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Abstract. Light-field cameras have now become available in both consumer and
industrial applications, and recent papers have demonstrated practical algorithms
for depth recovery from a passive single-shot capture. However, current light-
field depth estimation methods are designed for Lambertian objects and fail or
degrade for glossy or specular surfaces. Because light-field cameras have an array
of micro-lenses, the captured data allows modification of both focus and perspec-
tive viewpoints. In this paper, we develop an iterative approach to use the benefits
of light-field data to estimate and remove the specular component, improving the
depth estimation. The approach enables light-field data depth estimation to sup-
port both specular and diffuse scenes. We present a physically-based method that
estimates one or multiple light source colors. We show our method outperforms
current state-of-the-art diffuse and specular separation and depth estimation al-
gorithms in multiple real world scenarios.

1 Introduction

Light-fields [1, 2] can be used to refocus images [3]. Cameras that can capture such data
are readily available in both consumer (e.g. Lytro) and industrial (e.g. RayTrix) markets.
Because of its micro-lens array, a light-field camera enables effective passive and gen-
eral depth estimation [4, 5]. This makes light-field cameras point-and-capture devices to
recover shape. However, current depth estimation algorithms support only Lambertian
surfaces, making them ineffective for glossy surfaces, which have both specular and
diffuse reflections. In this paper, we present the first light-field camera depth estima-
tion algorithm for both diffuse and specular surfaces using the consumer Lytro camera
(Fig. 1).

We build on the dichromatic model introduced by Shafer [6]. Diffuse and specular
reflections behave differently in different viewpoints (Fig. 2). As shown in Eqn. 2, the
surface color contributes to the diffuse reflectance component, while only light source
color contributes to the specular component. Both diffuse and specular color remain
fixed for all views; only specular intensity changes.

We present a novel algorithm that uses light-field data to exploit the dichromatic
model to estimate depth of scenes involving glossy objects, with both diffuse and spec-
ular reflections and one or multiple light sources. We use the full extent of the light-field
data by shearing the 4D epipolar image to refocus and extract multiple viewpoints. In
Fig. 3, we show that the rearrangement allows the diffuse and specular dichromatic anal-
ysis. Because no additional correspondence is needed, the analysis robustly estimates
the light source color, extracting the specular-free image and estimating depth.

The algorithm uses three core routines iteratively: first, we exploit the 4D epipolar
image (EPI) extracted from the light-field data to generate the specular-free image and
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Fig. 1. Iterative Depth Estimation for Glossy Surfaces. Our input is a light-field image with both
specular and diffuse reflections. Here we have an outdoor scene with glossy metallic locks in
the foreground and road reflectors in the background (a). In our method, we iteratively exploit
the light-field data to estimate depth (b); estimate the light source color (c);, and generate the
specular-free image (d) and generate the remaining components (e). Note: throughout this paper,
we increased the contrast for the specular component for readability. We show that this approach
improves depth estimation from (b) to our final depth estimation output (f). Darker represents
farther and lighter represents closer in depth maps.

estimate depth [4]; second, to estimate the light source color, we exploit the refocusing
ability of the light-field data to extract multiple viewpoints for color variance analysis
as shown in Fig. 2; and finally, third, to extract the specular-free image, we exploit the
complete light-field angular information to improve robustness, giving consistent high
quality results in synthetic, controlled, and natural real-world scenes.

We show that our algorithm works robustly across many different light-field images
captured using the Lytro light-field camera, with both diffuse and specular reflections.
We compare our specular and diffuse separation against Mallick et al. [7] and Yoon et
al. [8], and our depth estimation against Tao et al. [4]. Our main contributions are
1. Light-field depth estimation with glossy surfaces. This will be the first published
light-field depth estimation algorithm that supports both diffuse and glossy surfaces.
Upon publication of this work, image datasets and code will be released.
2.4D EPI light source color estimation. We perform the multiple viewpoint light source
analysis by using and rearranging the light-field’s full 4D EPI to refocus and extract
multiple-viewpoints. Because of the light-field data’s small baseline, shearing the light-
field EPI gives us the refocusing ability. The framework distinguishes itself from the
traditional approach of specular and diffuse estimation for conventional images by pro-
viding better results and supporting multiple light source colors.

3. Specular-free image. We use the light source color estimation to create a specular-
free image by using the full 4D EPI for robustness (Algorithm 1).

