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Abstract

Consumer-level and high-end light-field cameras are
now widely available. Recent work has demonstrated prac-
tical methods for passive depth estimation from light-field
images. However, most previous approaches do not explic-
itly model occlusions, and therefore cannot capture sharp
transitions around object boundaries. A common assump-
tion is that a pixel exhibits photo-consistency when focused
to its correct depth, i.e., all viewpoints converge to a sin-
gle (Lambertian) point in the scene. This assumption does
not hold in the presence of occlusions, making most cur-
rent approaches unreliable precisely where accurate depth
information is most important – at depth discontinuities.

In this paper, we develop a depth estimation algorithm
that treats occlusion explicitly; the method also enables
identification of occlusion edges, which may be useful in
other applications. We show that, although pixels at occlu-
sions do not preserve photo-consistency in general, they are
still consistent in approximately half the viewpoints. More-
over, the line separating the two view regions (correct depth
vs. occluder) has the same orientation as the occlusion edge
has in the spatial domain. By treating these two regions
separately, depth estimation can be improved. Occlusion
predictions can also be computed and used for regulariza-
tion. Experimental results show that our method outper-
forms current state-of-the-art light-field depth estimation
algorithms, especially near occlusion boundaries.

1. Introduction
Light-field cameras from Lytro [3] and Raytrix [18]

are now available for consumer and industrial use respec-
tively, bringing to fruition early work on light-field render-
ing [10, 15]. An important benefit of light-field cameras for
computer vision is that multiple viewpoints or sub-apertures
are available in a single light-field image, enabling passive
depth estimation [4]. Indeed, Lytro Illum and Raytrix soft-
ware produces depth maps used for tasks like refocusing af-
ter capture, and recent work [20] shows how multiple cues
like defocus and correspondence can be combined.

However, very little work has explicitly considered oc-
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Figure 1: Comparison of depth estimation results of differ-
ent algorithms from a light-field input image. Darker rep-
resents closer and lighter represents farther. It can be seen
that only our occlusion-aware algorithm successfully cap-
tures most of the holes in the basket, while other methods
either smooth over them, or have artifacts as a result.

angular
patch

(a) Non-occluded pixels

angular
patch

(b) Occluded pixels

Figure 2: Non-occluded vs. occluded pixels. (a) At non-
occluded pixels, all view rays converge to the same point
in the scene if refocused to the correct depth. (b) However,
photo-consistency fails to hold at occluded pixels, where
some view rays will hit the occluder.

clusion. A common assumption is that, when refocused
to the correct depth (the depth of the center view), an-
gular pixels corresponding to a single spatial pixel repre-
sent viewpoints that converge to one point in the scene. If
we collect these pixels into an angular patch (Eq. 6), they
exhibit photo-consistency for Lambertian surfaces, which
means they all share the same color (Fig. 2a). However, this
assumption is not true when occlusions occur at a pixel;
photo-consistency no longer holds (Fig. 2b). Enforcing
photo-consistency on these pixels will often lead to incor-
rect depth results, causing smooth transitions around sharp
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occlusion boundaries.
In this paper, we explicitly model occlusions, by devel-

oping a modified version of the photo-consistency condition
on angular pixels. Our main contributions are:

1. An occlusion prediction framework on light-field im-
ages that uses a modified angular photo-consistency.

2. A robust depth estimation algorithm which explicitly
takes occlusions into account.

We show (Sec. 3) that around occlusion edges, the angu-
lar patch can be divided into two regions, where only one
of them obeys photo-consistency. A key insight (Fig. 3) is
that the line separating the two regions in the angular do-
main (correct depth vs. occluder) has the same orientation
as the occlusion edge does in the spatial domain. This ob-
servation is specific to light-fields, which have a dense set
of views from a planar camera array or set of sub-apertures.
Standard stereo image pairs (nor general multi-view stereo
configurations) do not directly satisfy the model.

We use the modified photo-consistency condition, and
the means/variances in the two regions, to estimate initial
occlusion-aware depth (Sec. 4). We also compute a predic-
tor for the occlusion boundaries, that can be used as an input
to determine the final regularized depth (Sec. 5). These oc-
clusion boundaries could also be used for other applications
like segmentation or recognition. As seen in Fig. 1, our
depth estimates are more accurate in scenes with complex
occlusions (previous results smooth object boundaries like
the holes in the basket). In Sec. 6, we present extensive re-
sults on both synthetic data (Figs. 9, 10), and on real scenes
captured with the consumer Lytro Illum camera (Fig. 11),
demonstrating higher-quality depth recovery than previous
work [8, 20, 22, 26].

