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Abstract

A practical way to generate a high dynamic range (HDR) video using off-the-shelf cameras is to capture a sequence with
alternating exposures and reconstruct the missing content at each frame. Unfortunately, existing approaches are typically slow
and are not able to handle challenging cases. In this paper, we propose a learning-based approach to address this difficult
problem. To do this, we use two sequential convolutional neural networks (CNN) to model the entire HDR video reconstruction
process. In the first step, we align the neighboring frames to the current frame by estimating the flows between them using a
network, which is specifically designed for this application. We then combine the aligned and current images using another
CNN to produce the final HDR frame. We perform an end-to-end training by minimizing the error between the reconstructed
and ground truth HDR images on a set of training scenes. We produce our training data synthetically from existing HDR video
datasets and simulate the imperfections of standard digital cameras using a simple approach. Experimental results demonstrate
that our approach produces high-quality HDR videos and is an order of magnitude faster than the state-of-the-art techniques
for sequences with two and three alternating exposures.

CCS Concepts
• Computing methodologies → Computational photography;

1. Introduction

One of the major drawbacks of standard digital cameras is their
inability to capture the full range of illumination in the scene.
Extensive research has been done in the past decades to ad-
dress this limitation and significant progress has been made in the
case of still images. These approaches typically produce a high
dynamic range (HDR) image through bracketed exposure imag-
ing [DM97, SKY∗12, HGPS13, OLTK15, MLY∗17, KR17] or burst
image denoising [LYT∗14, HSG∗16]. As a consequence, HDR
imaging is now popular and available to the public through smart-
phone cameras and commercial software like Adobe Photoshop.

On the other hand, HDR video remains out of reach for the public
as the majority of approaches focus on specialized cameras. These
cameras are often bulky and expensive since they need, for exam-
ple, complex optical systems [TKTS11] or sensors [ZSFC∗15]. To
generate HDR videos using inexpensive off-the-shelf cameras, we
can capture the input low dynamic range (LDR) sequences by al-
ternating the exposure of each frame. The HDR video can then be
reconstructed by recovering the missing HDR details at each frame,
from the neighboring images with different exposure.

Compared to bracketed exposure HDR imaging, the problem of
HDR video reconstruction has received relatively less attention.
Perhaps, the main reason is that this problem is more challeng-
ing than that of producing HDR images; in addition to producing
artifact-free HDR images, a high-quality HDR video requires the
frames to be temporally coherent. Although a few methods have

been proposed to address this problem [KUWS03,MG11,KSB∗13,
LLM17], they are typically slow and not able to handle challenging
cases (see Figs. 11, 13, and 14).

Our approach is inspired by the work of Kalantari and Ra-
mamoorthi [KR17] on using deep learning for HDR image recon-
struction. They divide the problem into two stages of alignment and
HDR merge, use an existing optical flow method [Liu09] for the
alignment, and model the merge process using a convolutional neu-
ral network (CNN). This approach takes three images with different
exposures as the input and assumes that the medium exposure im-
age is the reference. Since in our application the reference image at
every frame has different exposure, this method cannot be directly
used to generate HDR videos. Although we could potentially adapt
this approach to our application, it shares the main drawback of
existing HDR video techniques as it uses slow, optimization-based
optical flow methods for alignment. Moreover, the existing opti-
cal flow methods are not optimized to produce high-quality HDR
videos, and thus, this approach is suboptimal (Fig. 3).

We propose to address these problems by modeling both the
alignment and HDR merge components using two sequential CNNs
and train the two networks in an end-to-end fashion by minimiz-
ing the error between the estimated and ground truth HDR frames.
In our system, we perform alignment by estimating the flow be-
tween the neighboring frames and the current frame (called ref-
erence hereafter) using a CNN (flow network), which is specif-
ically designed for this application and performs better than ex-
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isting learning-based optical flow methods [DFI∗15, IMS∗17] (see
Fig. 4). These estimated flows are then used to warp the neighbor-
ing frames and produce a set of aligned images. We then produce
the final HDR frames from the aligned images using a CNN (merge
network), similar to Kalantari and Ramamoorthi [KR17], but with
a few necessary changes that substantially improve the quality of
the results (see Figs. 7 and 8).

As is common with deep learning systems, we need a large
dataset of input LDR frames and their corresponding ground truth
HDR frames to properly train our networks. We produce our train-
ing dataset by synthetically extracting the input LDR images from a
set of HDR videos [FGE∗14,KGB∗14]. To avoid overfitting to this
synthetically generated dataset, we simulate the imperfections of
standard digital cameras by adding noise to the input LDR frames
and perturbing their tone. Although simple, this process is essential
for our trained network to generalize well and work on the input
videos captured by off-the-shelf cameras, such as Basler acA2000-
50gc. In summary, we make the following contributions:

• We propose the first deep learning approach to produce an HDR
video from a sequence of alternating exposures. Our method is
practical, produces high-quality results, and is 50 to 110 times
faster than current techniques (Table 4).
• We present a flow network which is specifically designed for

HDR video reconstruction application (Sec. 3.2) and performs
better than the existing non-learning (Fig. 3) and learning-based
(Fig. 4) optical flow approaches.
• We apply necessary changes to the input and architecture of the

merge network by Kalantari et al. [KR17] (Sec. 3.3) to signifi-
cantly improve the quality of the results (Figs. 7 and 8).

2. Related Work

Over the past decades, many powerful approaches have been devel-
oped to produce still HDR images from sequences with different
exposures [DM97, SKY∗12, HGPS13, OLTK15, MLY∗17, KR17,
WXTT18], burst images [LYT∗14, HSG∗16], or a single LDR im-
age [EKD∗17, EKM17, MBRHD18]. However, most of these ap-
proaches only demonstrate results for generating still HDR images
and are not suitable for producing HDR videos [KSB∗13]. The no-
table exception is the approach by Eilertsen et al. [EKD∗17], which
demonstrates HDR videos, hallucinated from input LDR videos
with a single exposure. However, their method can only halluci-
nate small saturated regions and does not handle the noise in the
dark areas. Moreover, this approach is also not designed to handle
videos and produces results with flickering artifacts. For brevity,
here we only focus on the algorithms that are designed to handle
HDR video.

A large number of approaches propose to capture HDR im-
ages and videos through coded per-pixel [NM00, NN02, SHG∗16]
or scanline exposure/ISO [HST∗14, HKU15, CBK17], and gener-
ate the results using appropriate reconstruction techniques. These
methods can to work on input images with varying ISO, which can
be captured with off-the-shelf cameras. Therefore, similar to our
method, these techniques are also practical. However, while they
do not need to handle motion, they often have difficulties generat-
ing high-quality results in the regions with high contrast. Moreover,
changing the ISO is not as effective as changing the shutter time in

reducing the noise. Zhao et al. [ZSFC∗15] propose to reconstruct
HDR images using modulus images, but their approach requires
special sensors. Other methods capture images with different expo-
sures simultaneously by splitting the light to different sensors using
internal [TKTS11] or external [MMP∗07] beam-splitters. However,
these approaches require a specific optical design.