4. Iterative depth estimation. We develop an iterative framework that uses the specular-
free image to improve depth estimation.
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Fig. 2. Diffuse vs. Glossy Surfaces. This simple three view example shows that a diffuse surface

will have minimal color changes. In a glossy surface, we can see color intensity changes that are
correlated to the light source position and color. We use this property in this paper to estimate
the light source color.
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Fig. 3. The Light-Field Advantage. To perform the analysis as shown in Fig. 2, we first refocus

to the plane of interest and then extract multiple views. Both processes are made possible by
rearranging the light-field data. Because no additional correspondence is needed, the analysis
robustly estimates the light source color, improving diffuse-specular separation and depth esti-
mation.

2 Previous Work

Estimating depth and separating diffuse-specular components have been studied exten-
sively. In our work, by using the full light-field data, we show that the two can work
hand-in-hand to improve each others’ results.

Defocus and correspondence depth estimation. Depth estimation has been stud-
ied extensively through multiple methods. Depth from defocus requires multiple ex-
posures [10, 11]; stereo correspondence finds matching patches from one viewpoint to
another viewpoint(s) [12—-14]. The methods are designed for Lambertian objects and
fail or degrade for glossy or specular surfaces, and also do not take advantage of the full
4D light-field data.

Light-field depth estimation. More recent works have exploited the light-field data
by using the epipolar images [4, 5, 15]. Because all these methods assume Lambertian
surfaces, glossy or specular surfaces pose a large problem. In our work, we use the full
4D light-field data to perform specular and diffuse separation and depth estimation. The
iterative approach directly addresses the problems at specular regions. In our compar-
isons, we show that specularities cause instabilities in the confidence maps computed in
Tao et al. [4]. Specular regions retain incorrect depth values with high confidence, of-
ten causing the regularization step by Markov Random Fields (MRF) to fail or produce
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incorrect depth in most places, even when specularities affect only a part of the image
(Figs. 7 and 8).

Multi-view stereo with specularity. Exploiting the dichromatic surface properties in
Fig. 2 has also been studied through multi-view stereo. Lin et al. [16] propose a his-
togram based color analysis of surfaces. However, to achieve a similar surface analysis
as Fig. 2, accurate correspondence and segmentation of specular reflections are needed.
Noise and large specular reflections cause inaccurate depth estimations. Jin et al. [17]
propose a method using a radiance tensor field approach to avoid such correspondence
problems, but, as discussed in the paper, real world scenes do not follow their tensor
rank model. In our implementation, we avoid the need of accurate correspondence of
real scenes by exploiting the refocusing and multi-viewpoint abilities in the light-field
data as shown in Fig. 3.

Diffuse-specular separation and color constancy. Separating diffuse and specular
components by transforming from the RGB color space to the SUV color space such
that the specular color is orthogonal to the light source color has been effective; how-
ever, these methods require an accurate estimation of or known light source color [7,
18, 19]. Without multiple viewpoints, most diffuse and specular separation methods as-
sume the light source color is known [8, 7,20-24]. As noted by Artusi et al. [25], these
methods are limited by the light source color, prone to noise, and work well only in
controlled or synthetic settings. To alleviate the light source constraint, we use simi-
lar specularity analyses as proposed by Sato and Ikeuchi and Nishino et al. [26,27].
However, prior to our work, the methods require multiple captures and robustness is
dependent on the number of captures. With fewer images, the results become prone to
noise. We avoid both of these problems by using the complete 4D EPI of the light-
field data to enable a single capture that is robust against noise (Fig. 5). Estimating
light source color (color constancy) exhibits the same limitations and does not exploit
the full light-field data [28, 29]; however, these analyses are complementary to Eqn. 5.
Since we are using the full light-field data, we can also independently estimate the light
source color that each pixel is reflecting, enabling us to estimate more than just one
light source color (see supplementary).

3 Theory and Algorithm

In this section, we explain the relationship between the dichromatic reflectance model
and light-field data. The relationship enables us to estimate the light source color(s).
We will then describe our algorithm that uses the light source color to improve depth
estimation.