2. Related Work
(Multi-View) Stereo with Occlusions: Multi-view stereo
matching has a long history, with some efforts to handle oc-
clusions. For example, the graph-cut framework [12] used
an occlusion term to ensure visibility constraints while as-
signing depth labels. Woodford et al. [25] imposed an ad-
ditional second order smoothness term in the optimization,
and solved it using Quadratic Pseudo-Boolean Optimiza-
tion [19]. Based on this, Bleyer et al. [5] assumed a scene
is composed of a number of smooth surfaces and proposed
a soft segmentation method to apply the asymmetric occlu-
sion model [24]. However, significant occlusions still re-
main difficult to address even with a large number of views.

Depth from Light-Field Cameras: Perwass and Wiet-
zke [18] proposed using correspondence techniques to esti-
mate depth from light-field cameras. Tao et al. [20] com-
bined correspondence and defocus cues in the 4D Epipo-
lar Image (EPI) to complement the disadvantages of each
other. Neither method explicitly models occlusions. Mc-
Closkey [16] proposed a method to remove partial occlusion

in color images, which does not estimate depth. Wanner and
Goldluecke [22] proposed a globally consistent framework
by applying structure tensors to estimate the directions of
feature pixels in the 2D EPI. Yu et al. [26] explored geo-
metric structures of 3D lines in ray space and encoded the
line constraints to further improve the reconstruction qual-
ity. However, both methods are vulnerable to heavy occlu-
sion: the tensor field becomes too random to estimate, and
3D lines are partitioned into small, incoherent segments.
Kim et al. [11] adopted a fine-to-coarse framework to en-
sure smooth reconstructions in homogeneous areas using
dense light-fields. We build on the method by Tao et al. [20],
which works with consumer light-field cameras, to improve
depth estimation by taking occlusions into account.

Chen et al. [8] proposed a new bilateral metric on angu-
lar pixel patches to measure the probability of occlusions
by their similarity to the central pixel. However, as noted in
their discussion, their method is biased towards the central
view as it uses the color of the central pixel as the mean of
the bilateral filter. Therefore, the bilateral metric becomes
unreliable once the input images get noisy. In contrast, our
method uses the mean of about half the pixels as the ref-
erence, and is thus more robust when the input images are
noisy, as shown in our result section.

3. Light-Field Occlusion Theory
We first develop our new light-field occlusion model,

based on the physical image formation. We show that
at occlusions, some of the angular patch remains photo-
consistent, while the other part comes from occluders and
exhibits no photo consistency. By treating these two regions
separately, occlusions can be better handled.

For each pixel on an occlusion edge, we assume it is oc-
cluded by only one occluder among all views. We also as-
sume that we are looking at a spatial patch small enough,
so that the occlusion edge around that pixel can be approxi-
mated by a line. We show that if we refocus to the occluded
plane, the angular patch will still have photo-consistency
in a subset of the pixels (unoccluded). Moreover, the edge
separating the unoccluded and occluded pixels in the angu-
lar patch has the same orientation as the occlusion edge in
the spatial domain (Fig. 3). In Secs. 4 and 5, we use this idea
to develop a depth estimation and regularization algorithm.

Consider a pixel at (x0, y0, f) on the imaging focal plane
(the plane in focus), as shown in Fig. 3a. An edge in the cen-
tral pinhole image with 2D slope γ corresponds to a plane
P in 3D space (the green plane in Fig. 3a). The normal n to
this plane can be obtained by taking the cross-product,

n = (x0, y0, f)×(x0+1, y0+γ, f) = (−γf, f, γx0−y0). (1)

Note that we do not need to normalize the vector. The plane
equation is P (x, y, z) ≡ n · (x0 − x, y0 − y, f − z) = 0,

P (x, y, z) ≡ γf(x−x0)− f(y− y0)+ (y0 − γx0)(z− f) = 0.
(2)
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Figure 3: Light-field occlusion model. (a) Pinhole model for
central camera image formation. An occlusion edge on the
imaging plane corresponds to an occluding plane in the 3D
space. (b) The “reversed” pinhole model for light-field for-
mation. It can be seen that when we refocus to the occluded
plane, we get a projection of the occluder on the camera
plane, forming a reversed pinhole camera model.