A category of approaches reconstruct HDR videos from input se-
quences that are captured by alternating the exposure of each frame.
Kang et al. [KUWS03] propose the first HDR video reconstruction
algorithm for sequences with alternating exposures by using opti-
cal flow to align neighboring frames to the reference frame. They
then combine the aligned images with the reference frame using a
weighting strategy to avoid ghosting. However, in cases with large
motion, their approach typically introduces optical flow artifacts in
the final results, as demonstrated in Figs. 11, 13 and 15.

Mangiat and Gibson [MG10] improve Kang et al.’s approach us-
ing a block-based motion estimation method coupled with a refine-
ment stage. In a follow up work, they propose to filter the regions
with large motion to reduce the blocking artifacts [MG11]. How-
ever, their approach still shows blocking artifacts in cases with large
motion (Figs. 14 and 17). Moreover, their method is limited to han-
dling sequences with only two alternating exposures.

Kalantari et al. [KSB∗13] propose a patch-based optimization
system to synthesize the missing exposures at each frame. These
images are then combined to produce the final HDR frame. To in-
crease the temporal coherency, they estimate an initial motion be-
tween the neighboring and reference frames. They then constrain
the patch search to a small window around the predicted motion,
where the size of the window is obtained by a greedy approach.
This method produces results that are generally significantly better
than the other approaches. However, it usually takes several min-
utes to solve the complex patch-based optimization and produce
a single HDR frame. In contrast, our approach is generally 80 to
110 times faster than their method, taking only a few seconds to
generate an HDR frame. Moreover, this approach is often not able
to properly constrain the patch search and over/under-estimates the
search window size. In these cases, it produces results with ghost-
ing artifacts (Figs. 11, 13 and 15) or wobbly and unnatural motion
(see supplementary video).

Gryaditskaya et al. improve the method of Kalantari et
al. [KSB∗13] by adaptively adjusting the exposures. However, the
idea of adaptive exposures can also be used to improve our system
and is orthogonal to our contribution. Finally, the recent method
of Li et al. [LLM17] poses the HDR video reconstruction prob-
lem as maximum a posteriori estimation. Specifically, they sepa-
rate the problem of HDR frame reconstruction to finding the fore-
ground and background in each frame. They propose to find the
background using rank minimization and compute the foreground
using a multiscale adaptive regression technique. Unfortunately,
this approach is computationally expensive, taking roughly 2 hours
to generate a frame with resolution of 1280× 720. Moreover, as
shown in Fig. 14, their method produces results with noise, ghost-
ing, and discoloration in challenging cases.
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Zi-1 Zi Zi+1
Figure 1: We show a cropped version of three consecutive frames
of the POKER FULLSHOT scene with two alternating exposures.
Each frame of the LDR input video is missing some contents. For
example, Zi−1 and Zi+1 are captured with low exposure and con-
tain noise on the lady’s dress, while the high exposure frame, Zi,
is missing the details on the lady’s hand. To reconstruct an HDR
image at each frame, the missing content needs to be reconstructed
from the neighboring frames of different exposure.

Z̃i input LDR frames with alternating exposures
Zi input LDR frames after alignment and CRF replace-

ment
Hi the HDR image at frame i
Ti the HDR image at frame i in the log domain
ti exposure time at frame i
h(Zi) takes image Zi from the LDR to the linear HDR do-

main: h(Zi) = Zγ

i /ti
Ii result of taking image Zi to the linear HDR domain,

i.e., Ii = h(Zi)
li(I j) takes image I j from the linear domain to the LDR

domain at exposure i: li(I j) = clip[(I jti)1/γ]
gi(Z j) adjust the exposure of image Z j to that of frame i,

i.e., gi(Z j) = li(h(Z j))
Zi−1,i the result of aligning image Zi−1 to Zi.

Table 1: The complete list of notations used in the paper.

3. Deep HDR Video Reconstruction

The goal of our algorithm is to produce a high-quality HDR video
from an input LDR video with alternating exposures. For simplic-
ity, we explain our method for the case with two alternating expo-
sures and discuss the extension to three exposures later in Sec. 3.4.
In this case, as shown in Fig. 1, the input LDR video consists of a
set of frames, Zi, alternating between low and high exposures. The
frames with low exposure are usually noisy in the dark regions,
while the high exposure frames lack content in the bright areas be-
cause of the sensor saturation.

To produce an HDR frame, Hi, we need to reconstruct the miss-
ing content at frame i (reference) using the neighboring frames
with different exposures (Zi−1 and Zi+1). This is a challenging
problem as it requires reconstructing high-quality and temporally
coherent HDR frames. Existing approaches typically first align
the neighboring images to the reference frame and then merge
them into an HDR image. However, they often require solving
complex optimization systems [KSB∗13, LLM17], which makes
them slow. Moreover, they usually use logical, but heuristically
designed components (e.g., the HDR merge component of Kang
et al. [KUWS03]), and thus, fail to produce satisfactory results in
challenging cases.

We address the drawbacks of previous approaches by propos-
ing to use convolutional neural networks (CNN) to learn the HDR
video reconstruction process from a set of training scenes. Specifi-

cally, our approach builds upon the recent HDR image reconstruc-
tion method of Kalantari and Ramamoorthi [KR17], which breaks
down the process into alignment and HDR merge stages and uses a
CNN to model the merge process.

In our system, in addition to modeling the merge process using
the merge network (Sec. 3.3), we propose a flow network (Sec. 3.2)
to perform the alignment process. We train these two networks in
an end-to-and fashion by minimizing the error between the recon-
structed and ground truth HDR frames on a set of training scenes.
Our learned flow network is designed for the HDR video recon-
struction application and performs better (Fig. 3) than the tradi-
tional optical flow methods, as used by Kalantari and Ramamoor-
thi, and learning-based flow estimation approaches. We also sub-
stantially improve their merge network by proposing two critical
changes (Figs. 7 and 8). During training, our system learns to pro-
duce HDR videos that are close to the ground truth based on an `1
metric (Eq. 6) and generalizes well to the test sequences, as shown
in Sec. 5. Since each individual frame is of high quality, the re-
sulting videos have reasonable temporal coherency. We show the
overview of our algorithm in Fig. 2.

Note that, while it is possible to model the HDR video recon-
struction process using a single CNN, training such a system on
limited training scenes would be significantly difficult. By dividing
the entire process into two stages, we provide a simpler and physi-
cally meaningful task to each network, and thus, make the training
more tractable. Moreover, as discussed later in Sec. 4.2, the two-
stage architecture is essential for generalizing our system to work
with cameras that it has not been trained on.