3.1 Background

Dichromatic reflection model The basis of the algorithm revolves around diffuse and
specular properties where diffuse is independent of view angle changes while specular
is dependent. We use the dichromatic model for the bidirectional reflectance distribu-
tion function (BRDF) [6]. The dichromatic BRDF surface model, f, has the following
expression,
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Fig. 4. Micro-lens With Diffuse and Specular Surfaces. In a scene with both specular and diffuse

surfaces (a), the light-field image consists of different micro-lens behavior for specular and dif-
fuse. For diffuse surfaces, the micro-lenses have consistent pixels (b). For specular surfaces, the
lenses consist of different pixels that are influenced by the specular reflection term (c). This is
consistent with our proposed analysis in Fig. 3, which we use to estimate the light source color.

A 0) =ga(A) fa + 95 fs(O) (1

where )\ is the wavelength and © represents the camera viewing angle and incoming
light direction. g4 is the spectral reflectance and f; and f5 are the diffuse and specular
surface reflection multipliers respectively. Because we are dealing with dielectric ma-
terials, g5 is wavelength independent. The image captured by the camera can then be
rewritten as

I, = (D fa+ Spfs(©))n -1

I, = (D fa+ Li.fs(©))n -1 @)

n and | are the surface normal and light source direction with k as the color channel. D
is the diffuse color multiplied by the light source color, while S is proportional to the
light source color. The top equation rewrites the dichromatic surface model (Eqn. 1) in
terms of the surface normal and light direction. Sy, f,(©) can be rewritten as Ly, f(O),
where f, = g, - fs(©) and L is the light source color. Note that the diffuse compo-
nent only depends on surface normal and light source direction. However, the specular
component depends on ©, or the camera viewpoint, making the color intensity view
angle dependent. We will exploit the two properties through the following steps of our
algorithm. We drop the n - 1 term for simplicity because the term acts as a modulator,
and does not affect the color, on which our separation algorithm is based.

Light-field data and the dichromatic model The light-field image encodes both spatial
and angular information of the scene. The light-field image is represented by z, y, u, v,
where x, y and u, v represent the spatial and angular domains respectively. With a light-
field image, rearranging the pixels enables refocusing while extracting pixels from the
micro-lens array gives multiple-views [3], described in Eqn. 3.

Rearranging the pixels to refocus allows us to perform the analysis in Fig. 3, 4.
When the light-field is rearranged to focus to a certain point, the viewing directions
all converge to that point. In such cases, diffuse surfaces will be registered the same
from all viewpoints because the diffuse component is independent of © in Eqn. 2. In
specular cases, since @ is changed with the viewpoint, we estimate L by analyzing the
color differences. The goal of our algorithm is to estimate L by exploiting this property
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Algorithm 1 Specular-Diffuse Separation for Depth

1: procedure SEPARATION(/)

2 initialize Ip, L,

3 Ip =1 > Diffuse as input LF image
4: L, = % [1,1,1] > [R,G,B]; Light source is white
5: LA o0

6 while Lipes < La do

7 Depth = DepthEstimation(Ip)

8 L,M;,Mp = LightSourceEstimation(/, Depth)

9 Ip = SpecularFree(I, L, My, Mp)
10: La =|L — Ly|

11: Ly =L

12: end while
13: return Ip, Depth, L
14: end procedure

of the light-field data. This differentiates our work from previous works of estimating L
because we avoid the use of accurate correspondence and have pixel-based light source
support, enabling estimation of multiple light source colors.

3.2 Algorithm

Our algorithm consists of three steps (Algorithm 1). The input is the light-field image
captured by the Lytro camera, I. The first step (line 7) estimates depth, Depth, from the
light-field image. The second step (line 8) estimates the light source color, L, for each
pixel by using the refocusing and multi-perspective viewpoint with the depth estimation
from the first step. The third step (line 9) separates the specular-free image, Ip, from the
original light-field image input. Because depth estimation is reliable with Lambertian
diffuse surfaces, the specular-free estimation improves depth estimation. We iteratively
use the result from the separation to re-perform the computations of steps 1 to 3 (lines
7-9). The estimations of I, Depth, and L show improvements over the iterations (see
supplementary). We then regularize the depth estimation with a MRF technique (line
14) presented by Janoch et al. [30].

In the beginning of the algorithm, we initialize the diffuse buffer, Ip, as the original
light-field input, I; the estimated light source color, L, as % [1,1,1]in [R, G, B] vector
form (we normalize the L color vector as explained in Eqn. 6); and L as co. The
iterations stop when the current L estimation has a root mean squared difference from
the previous iteration, L,, that is less than a threshold, L 4.

