Because we are using a gradient integration for hole filling, bleeding effects may appear.

cannot remove large patches of specularities such as the Yoga mats
in Fig. 12, we generate reasonable results that can be fixed through
better hole-filling.

5.5 Limitations and Discussion

Although glossy edges should give different pixel values for dif-
ferent views while diffuse edges do not, it is still hard to separate
them practically because of the small-baseline nature of light-
field cameras as well as the noise. Second, saturated highlights
cannot be distinguished from a diffuse surface with large albedo
value. In addition, the specular components of saturated specular
regions cannot be completely removed. However, our confidence
measure for specular regions and specular removal help alleviate
those effects. In some cases, especially scenes with large specular
patches or saturated color values, the specular-removal is not able
to recover the actual texture behind the specular regions. We show
this with an example of a glossy plastic wrapping around a yoga
mat (Fig. 12). The diffuse output is flat. However, this does not
affect the quality of our depth result that still outperforms previous
methods. With multiple light sources, the dimensionally of pixel

values from different views can still be analyzed, if the number
of light sources are known. However, under general environment
lighting condition, it is hard to separate the component of different
light sources in the light field. Moreover, when the texture and the
light source color are similar, initial depth estimation and specular
estimation become unreliable. Future work includes supporting
more complex BRDF models and better hole filling techniques.

6 CONCLUSION

In this paper, we first investigate the characteristics of pixel values
from different view points in color space for different BRDFs.
We then present a novel and practical approach that uses light-
field data to estimate light color and separate specular regions. We
introduced a new depth metric that is robust for specular edges
and show how we can combine the traditional point-consistency
and the new line-consistency metrics to robustly estimate depth
and light source color for complex real world glossy scenes. Our
algorithm will allow ordinary users to acquire depth maps using a
consumer Lytro camera, in a point-and-shoot passive single-shot
capture, including specular and glossy materials.
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Fig. 12: Limitations. Here is an image of plastic wrapped yoga mats with a glass window in the background. There are large specular
regions in the background and also on top of the closer yoga mat. Although our depth estimation is correct compared to other methods,
the specular-free image exhibits a huge smooth patch removed from the glass and the yoga mat.
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