3.1. Preprocessing

To reduce the complexity of the process for our learning system, we
first globally align the neighboring frames to the reference frame
using a similarity transform (rotation, translation, and isometric
scale). We do so by finding the corresponding corner features in the
reference and each neighboring image and then using RANSAC to
find the dominant similarity model from the calculated correspon-
dences. Furthermore, we replace the original camera response func-
tion (CRF) of the input images with a gamma curve. Specifically,
we first transform all the frames into the linear HDR domain by
applying inverse CRF, i.e., Ĩi = f−1(Z̃i)/ti, where f is the CRF and
ti is the exposure time of frame i. We then use a gamma curve with
γ = 2.2 to transfer the images from HDR to LDR domain li(Ĩi):

Zi = li(Ĩi) = clip[(Ĩiti)
1/γ], (1)

where clip is a function that keeps the output in the range [0, 1]
and li is a function that transfers the image Ĩi from the linear HDR
domain into LDR domain at exposure i (see Table 1).

Overall, the preprocessing step globally aligns Z̃i−1 and Z̃i+1
to the reference image, Z̃i, and replaces the original CRF with a
gamma curve to produce Zi−1, Zi+1, and Zi. We use these processed
images as the input to our system. We note that even if we omit
the CRF replacement step, our system would require estimating the
original CRF to transform the images from the LDR to the HDR do-
main in the merge step (Sec. 3.3). This is a requirement for almost
all the previous approaches [KUWS03, MG10, KSB∗13, LLM17]
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Input LDR Frames Estimated Flows

Warping Merge CNN
Sec. 3.2

HDR Frame

Flow CNN
Sec. 3.1

Aligned Frames

Figure 2: We break down the HDR video reconstruction into two stages of alignment and HDR merge. To perform the alignment, we use the
flow CNN to estimate a set of flows from the input frames. We then use the estimated flows to warp the neighboring frames and produce a set
of aligned images. These images are then used by the merge CNN to produce the final HDR image.

and is not a major limitation as the CRF can be easily estimated us-
ing Debevec and Malik’s approach [DM97] from a series of images
with different exposures. In the next sections, we discuss different
components of our algorithm by starting with the flow network.

3.2. Flow Network

To reconstruct the missing content at frame i, we first need to align
the neighboring frames to the reference frame. This requires esti-
mating the flows from the frames, i− 1 and i+ 1, to the reference
frame, i. The estimated flows can then be used to warp the neigh-
boring images, Zi−1 and Zi+1, and produce a set of aligned images,
Zi−1,i and Zi+1,i. Note that, the neighboring images, Zi−1 and Zi+1,
are globally aligned to the reference image, Zi, and thus, this pro-
cess handles the non-rigid motion, possible parallax, and the poten-
tial inaccuracies of the global alignment.

Although there are powerful non-learning optical flow tech-
niques [Liu09, XJM12, RWHS15, HLS17], we use CNNs to model
the flow estimation process for a couple of reasons. First, CNNs are
efficient and can be implemented on the GPU, and thus, they are
significantly faster than the non-learning optimization-based opti-
cal flow methods. Second, the flow estimation is only one compo-
nent of our system with the overall goal of producing high-quality
HDR videos. By training our system in an end-to-end fashion, the
flow estimation is optimized to maximize the quality of the HDR
videos. Therefore, our flow estimation network is better suited for
the HDR video reconstruction application than the existing flow
estimation techniques, as shown in Fig. 3.

Recently, learning-based image transformation has been pro-
posed for a variety of applications like image classifica-
tion [JSZK15] and single image view synthesis [ZTS∗16]. Specif-
ically, several methods have proposed to perform optical flow es-
timation using deep networks [DFI∗15, IMS∗17, RB17]. These ap-
proaches are fast and can be optimized in combination with our
merge network (Sec. 3.3) to minimize the error between ground
truth and estimated HDR frames, and thus, do not have the afore-
mentioned problems of the non-learning optical flow approaches.
However, they use two input images to estimate the flow between
them, and thus, are not suitable for HDR Video reconstruction, as
shown in Fig. 4. In our application, the reference image often has
missing content (e.g., because of noise in Fig. 4), and thus, estimat-
ing an accurate flow from each neighboring frame to the reference
frame using only two input images is difficult.

To avoid this problem, we use the reference, Zi, and the neigh-
boring frames, Zi−1 and Zi+1, as the input to our system. In this
case, in regions where the reference image has missing content, the
neighboring images can be used to estimate the appropriate flows.
However, since the input frames are captured with alternating expo-
sures, the reference and neighboring frames have different exposure
times and, consequently, different brightness. We address this issue

Liu [2009]
O
urs

Ours MDP OursRicFlow
Figure 3: We compare our flow network against the optical flow
methods of Liu [Liu09] (top), Xu et al. [XJM12] (MDP), and Hu
et al. [HLS17] (RicFlow) (bottom) by generating an HDR frame
from the THROWING TOWEL 2EXP scene. We use the aligned im-
ages generated by the three optical flow approaches as the input
to our merge network (Sec. 3.3) to produce the final HDR images
and compare their results to our full approach. These methods are
not designed for HDR video reconstruction, often producing sig-
nificant alignment artifacts that cannot be masked by our merge
network. Therefore, their final HDR frames usually contain tearing
and other artifacts as indicated by the green arrows. On the other
hand, our flow network has been trained to maximize the quality of
the final HDR videos, and thus, our method produces HDR frames
with higher-quality. Note that, our flow estimation network is faster
than these traditional approaches.

by adjusting the exposure of the reference frame to match that of
the neighboring frames gi+1(Zi):

gi+1(Zi) = li+1 (h(Zi)) (2)

where h(Zi) is a function that takes the image Zi from the LDR
domain to the linear HDR domain and is defined as:

h(Zi) = Zγ

i /ti. (3)

The input is then obtained by concatenating the exposure ad-
justed reference image as well as the two neighboring frames (9
channels), i.e., {gi+1(Zi),Zi−1,Zi+1}. The network takes this input
and produces an output with 4 channels, consisting of two sets of
flows from the previous, i− 1, and next, i+ 1, frames to the ref-
erence frame, i, in x and y directions. These flows are then used
to warp the neighboring images to produce a set of aligned images.
Note that the inputs and outputs of the flow network are slightly dif-
ferent for the cases with three exposures, as discussed in Sec. 3.4.