In our case, one can verify that n · (x0, y0, f) = 0 so a
further simplification to n · (x, y, z) = 0 is possible,

P (x, y, z) ≡ γfx− fy + (y0 − γx0)z = 0. (3)

Now consider the occluder (yellow triangle in Fig. 3a).
The occluder intersects P (x, y, z) with z ∈ (0, f) and lies
on one side of that plane. Without loss of generality, we
can assume it lies in the half-space P (x, y, z) ≥ 0. Now
consider a point (u, v, 0) on the camera plane (the plane
where the camera array lies on). To avoid being shadowed
by the occluder, the line segment connecting this point and
the pixel (x0, y0, f) on the image must not hit the occluder,

P (s0 + (s1 − s0)t) ≤ 0 ∀t ∈ [0, 1], (4)

where s0 = (u, v, 0) and s1 = (x0, y0, f). When t = 1,
P (s1) = 0. When t = 0,

P (s0) ≡ γfu− fv ≤ 0. (5)

The last inequality is satisfied if v ≥ γu, i.e., the critical
slope on the angular patch v/u = γ is the same as the edge
orientation in the spatial domain. If the inequality above is

(a) Occlusion in central view (b) Occlusion in other views

Figure 4: Occlusions in different views. The insets are the
angular patches of the red pixels when refocused to the cor-
rect depth. At the occlusion edge in the central view, the
angular patch can be divided evenly into two regions, one
with photo-consistency and one without. However, for pix-
els around the occlusion edge, although the central view
is not occluded, some other views will still get occluded.
Hence, the angular patch will not be photo-consistent, and
will be unevenly divided into occluded and visible regions.

satisfied, both endpoints of the line segment lie on the other
side of the plane, and hence the entire segment lies on that
side as well. Thus, the light ray will not be occluded.

We also give an intuitive explanation of the above proof.
Consider a plane being occluded by an occluder, as shown
in Fig. 3b. Consider a simple 3× 3 camera array. When we
refocus to the occluded plane, we can see that some views
are occluded by the occluder. Moreover, the occluded cam-
eras on the camera plane are the projection of the occluder
on the camera plane. Thus, we obtain a “reversed” pinhole
camera model, where the original imaging plane is replaced
by the camera plane, and the original pinhole becomes the
pixel we are looking at. When we collect pixels from differ-
ent cameras to form an angular patch, the edge separating
the two regions will correspond to the same edge the oc-
cluder has in the spatial domain.

Therefore, we can predict the edge orientation in the an-
gular domain using the edge in the spatial image. Once we
divide the patch into two regions, we know photo consis-
tency holds in one of them since they all come from the
same (assumed to be Lambertian) spatial pixel.

4. Occlusion-Aware Initial Depth Estimation

In this section, we show how to modify the initial depth
estimation from Tao et al. [20], based on the theory above.
First, we apply edge detection on the central view image.
Then for each edge pixel, we compute initial depths using
a modified photo-consistency constraint. The next section
will discuss computation of refined occlusion predictors and
regularization to generate the final depth map.

Edge detection: We first apply Canny edge detection on
the central view (pinhole) image. Then an edge orientation
predictor is applied on the obtained edges to get the orien-
tation angles at each edge pixel. These pixels are candidate



occlusion pixels in the central view. However, some pix-
els are not occluded in the central view, but are occluded in
other views, as shown in Fig. 4, and we want to mark these
as candidate occlusions as well. We identify these pixels by
dilating the edges detected in the center view.

Depth Estimation: For each pixel, we refocus to various
depths using a 4D shearing of the light-field data [17],

Lα(x, y, u, v) = L(x+u(1− 1

α
), y+v(1− 1

α
), u, v), (6)

where L is the input light-field image, α is the ratio of the
refocused depth to the currently focused depth, Lα is the re-
focused light-field image, (x, y) are the spatial coordinates,
and (u, v) are the angular coordinates. The central view-
point is located at (u, v) = (0, 0). This gives us an angular
patch for each depth, which can be averaged to give a refo-
cused pixel.

When an occlusion is not present at the pixel, the ob-
tained angular patch will have photo-consistency, and hence
exhibits small variance and high similarity to the central
view. For pixels that are not occlusion candidates, we can
simply compute the variance and the mean of this patch to
obtain the correspondence and defocus cues, similar to the
method by Tao et al. [20].