For the flow network, we build upon the hierarchical
coarse-to-fine architecture, concurrently proposed by Ranjan and
Black [RB17] and Wang et al. [WZK∗17], and incorporate the three
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gi+1(Zi) Zi+1Zi-1

Z i-1
,i

Z i+
1,

i

Ours Ground Truth

Flownet

Flownet Ours

In
pu

ts

Ground Truth

HDR Results Analysis of the Results

SPyNet

Figure 4: On the left, we compare our flow network against the
FlowNet [IMS∗17] and SPyNet [RB17] by producing an HDR
frame from the POKER FULLSHOT scene. Note that, we trained
both the FlowNet and SPyNet networks in combination with our
merge network (Sec. 3.3) to have a fair comparison. The other two
networks are not able to register the bricks in the background pro-
ducing ghosting artifacts, while our approach generates compara-
ble results to the ground truth, as shown on the left. On the right,
we analyze the results for the FlowNet (green) inset by showing the
inputs to both FlowNet and our flow network on the top. The anal-
ysis for SPyNet is similar, but we omit it for brevity. FlowNet takes
two images (e.g., Zi−1 and gi+1(Zi)) as the input and obtains the
flow between them. In this case, since the reference image, gi+1(Zi),
has severe noise, obtaining an accurate flow is difficult. Therefore,
as shown on the bottom two rows, the aligned images (Zi−1,i and
Zi+1,i) using the FlowNet contain artifacts. On the other hand, our
flow network takes all the three images as the input, and thus, can
use the information in the previous and next frames to produce more
accurate flows. As a result, our method produces aligned images
with higher quality that resemble the ground truth aligned images.
Note that the brightness of the insets are adjusted for the best visi-
bility. See the full videos in supplementary video.

inputs into the architecture, as shown in Fig. 5. Our system consists
of a series of flow estimator CNNs working at different resolutions.
The estimated flows at the coarser scales capture the large motions
and are used to initialize the inputs for the CNN in the finer scales,
which are responsible for estimating the smaller motions.

In our system, we first generate a pyramid of our three input
images by downsampling them using factors of 16, 8, 4, and 2.
The three images at different resolutions are used as the input to
their corresponding scale. At the coarsest scale (five in Fig. 5), we
simply use the input images at that resolution to produce two sets
of flows. These flows are then upsampled and used to warp the
two neighboring images. The warped neighboring images as well
as the reference image are then used as the CNN’s input to produce
two sets of flow at this finer resolution. Note that, the estimated
flows are computed between the warped neighboring images and
the reference image. Therefore, the full flow is obtained by adding
the upsampled flow from the previous scale and the estimated flows
at this scale. This process is repeated until reaching the finest scale
and producing the final flows. The calculated flows are then used to
warp the neighboring images and produce a set of aligned images,
Zi−1,i and Zi+1,i. These images are used by the merge network to
produce the final result, as discussed in the next section.

Scale 1

Upsample

Warp

Sub-CNN +

...

Scale 4
Upsample

Warp

Sub-CNN +

Sub-CNN

Scale 5

Hirarchical �ow network architecture

Architecture of the sub-CNNs

Final Flow

Upsampled Flow

Residual Flow Final Flow

Final FlowResidual Flow

Upsampled Flow

9 4100 50 25

5

5
5

5

Figure 5: We show our hierarchical coarse-to-fine flow network
architecture on the top. At the coarsest level, the sub-CNN simply
takes the input images and estimates two sets of flows. In all the
other scales, we first upsample the flow from previous scale and
then use it to warp the neighboring images. The warped images
as well as the reference image are used to estimate the flows. These
estimated flows are then added to the upsampled flows from the pre-
vious scale to produce the final flows in that scale. Note that, the
figure is only for illustration of the architecture and the resolution
of the images in different scales is not accurate. On the bottom, we
demonstrate the architecture of the sub-CNNs used in our flow net-
work. Our network consists of four convolutional layers with kernel
size of 5. Each layer is followed by a rectified linear unit (ReLU),
except for the last one, which has a linear activation function.

Note that the flow network is essential for producing high-quality
results by correcting non-rigid motions in the neighboring frames.
Without this component, the regions with motion in the neighbor-
ing frames cannot be properly used to reconstruct the final HDR
frame. In these areas, the merge network would either rely on the
reference image or combine the misaligned images and produce
noisy or ghosted results, as shown in Fig. 6.

3.3. Merge Network

The goal of this network is to produce a high-quality HDR frame
from the aligned and reference images. Since the registered images
contain residual alignment artifacts, this network should basically
detect these artifacts and exclude them from the final HDR image.
Recently, Kalantari and Ramamoorthi [KR17] demonstrated that
this challenging problem can be effectively addressed by CNNs.
Here, we also use a CNN to produce HDR images from a set
of LDR inputs, but propose two simple, yet necessary changes in
terms of input and architecture to improve the quality of the results.
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Ours OursNo Flow Ground Truth

Figure 6: We compare our full approach to our method without the
flow network on the POKER FULLSHOT scene. The result without
the flow network has artifacts in regions with non-rigid motion.

Input/Output: Kalantari and Ramamoorthi only used the
aligned images, including the reference image, as the input to the
network. By adapting this strategy to HDR video, we can provide
the two aligned neighboring images, Zi−1,i and Zi+1,i, as well as the
reference image, Zi, to the network to produce the final HDR im-
age. However, in some cases both aligned images contain artifacts
around the motion boundaries, which would appear in the resulting
HDR image (see Fig. 7).

We observe that these artifacts in most cases happen on the back-
ground regions. However, these areas are usually well-aligned in
the original neighboring images. Therefore, in addition to the three
images, we also use the neighboring images in our system, i.e., {Zi,
Zi−1,i, Zi+1,i, Zi−1, Zi+1}. These additional inputs greatly help the
merge network to produce high-quality results, as shown in Fig. 7.
Note that in some cases the artifacts appear on the moving subjects.
However, these areas have complex motions, and thus, the artifacts
are usually not noticeable in a video.

We provide the five images in both the LDR and linear HDR do-
mains as the input to the network (30 channels). Our network then
estimates the blending weights for these five images (15 channels
output). We estimate a blending weight for each color channel, sim-
ilar to the existing techniques [DM97,KSB∗13], to properly utilize
the information in each channel. The final HDR image at frame
i, Hi, is computed as a weighted average of the five input images
using their blending weights as:

Hi =
w1Ii +w2Ii−1,i +w3Ii+1,i +w4Ii−1 +w5Ii+1

∑
5
k=1 wk

. (4)

Here, wk is the estimated blending weight for each image and Ii =
h(Zi), where h(Zi) is the function that takes the image Zi from the
LDR to the linear HDR domain. Note that our system increases the
dynamic range by directly combining the pixel values of the input
and warped images and does not hallucinate content.

Architecture: Kalantari and Ramamoorthi [KR17] use a simple
architecture with four convolutional layers for the merge network.
Although their system is able to produce high-quality results, it is
not able to mask the alignment artifacts in challenging cases (see
Fig. 8). This is mainly because the receptive field of their network is
small, and thus, their system detects the alignment artifacts by ob-
serving a small local region. However, in some cases the network
needs to see a bigger region to properly distinguish the alignment
artifacts from structures. Therefore, we propose to use an encoder-
decoder architecture for modeling the HDR merge process. Specif-

Ours Zi-1 Zi+1 Ours

Zi-1, i Zi+1, i Kalantari’s StrategyTHROWING TOWEL

Figure 7: Here, we compare our approach using five images as
the input to the merge network against Kalantari’s strategy using
only three images. In both cases, we train the merge network in
combination with the flow network on the HDR video data. The
grill cover is saturated in the reference image and should be re-
constructed from the neighboring images. As shown in the insets,
both aligned neighboring images, Zi−1,i and Zi+1,i, have registra-
tion artifacts on the grill cover. Therefore, using only the aligned
images, as proposed by Kalantari and Ramamoorthi [KR17], we
are not able to properly reconstruct the missing content. However,
as indicated by the green arrow, the grill cover is artifact-free in
one of the neighboring images, Zi−1. Since we also pass the neigh-
boring images as the input to our merge network, we are able to
produce results with higher quality. Note that, the insets in the first
two columns are in the LDR domain, while the last column shows
the tonemapped HDR images.

Ours OursKalantari’s Architecture

Figure 8: Comparing to the network architecture, as proposed by
Kalantari and Ramamoorthi [KR17], our encoder-decoder archi-
tecture produces results with fewer discoloration and objectionable
artifacts. Note that, Kalantari’s network is retrained on the HDR
video data to have a fair comparison.

ically, we use a fully convolutional architecture with three down-
sampling (encoder) and upsampling (decoder) units, as shown in
Fig. 9. Each downsampling unit consists of a convolution layer with
stride of two, followed by another convolution layer with stride of
one. The upsampling units consist of a deconvolution layer with
stride of two, followed by a convolution layer with stride of one.
We use a sigmoid as the activation function of the last layer, but all
the other layers are followed by a ReLU.

3.4. Extension to Three Exposures

In this case, the input video alternates between three (low, medium,
and high) exposures. For example, a sequence of Zi−2, Zi−1, Zi,
Zi+1, and Zi+2 frames can have low, medium, high, low, and
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Figure 9: We demonstrate the architecture of our merge network.
The green and blue boxes refer to the convolution and deconvolu-
tion layers with stride of two and kernel size of four. These layers
basically downsample (green) or upsample (blue) the feature maps
by a factor of two. The layers indicated by yellow are simple con-
volutions with stride of one and kernel size of three. With the ex-
ception of the last layer, which has a sigmoid activation function,
all the other layers are followed by a ReLU. The merge network
takes five images (Sec. 3.3) in the LDR and linear HDR domains
(30 channels) as the input and produces blending weights for these
five images (15 channels).

medium exposures, respectively. Here, our system utilizes four
neighboring images in addition to the reference image to recon-
struct a single HDR frame.

To adapt our system to this case, we simply adjust the inputs and
outputs of the flow and merge CNNs. Specifically, our flow CNN
takes Zi−2,Zi+1, and gi+1(Zi), as well as Zi−1,Zi+2, and gi+2(Zi)
as the input. Here, gi+1(Zi) and gi+2(Zi) refer to the exposure ad-
justed versions of the reference image. Therefore, in total our flow
network takes six images as the input (18 channels). The flow net-
work then outputs four flows (8 channels), which are used to warp
the four neighboring images to the reference image. These four
aligned images (Zi−2,i,Zi−1,i,Zi+1,i,Zi+2,i) along with the original
neighboring (Zi−2,Zi−1,Zi+1,Zi+2) and the reference image (Zi) in
both LDR and linear HDR domains (54 channels) are used as the
input to the merge network to produce the final HDR frame.

4. Training

As with most machine learning approaches, our system consists of
two main stages of training and testing. During training, which is
an offline process, we find optimal weights of the networks through
an optimization process. This requires 1) an appropriate metric to
compare the estimated and ground truth HDR images and 2) a large
number of training scenes. Once the training is done, we can use our
trained networks to generate results on new test scenes. In the next
sections, we discuss our choice of loss function and the dataset.

4.1. Loss Function

HDR images and videos are typically displayed after tonemap-
ping, a process that generally boosts the pixel values in the dark
regions. Therefore, defining the loss function directly in the lin-
ear HDR domain, underestimates the error in the dark areas. To
avoid this problem we transfer the HDR images into the log do-
main, which is a common approach used by several recent algo-
rithms [ZL17, EKD∗17, BVM∗17, KR17]. Specifically, we use the
differentiable µ-law function for transferring the HDR images into
the log domain:

Ti =
log(1+µHi)

log(1+µ)
, (5)

where Hi is the HDR frame and is always in the range [0, 1] and µ
(set to 5000) is a parameter controlling the rate of range compres-
sion. To train our system, we minimize the `1 distance between the
estimated, T̂i, and ground truth, Ti, HDR frames in the log domain:

E = ‖T̂i−Ti‖1. (6)

We chose `1 as we found it produces slightly sharper images than
`2. Note that, we directly minimize this error to train both our flow
and merge networks, and thus, do not need the ground truth flows
for training. Since all the components of our system, including the
warping, are differentiable, we can easily compute all the required
gradients using the chain rule. These gradients are used to update
the networks’ weights iteratively until convergence.

4.2. Dataset

In order to train our system, we need a large number of training
scenes consisting of three input LDR frames with alternating ex-
posures (a reference frame and two neighboring frames) and their
corresponding ground truth HDR frame. We construct our train-
ing set by selecting 21 scenes from two publicly available HDR
video datasets by Froehlich et al. [FGE∗14] (13 scenes) and Kro-
nander et al. [KGB∗14] (8 scenes). These datasets consists of
hundreds of HDR frames for each scene, captured using cameras
with specific optical designs containing external [FGE∗14] or in-
ternal [KGB∗14] beam-splitters.

To generate the training set from these datasets, we first select
three consecutive frames from a scene and transform them to the
LDR domain (see Eq. 1), using two different exposure times. In our
system, we use these three images as the input and select the middle
HDR frame to be used as the ground truth. We generate our datasets
with exposures separated by one, two, and three stops, where the
low exposure time is randomly selected around a base exposure. We
augment the data by applying geometric transformations (rotating
90 degrees and flipping) on the training data.

Since this dataset is produced synthetically, a system trained on
it would not work properly on scenes captured with off-the-shelf
cameras. In practice, real world cameras capture noisy images and
are also hard to calibrate. However, our synthetic dataset lacks these
imperfections. To address this issue, we simulate the imperfections
of standard cameras by adding noise and adjusting tone of the syn-
thetic images. This simple approach is critical for making sure our
system generalizes well to images, captured with standard cameras,
that it has not been trained on. In the next sections, we discuss the
noise and tone adjustment strategies as well as our mechanism for
patch generation.

Adding Noise: The images captured with standard digital cam-
eras typically contain noise in the dark regions. Therefore, to pro-
duce a high-quality HDR image, the information in the dark areas
should be taken from the image with the high exposure. Unfortu-
nately, since we generate the input LDR images synthetically, the
images with different exposures contain the same amount of noise
as their HDR counterparts. Therefore, if we train our system on
this dataset, our merge network is not able to utilize the content of
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Figure 10: We compare the result of our method without tone per-
turbation during training (Sec. 4.2) against our full approach on a
frame from the THROWING TOWEL 2EXP scene. Our system with-
out tone perturbation produces noisy results on real-world scenes.
The brightness of the insets are adjusted for the best visibility.

the high exposure image in the dark regions, often producing noisy
results in real-world scenarios.