However, if an occlusion occurs, photo-consistency will
no longer hold. Instead of dealing with the entire angular
patch, we divide the patch into two regions. The angular
edge orientation separating the two regions is the same as
in the spatial domain, as proven in Sec. 3. Since at least
half the angular pixels come from the occluded plane (oth-
erwise it will not be seen in the central view), we place the
edge passing through the central pixel, dividing the patch
evenly. Note that only one region, corresponding to the par-
tially occluded plane focused to the correct depth, exhibits
photo-consistency. The other region contains angular pix-
els that come from the occluder, which is not focused at
the proper depth, and might also contain some pixels from
the occluded plane. We therefore replace the original patch
with the region that has the minimum variance to compute
the correspondence and defocus cues.

To be specific, let (u1, v1) and (u2, v2) be the angular co-
ordinates in the two regions, respectively. We first compute
the means and the variances of the two regions,

L̄α,j(x, y) =
1

Nj

∑
uj ,vj

Lα(x, y, uj , vj), j = 1, 2 (7)

Vα,j(x, y) =
1

Nj − 1

∑
uj ,vj

(
Lα(x, y, uj , vj)−L̄α,j(x, y)

)2
,

(8)
where Nj is the number of pixels in region j. Let

i = arg min
j=1,2

{
Vα,j(x, y)

}
(9)

(a) Spatial image (b) Angular patch
(correct depth)
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Figure 5: Color consistency constraint. (b)(e) We can see
that when we refocus to the correct depth, we get low vari-
ance in half the angular patch. However, in (c)(f) although
we refocused to an incorrect depth, it still gives low vari-
ance response since the occluded plane is very textureless,
so we get a “reversed” angular patch. To address this, we
add another constraint that p1 and p2 should be similar to
the averages of R1 and R2 in (d), respectively.

be the index of the region that exhibits smaller variance.
Then the correspondence response is given by

Cα(x, y) = Vα,i(x, y) (10)

Similarly, the defocus response is given by

Dα(x, y) =
(
L̄α,i(x, y)− L(x, y, 0, 0)

)2
(11)

Finally, the optimal depth is determined as

α∗(x, y) = arg min
α

{
Cα(x, y) +Dα(x, y)

}
(12)

Color Consistency Constraint: When we divide the an-
gular patch into two regions, it is sometimes possible to
obtain a “reversed” patch when we refocus to an incorrect
depth, as shown in Fig. 5. If the occluded plane is very
textureless, this depth might also give a very low variance
response, even though it is obviously incorrect. To address
this, we add a color consistency constraint that the averages
of the two regions should have a similar relationship with
respect to the current pixel as they have in the spatial do-
main. Mathematically,

|L̄α,1 − p1|+ |L̄α,2 − p2| < |L̄α,2 − p1|+ |L̄α,1 − p2|+ δ,
(13)

where p1 and p2 are the values of the pixels shown in
Fig. 5d, and δ is a small value (threshold) to increase robust-
ness. If refocusing to a depth violates this constraint, this
depth is considered invalid, and is automatically excluded
in the depth estimation process.



(a) Central input image (b) Depth cue (F=0.58)

(c) Corresp. cue (F=0.53) (d) Refocus cue (F=0.57)

(e) Combined cue (F=0.65) (f) Occlusion ground truth

Figure 6: Occlusion Predictor (Synthetic Scene). The inten-
sities are adjusted for better contrast. F-measure is the har-
monic mean of precision and recall compared to the ground
truth. By combining three cues from depth, correspondence
and refocus, we can obtain a better prediction of occlusions.

5. Occlusion-Aware Depth Regularization
After the initial local depth estimation phase, we refine

the results with global regularization using a smoothness
term. We improve on previous methods by reducing the ef-
fect of the smoothness/regularization term in occlusion re-
gions. Our occlusion predictor, discussed below, may also
be useful independently for other vision applications.

Occlusion Predictor Computation: We compute a pre-
dictor Pocc for whether a particular pixel is occluded, by
combining cues from depth, correspondence and refocus.

1. Depth Cues: First, by taking the gradient of the
initial depth, we can obtain an initial occlusion boundary,

P docc = f
(
∇dini/dini

)
(14)

where dini is the initial depth, and f(·) is a robust clipping
function that saturates the response above some threshold.
We divide the gradient by dini to increase robustness since
for the same normal, the depth change across pixels be-
comes larger as the depth gets larger.