We address this problem by adding zero-mean Gaussian noise,
a commonly-used image noise model [JD13, GCPD16], to the in-
put LDR images with low exposure. This increases the robustness
of the flow network and encourages the merge network to use the
content of the clean high exposure image in the dark regions. Note
that, we add the noise in the linear domain, and thus, the noise in the
dark areas are typically magnified after transferring the image to the
LDR domain. In our implementation, we randomly choose standard
deviation between 10−3 and 3×10−3, so our system learns to han-
dle noise with different variances. Note that, while there are more
complex noise models [HDF10,GKTT13,GAW∗10], we found the
simple Gaussian noise to be sufficient for our purpose.

Tone Perturbation: In practice, calibrating the cameras and
finding the exact camera response function (CRF) is usually dif-
ficult. Therefore, the color and brightness of the neighboring im-
ages are often slightly different from those of the reference image
even after exposure adjustment. However, our LDR images are ex-
tracted synthetically, and thus, are consistent. Therefore, training
our system on this dataset limits the ability of both our flow and
merge network to generalize to the scenes captured with standard
cameras, as shown in Fig. 10.

To avoid this issue, we slightly perturb the tone of the reference
image by independently applying a gamma function to its differ-
ent color channels. Specifically, we apply gamma encoding with
γ = exp(d), where d is randomly selected from the range [-0.7,
0.7]. We use this perturbed reference image as the input to our flow
and merge networks, so they learn to handle the inconsistencies of
the reference and neighboring images when estimating the flows
and the blending weights. However, we use the original reference
image (before tone perturbation) along with the neighboring im-
ages during the blending process (Eq. 4) to produce HDR images
that match the ground truth. Note that since the neighboring frames
have the same exposure, their color and brightness always match
even when the estimated CRF is highly inaccurate. Therefore, we
only apply the perturbation on the reference image. It is also worth
noting that, we assume the CRF is known and this process only
simulates the inaccuracies of the CRF estimation, which can be
modeled using the simple gamma function. This is in contrast to

the inverse tone mapping methods [EKD∗17] that assume the CRF
is unknown and, thus, need to properly model it.

As noted in Sec. 3, the two stage architecture is essential for this
perturbation strategy to work. In the case of modeling the entire
process with one network, the CNN takes the neighboring images,
as well as the perturbed reference image and should produce the
final HDR image. This requires the CNN to undo a random tone
adjustment applied on the reference image, which is difficult. For
the same reason, estimating the blending weights using the merge
network is essential, and we cannot directly output the final HDR
frame using this network.

Patch Generation: As is common with the deep learning sys-
tems, we break down the images into small overlapping patches of
size 352×352 with a stride of 176. Most patches in our dataset con-
tain static backgrounds, which are not useful for training the flow
network. Therefore, we only select a patch if the two neighboring
images have more than 2000 pixels with absolute difference of 0.1
and more. Note that this strategy is not perfect, but it mostly selects
the patches in the areas with motion and we found it to work well
for our application. We select around 1000 patches for each scene,
and thus, have a total of 22,000 patches in our training set.

5. Results

We implemented our approach in MATLAB and used MatCon-
vNet [VL15] to efficiently implement our flow and merge networks.
To enable others to build upon our work, we plan to release our
source code, including the trained networks. Although our flow ar-
chitecture is similar to that of Wang et al. [WZK∗17], since our in-
puts and outputs are different we are not able to use their pre-trained
network. Therefore, we train both the flow and merge networks by
initializing their weights using the Xavier approach [GB10]. We
solve the optimization using ADAM with the default parameters,
β1 = 0.9 and β2 = 0.999, and a learning rate of 10−4. We use
mini-batches of size 10 and perform training for 60,000 iterations,
which takes roughly 5 days on a machine with an Intel Core i7,
64GB of memory, and a GeForce GTX 1080 GPU. All the results
are tonemapped using the method of Reinhard et al. [RSSF02] with
the modification to add temporal coherency, as proposed by Kang
et al. [KUWS03]. Note that the same tonemapping approach was
used by Kalantari et al. [KSB∗13]. Here, we only show one or two
frames from each video, but the full videos are available in the sup-
plementary materials.

We compare our approach against the methods of Kang
et al. [KUWS03], Mangiat and Gibson [MG11], Kalantari et
al. [KSB∗13], and Li et al. [LLM17]. We implemented the method
of Kang et al. [KUWS03] and used the publicly available source
code for the approaches by Kalantari et al. [KSB∗13] and Li et
al. [LLM17]. For Mangiat and Gibson’s approach, the authors pro-
vided their results on only three scenes, which we compare against
in Figs. 14 and 17. Moreover, Li et al.’s approach takes roughly 2
hours to produce a single frame with a resolution of 1280× 720,
and thus, producing the videos for all the scenes was difficult.
Therefore, we only compare against this approach on two scenes
in Fig. 14 and supplementary video. Finally, as discussed in Sec. 1,
the approach by Kalantari and Ramamoorthi [KR17] always as-
sumes the reference is the image with medium exposure, and thus,
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Input 2 Exposures 3 Exposures
Method Kang Kalantari Ours Kang Kalantari Ours
PSNR 38.06 38.77 40.67 35.20 35.93 39.37

HDR-VDP-2 65.88 62.12 74.15 61.09 62.64 68.86
HDR-VQM 79.95 83.41 85.51 73.99 74.15 82.14

Table 2: Quantitative comparison of our system against the ap-
proaches by Kang et al. [KUWS03] and Kalantari et al. [KSB∗13].
Note that, the PSNR (db) values are computed on the images
that are tonemapped using Eq. 5, but the results shown through-
out the paper are tonemapped using the method of Reinhard et
al. [RSSF02]. The values are averaged over all the frames of the
four videos.

PSNR HDR-VDP-2 HDR-VQM
RicFlow 36.97 63.39 78.52

MDP 36.31 64.23 77.22
Liu 38.06 65.88 79.95

Table 3: Quantitative comparison of the method of Kang et
al. [KUWS03] using different optical flow approaches.

a direct comparison to this method is not possible. Nonetheless,
we adapt this method to our application and demonstrate that we
significantly improve their flow estimation (see Fig. 3) and merge
network (Figs. 7 and 8).

Comparison on Scenes with Ground Truth: We begin by
quantitatively comparing our results against the methods of Kang et
al. [KUWS03] and Kalantari et al. [KSB∗13] on four videos from
Froehlich et al. [FGE∗14]. Specifically, we select three seconds
of the CAROUSEL FIREWORKS, FISHING LONGSHOT, POKER

FULLSHOT, and POKER TRAVELLING SLOWMOTION scenes,
none of which were included in the training set. For each video,
we generate input LDR videos with two and three alternating ex-
posures using the approach described in Sec. 4.2 and by adding
noise to represent the real videos more closely. The two exposure
inputs have a three stop separation, while the inputs with three al-
ternating exposures are separated by two stops. These videos have
a resolution of 1920×1080, but have a 10 pixel wide black border
around them, which we crop for quantitative comparison.

As shown in Table 2, we evaluate the results in terms of PSNR in
the tonemapped domain (using Eq. 5). We also include HDR-VDP-
2 [MKRH11] and HDR-VQM [NSC15] values, metrics specifically
designed for evaluating the quality of HDR images and videos, re-
spectively. All the values are computed for each individual frame
and averaged over all the frames of the four video sequences. As
seen, our method produces better results than the other methods
even in the challenging cases with three alternating exposures.

Note that, the results of Kang et al. are obtained using Liu’s op-
tical flow method [Liu09]. We also use the approaches by Xu et
al. [XJM12] (MDP) and Hu et al. [HLS17] (RicFlow) and report the
results in Table 3. Overall, although MDP and RicFlow rank high
on Middleburry and Sintel benchmarks, they are slightly worse than
the approach of Liu [Liu09] for this application. Therefore, we use
Liu’s method to produce the results of Kang et al.’s approach.

We show individual frames for two of these scenes in Fig. 11.
Here, the top row shows the POKER FULLSHOT scene with two ex-
posures. This video demonstrates people playing cards on a table

Ours Ground TruthKang Kalantari Ours Ground Truth

Ours Ground TruthKang Kalantari Ours Ground Truth

Figure 11: Comparison against the methods of Kang et
al. [KUWS03] and Kalantari et al. [KSB∗13] on sequences with
ground truth HDR video. The scene on the top has two alternating
exposures with three stop separations and the one on the bottom
has three exposures separated by two stops.

illuminated with a bright light. Kang et al.’s approach [KUWS03]
uses optical flow to register the neighboring frames, and thus, pro-
duces artifacts in the regions with significant motion such as the
lady’s hands. The patch-based method of Kalantari et al. [KSB∗13]
underestimates the patch search window in the regions with small
motion (e.g., the lady’s arms and chest) and produces ghosting arti-
facts. Our method, on the other hand, produces high-quality results
that closely resemble the ground truth.

The bottom row demonstrates the challenging FISHING LONG-
SHOT scene (bottom row) with three exposures, exhibiting signifi-
cant motion on the man’s hand and the fishing rod. Both Kang et al.
and Kalantari et al.’s approaches are unable to produce satisfactory
results on the fast moving areas, producing tearing and ghosting
artifacts. Therefore, the videos generated by these two approaches
contain jittery motion on the fast moving fishing rod. Moreover,
Kalantari et al.’s approach is not able to properly constrain the patch
search on the slow moving areas (tree leaves), generating wob-
bly and unnatural motion, which can be seen in the supplementary
video. However, our approach properly handles both the fast and
slow moving areas and generates a high-quality HDR video.

To demonstrate that our approach consistently produces better
results than the other approaches, we plot the HDR-VDP-2 scores
for all the frames of the POKER FULLSHOT scene in Fig. 12. As
seen, our method has better scores than the two approaches by Kang
et al. and Kalantari et al. in most cases, two of which are shown
in Fig. 11 (top). However, in a few frames our method produces
slightly worse results, as shown at the bottom insets of Fig. 12.
Note that, all the approaches have different performance on the odd
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Figure 12: We show the HDR-VDP-2 [MKRH11] scores for dif-
ferent frames of the POKER FULLSHOT scene with two alternating
exposures on the top. We separate the odd and even frames, since
their scores have different ranges. The reference image has low ex-
posure in the odd frames, while it has high exposure in the even
frames. Our method produces better results than other approaches
in almost all the frames. On the bottom, we compare the results
visually for two frames, indicated by red and green bars on the
plots, in which our method is slightly worse than the other meth-
ods. Specifically, the red inset shows a frame where our method
produces slightly lower HDR-VDP-2 values than the method of
Kalantari et al. The green inset demonstrates a frame where our
method is slightly worse than the method of Kang et al. and pro-
duces a blurry hand.

and even frames, where the reference has low and high exposures,
respectively. This is mainly because the frames with high exposure
lack contents in the bright areas, while the frames with low expo-
sure are noisy in the dark areas. Therefore, reconstructing the even
frames is typically more challenging than the odd frames.

Comparison on Kalantari et al.’s Scenes: We compare our ap-
proach against other methods on several scenes from Kalantari et
al. [KSB∗13] with two (Figs. 13 and 14) and three (Fig. 15) expo-
sures. Note that these scenes have been captured with the off-the-
shelf Basler acA2000-50gc camera with the ability to alternate be-
tween different exposures. These results demonstrate the ability of
our approach to generalize to real-world cases, since our approach
has not been trained on the videos from this camera.

Figure 13 compares our approach against Kang et al. [KUWS03]
and Kalantari et al.’s approaches [KSB∗13] on the NINJA (top) and
SKATEBOARDER (bottom) scenes. The fast moving person in the
NINJA scene is challenging for the other approaches. The method
of Kang et al. produces tearing artifacts on the arms and legs of
the moving person, while Kalantari et al.’s approach produces re-

Kalantari OursKang Kang Kalantari Ours

Kalantari OursKang Kang Kalantari Ours

Figure 13: Comparison against the methods of Kang et
al. [KUWS03] and Kalantari et al. [KSB∗13] on scenes with two
alternating exposures separated by three stops.

sults with ghosting and blurring artifacts. However, our approach
produces high-quality results without objectionable artifacts.

Similarly, the SKATEBOARDER scene contains a fast moving
person on a bright day. Again, Kang et al.’s approach produces re-
sults with tearing artifacts due to the inability of the optical flow to
properly register the neighboring frames. The patch-based method
of Kalantari et al. is not able to reconstruct the fast moving legs
and skateboard, producing results with ghosting and blurring ar-
tifacts. Moreover, Kalantari et al.’s approach underestimates the
patch window search on the moving lady (top left) in the bright
regions, producing jittery motion, which can be seen in the supple-
mentary video. However, our method produces high-quality results
and is significantly faster than the other techniques (see Table 4).

We compare our method against the approaches by Li et
al. [LLM17] and Mangiat and Gibson [MG11] in Fig. 14. Li et al.’s
method produces results with significant noise and discoloration
for the FIRE scene and ghosting artifacts on the fast moving ar-
eas for the THROWING TOWEL 2EXP scene. On the other hand,
Mangiat and Gibson’s method uses a block-based motion estima-
tion approach, and thus, their results suffer from blocking artifacts.
Moreover, in some cases they filter the image to hide the blocking
artifacts and produce blurry results (blue inset in bottom row).

Finally, we compare our approach against the methods of Kang
et al. and Kalantari et al. on challenging scenes with three ex-
posures separated by two stops. Figure 15 shows the result of
this comparison for the CLEANING (top) and THROWING TOWEL

3EXP (bottom) scenes. The CLEANING scene shows a lady clean-
ing a table while the camera rotates around her. Kang et al.’s ap-
proach is not able to properly handle the fast moving arms and
produces results with tearing artifacts. Kalantari et al.’s method pro-
duces comparable results to ours in the fast moving regions, despite
having artifacts on the lady’s arm and producing blurry cleaning
cloth. However, their approach is unable to perform well in the very
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Figure 14: Comparison with Li et al. [LLM17] and Mangiat and
Gibson’s approaches [MG11].