2. Correspondence Cues: In occlusion regions, we
have already seen that photo-consistency will only be valid

in approximately half the angular patch, with a small vari-
ance in that region. On the other hand, the pixels in the other
region come from different points on the occluding object,
and thus exhibit much higher variance. By computing the
ratio between the two variances, we can obtain an estimate
of how likely the current pixel is to be at an occlusion,

P var
occ = f

(
max

{
Vα∗,1

Vα∗,2
,
Vα∗,2

Vα∗,1

})
. (15)

where α∗ is the initial depth we get.

3. Refocus Cues: Finally, note that the variances in
both the regions will be small if the occluder is textureless.
To address this issue, we also compute the means of both
regions. Since the two regions come from different objects,
their colors should be different, so a large difference be-
tween the two means also indicates a possible occlusion oc-
currence. In other words,

P avg
occ = f(|L̄α∗,1 − L̄α∗,2|) (16)

Finally, we compute the combined occlusion response or
prediction by the product of these three cues,

Pocc = N (P d
occ) · N (P var

occ ) · N (P avg
occ ) (17)

where N (·) is a normalization function that subtracts the
mean and divides by the standard deviation.

Depth Regularization: Finally, given initial depth and
occlusion cues, we regularize with a Markov Random Field
(MRF) for a final depth map. We minimize the energy:

E =
∑
p

Eunary(p, d(p)) +
∑
p,q

Ebinary(p, q, d(p), d(q)).

(18)
where d is the final depth and p, q are neighboring pixels.
We adopt the unary term similar to Tao et al. [20]. The
binary energy term is defined as

Ebinary(p, q, d(p), d(q)) =

exp

[
− (d(p)− d(q))2/(2σ2)

]
(|∇I(p)−∇I(q)|+ k|Pocc(p)− Pocc(q)|)

(19)

where ∇I is the gradient of the central pinhole image, and
k is a weighting factor. The numerator encodes the smooth-
ness constraint, while the denominator reduces the strength
of the constraint if two pixels are very different or an oc-
clusion is likely to be between them. The minimization
is solved using a standard graph cut algorithm [6, 7, 13].
We can then apply the occlusion prediction procedure again
on this regularized depth map. A sample result is shown
in Fig. 6. In this example, the F-measure (harmonic mean
of precision and recall compared to ground truth) increased
from 0.58 (depth cue), 0.53 (correspondence cue), and 0.57
(refocus cue), to 0.65 (combined cue).



6. Results
We compare our results to the methods by Wanner et

al. [22], Tao et al. [20], Yu et al. [26], and Chen et al. [8].
For Chen et al., since code is not available, we used our own
implementation. We perform extensive tests using the syn-
thetic dataset created by Wanner et al. [23] as well as new
scenes modeled by us. Our dataset is generated from 3ds-
Max [1] using models from the Stanford Computer Graph-
ics Laboratory [9, 14, 21] and models freely available on-
line [2]. Upon publication of this work, the dataset will be
available online. While the dataset by [23] only provides
ground truth depth, ours provides ground truth depth, nor-
mals, specularity, lighting, etc, which we believe will be
useful for a wider variety of applications. In addition to
synthetic datasets, we also validate our algorithm on real-
world scenes taken by the Lytro Illum camera.

Occlusion Boundaries: For each synthetic scene, we
compute the occlusion boundaries from the depth maps gen-
erated by each algorithm, and report their precision-recall
curves. For our method, the occlusions are computed us-
ing only the depth cue instead of the combined cue in
Sec. 5, to compare the depth quality only. The results on
both synthetic datasets are shown in Figs. 8a,8b. Our algo-
rithm achieves better performance than current state-of-the-
art methods. Next, we validate the robustness of our system
by adding noise to a test image, and report the F-measure
values of each algorithm, as shown in Fig. 8c. Although
Chen et al. [8] performs very well in the absence of noise,
their quality quickly degrades as the noise level is increased.
In contrast, our algorithm is more tolerant to noise.