Kalantari OursKang Kang Kalantari Ours
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Figure 15: Comparison against other approaches on scenes with
three exposures separated by two stops.

dark regions (lady’s hair) producing unnatural motion (see supple-
mentary video).

The THROWING TOWEL 3EXP scene contains a lady throwing
a towel in front of a bright window. This scene is particularly chal-
lenging because of the significantly fast and non-rigid motion of
the towel. Since optical flow is not able to handle fast moving ob-
jects, Kang et al.’s approach produces results with severe artifacts.
Although Kalantari et al.’s method slightly overblurs the towel and
produces results with artifacts on the umbrella, it is overall compa-
rable to our method in the fast moving areas. However, their method
produces ghosting artifacts on the lady’s shoulder and wobbliness
on the white flowers, which can be seen in the supplementary video.

Comparing to Burst Imaging: We also compare our ap-
proach using sequences with varying exposures against the alter-

Input 2 Exposures 3 Exposures
Method Kang Kalantari Ours Kang Kalantari Ours

1920×1080 195s 300s 3.1s 370s 520s 4.6s
1280×720 70s 125s 1.4s 135s 185s 2.2s

Table 4: Timing comparison with the methods of Kang et
al. [KUWS03] and Kalantari et al. [KSB∗13] on inputs with two
and three exposures and different resolutions. Overall, our ap-
proach is between 50 to 110 times faster than the other techniques.

native method of denoising a sequence of frames with the same
short exposure in the supplementary video. We use the V-BM4D
method [MBFE12], which is specifically designed for denoising
videos. However, this approach is not able to properly remove the
significant noise in the sequences with low exposures. In compari-
son, our method can utilize the detail in the frames with high expo-
sure to produce a high-quality HDR video.

Timing: We provide timing comparison in Table 4. On av-
erage, our approach produces a single frame with resolution of
1920× 1080 in 3.1 and 4.6 seconds for the inputs with two and
three exposures, respectively. Comparing to the methods of Kang
et al. and Kalantari et al. for inputs with two exposures, our ap-
proach is roughly 60 and 100 times faster, respectively. The speed
up increases to roughly 80 and 110 times comparing to the ap-
proaches by Kang et al. and Kalantari et al. for the inputs with
three exposures. Our approach is also significantly faster than the
two other methods for inputs with resolutions of 1280×720. For in-
put images with two exposures at this resolution, our method takes
roughly 1.4 seconds to generate a single frame, spending 0.4 sec-
ond for global alignment, 0.57 second to generate the flows, and
0.43 second to merge the aligned images into the final HDR frame.

Note that, we use the optical flow method of Liu [Liu09] for
Kang et al.’s approach to achieve the best quality (see Table 3). Us-
ing faster optical flow methods, like RicFlow [HLS17], the timing
reduces to roughly 50 seconds for two exposure inputs with reso-
lution of 1920× 1080 at the cost of sacrificing the quality. How-
ever, even in this case, our approach is an order of magnitude faster
than Kang et al.’s method. Moreover, Mangiat and Gibson’s ap-
proach [MG11] takes roughly 40 seconds to produce a single frame
with resolution of 1280× 720 for the inputs with two exposures,
which is almost 30 times slower than our technique.

Limitations: HDR video reconstruction from sequences with al-
ternating exposure is a notoriously challenging problem. Although
our method produces results with better quality than the state-of-
the-art approaches, in some cases it is not able to produce satis-
factory results. For example, in cases where the reference image
is over-exposed and there is significant parallax and occlusion, our
flow network is not able to properly register the neighboring frames
and our method produces results with ghosting and other artifacts,
as shown in Fig. 16. However, these areas are challenging for other
approaches as well and they produce results with similar artifacts.

Moreover, in cases where the reference image has low expo-
sure and there is complex motion, as shown in Fig. 17 (left), the
flow network is not able to properly align the images. Therefore,
in these regions, our merge network relies on the reference and
produces a slightly noisy image. However, our result is consider-
ably better than the other techniques. Furthermore, in rare cases,
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Kalantari OursKangZi Zi+1Zi-2
Figure 16: The top and bottom rows show an inset from the
CLEANING and THROWING TOWEL 3EXP scenes, respectively. In
both cases, the reference frame, Zi, is over-exposed and the miss-
ing content should be recovered from the neighboring frames with
low exposure, Zi−2 and Zi+1. Note that since these sequences have
three alternating exposures, the previous neighboring frame with
low exposure is Zi−2. Moreover, we have excluded the frames with
medium exposure for clarity of exposition, but they are used in our
system to generate the final results. Because of significant parallax
in the top inset, none of the methods are able to properly register
the images, producing results with ghosting artifacts. Moreover, the
lady’s hand at the bottom inset has significant motion and is being
occluded by the flower. Therefore, our method similar to other ap-
proaches contains artifacts in this region. Zoom in to the electronic
version to see the differences.

Kalantari OursKang Kang Kalantari OursMangiat Mangiat

Figure 17: On the left, we demonstrate a case with complex mo-
tion. Our approach fails to align the neighboring images, and thus,
heavily relies on the reference image, producing a slightly noisy
image. However, our result is significantly better relative to other
approaches. On the right, we show a case where our system pro-
duces a result with slight discoloration. The differences are best
seen by zooming into the electronic version.

our approach produces results with slight discoloration, as shown
in Fig. 17 (right). This discoloration, which is not noticeable on the
still image, results in slight flickering in the video (see supplemen-
tary video). This is due to the fact that we define our loss function
on individual frames. We leave the investigation of the possibility
of using perceptual error metrics on videos to future work.

Finally, our system is limited to work with a fixed number of
exposures and requires re-training to handle a different number of
exposures. However, this is not a major limitation as we demon-
strate our results using sequences with two and three exposures,
covering the majority of the cases.

6. Conclusion and Future Work

We have presented the first learning-based technique for recon-
structing HDR videos from sequences with alternating exposures.
We divide the entire process into two stages of alignment and

HDR merge and model them with two sequential CNNs. We then
train both networks in an end-to-end fashion by minimizing the
`1 distance between the estimated and ground truth HDR images.
We produce our training set from publicly available HDR video
datasets by simulating the imperfections of standard digital cam-
eras. We demonstrate that our method produces better results than
state-of-the-art approaches, while it is an order of magnitude faster.

In the future, we would like to investigate the possibility of de-
signing a system that is independent of the number of exposures.
Moreover, it would be interesting to adapt our system to other cap-
turing configurations, e.g., stereo cameras with different exposures.
We would also like to experiment with the architecture of the net-
works to increase the efficiency of our approach and reduce timings
to interactive or real-time rates.
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