Depth Maps for Synthetic Scenes: Figure 9 shows the
recovered depths on the synthetic dataset by Wanner et
al. [23]. It can be seen that our results show fewer artifacts
in heavily occluded areas. We obtain the correct shape of
the door and window in the top row, and accurate bound-
aries along the twig and leaf in the bottom row. Other meth-
ods smooth the object boundaries and are noisy in some re-
gions. Figure 10 shows the results on our synthetic dataset.
Notice that we capture the boundaries of the leaves, and fine
structures like the lamp and holes in the chair. Other meth-
ods smooth over these occlusions or generate thicker struc-
tures. The RMSE of the depth maps are shown in Table 1.

Depth Maps for Real Scenes: Figures 1 and 11 compare
results on real scenes with fine structures and occlusions,
captured with Lytro Illum light-field camera. Our method
performs better around occlusion boundaries, especially for
thin objects. Ours is the only method that captures the bas-
ket holes in Fig. 1. In Fig. 11, our method properly captures
the thin structure in the top row, reproduces the spokes of
the wheel (second row) without over-smoothing, captures
the fine structure of the flower (third row), and reproduces
the complicate shape of the chair (last row).

(a) Small area occlusion (b) Multi-occluder occlusion

Figure 7: Limitations. The upper insets show close-ups of
the red rectangle, while the lower insets show the angular
patches of the green (central) pixels when refocused to the
correct depth. If (a) the occluded area is very small, or (b)
more than one occluder is present, there is no simple line
that can separate the angular patch into two regions.

Wanner et al. Tao et al. Yu et al. Chen et al. Ours
0.0470 0.0453 0.0513 0.0375 0.0355
0.1104 0.1098 0.0919 0.0925 0.0848

Table 1: Depth RMSE on synthetic scenes. The first row is
the result on dataset by Wanner et al., and the second row
is on our dataset. Our method achieves lowest RMSE on
both datasets. Note that RMSE is not the best metric for the
improvements on thin structures provided by our method.
Limitations and Future Work: Our algorithm cannot
handle situations where the occluded plane is very small,
or if the single occluder assumption fails to hold (Fig. 7).
If the occluded area is very small, there is no simple line
that can separate the angular patch into two regions. If we
have multiple edges intersecting at a point, its angular patch
needs to be divided into more than two regions to achieve
photo consistency. This may be addressed by inspecting the
spatial patch around the current pixel instead of just looking
at the edges. Finally, our algorithm cannot perform well in
textureless regions just like other methods.

7. Conclusion
In this paper, we propose an occlusion-aware depth es-

timation algorithm. We show that although pixels around
occlusions do not exhibit photo-consistency in the angu-
lar patch when refocused to the correct depth, they are still
photo-consistent for part of the patch. Moreover, the line
separating the two regions in the angular domain has the
same orientation as the edge in the spatial domain. Uti-
lizing this information, the depth estimation process can
be improved in two ways. First, we can enforce photo-
consistency on only the region that is coherent. Second,
by exploiting depth, correspondence and refocus cues, we
can perform occlusion prediction, so smoothing over these
boundaries can be avoided in the regularization. We demon-
strate the benefits of our algorithm on various synthetic
datasets as well as real-world images with fine structures.
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Figure 8: (a) PR-curve of occlusion boundaries on dataset of Wanner et al. [23] (b) PR-curve on our dataset. (c) F-measure
vs. noise level. Our method achieves better results than current state-of-the-art methods, and is robust to noise.
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Figure 9: Depth estimation results on synthetic data by Wanner et al. [23] Some intensities in the insets are adjusted for
better contrast. In the first example, note that our method correctly captures the shape of the door/window, while all other
algorithms fail and produce smooth transitions. Similarly, in the second example our method reproduces accurate boundaries
along the twig/leaf, while other algorithms generate smoothed results or fail to capture the details, and have artifacts.
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Figure 10: Depth estimation results on our synthetic dataset. Some intensities in the insets are adjusted for better contrast.
In the first example, our method successfully captures the shapes of the leaves, while all other methods generate smoothed
results. In the second example, our method captures the holes in the chair as well as the thin structure of the lamp, while
other methods obtain smoothed or thicker structures.

LF input (central view) Our result Wanner et al. (CVPR12) Tao et al. (ICCV13) Yu et al. (ICCV13) Chen et al. (CVPR14)

Figure 11: Depth estimation results on real data taken by the Lytro Illum light-field camera. It can be seen that our method
realistically captures the thin structures and occlusion boundaries, while other methods fail, or generate dilated structures.
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