Depth estimation for refocusing (Line 7) Before we can estimate L at each given pixel,
refocusing to each of the pixels in the scene is required to perform the analysis as
shown in Fig. 2. We use the recent algorithm by Tao et al. [4], which is one of the first
published depth estimation methods for the Lytro camera, and combines defocus and
correspondence. However, other approaches such as Kim et al. [15] could also be used
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as we are using I p, the specular-free estimation, as input. After the depth is computed,
at each pixel, we have an approximation of where to refocus the image. Depth(z, y)
registers the depth of each image pixel.

Exploiting refocus and multiple views for light source color estimation (Line 8) To
estimate L, we will use the depth map that was generated to refocus and create multiple
views. L(z,y) is the estimate of the light source color at each pixel.

For each depth, we have the light-field input image, I (z, y, u, v), where x, y and u, v
represent the spatial and angular domains respectively. As explained by Ng et al. [3],
we remap the light-field input image given the desired depth as follows,

1 1
Il 0) =1 (24 ul = 2o+ o(1 = 3o ®

a = 0.2+0.007 x Depth, where Depth ranges from 1 to 256. The « and range are scene
dependent; however, we found these parameters to work for most of our examples.

For each depth value, we compute the color intensity changes within u, v of each
x, y to perform the analysis shown in Fig. 2. Within u, v, we cluster them into specular-
free (diffuse only) pixels, and specular pixels. By looking at the difference in centroids
between the clusters (the specular intensity may vary at different views, but the color
remains consistent), we classify two sets of pixels: n pixels with both diffuse and spec-
ular, Dfy + Lf,, and m pixels with just specular-free, D f;. The number of angular
pixels u, v in each x,y equals to n + m. We perform a k-means clustering across the
u, v pixels of each z, y to estimate the two. For simplicity, the two centroids of the two
clusters will be denoted as ({.) denotes the expected value),

MI(m,y):<Dfd—|—Lfs>(x,y,n) (4)
Mp ($7 y) = <Dfd>(x7 Y, m)
In our implementation, the k-means uses 10 iterations. To compute L f_s, we subtract the
two centroids

Lfs(x,y) :Mf(x7y)_MD($7y) (5)

The Mp characterizes the specular-free term, and, if specular variations occur, M7 —
Mp characterizes the specular term. The specular term is proportional to the light
source color intensity. Because L f, represents the light source color with a multiplier,
we will normalize each channel, k, of L f(x, ) to find Ly(z, y),

Lk f s (:17 ) y)
Li(x,y) = 7757 (6)

1L fs(, )l
For pixels without the specular term, | M (z,y) — Mp(z,y)| =~ 0 because Ly, f is close
to zero, while pixels with the specular term or occlusions will not be zero. To differ-
entiate between specular and occlusion areas in the light source color estimation, we
want higher confidence in regions where the brightness of M and the distance between
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the two centroids are high. We characterize the confidence value for each L(z,y) as
follows,

Crlxz,y) = e~ Bo/|M1(,y)|=B1/|M1(2,y)—Mp (2,y)|+B2/R 7

where R is the average intra-cluster distance, 3, is a constant parameter that changes the
exponential fall off for the brightness term, (31 is the fall off parameter for the centroid
distance term, and [35 for the robustness of the clustering. In our implementation, we
used 0.5 for both 3y and 57 and 1 for S5.

We can now separate the light source color at each pixel. However, for greater con-
sistency, we perform a weighted average. For a scene with one light source, we average
the light source estimation buffer, L, with the confidence map:

Light Source Color = (C(x,y)L(x,y)) (8)

where the expected value is normalized by the sum of Cf,(z, y).

For more than one light source, we perform a k-means cluster to the number of
light sources. For each cluster, we perform the same weighted average to compute the
light source colors. In our supplementary, we show two examples of two different light
sources. The left shows an example with two highly glossy cans lit by two different light
sources. The right shows a scene with two semi-glossy crayons lit by the same two light
sources. In both cases, our algorithm estimates both light source colors accurately.

Discussion We find the correct light source color, but as with most similar bilinear
problems involving a product of illumination and reflectance, we do not recover the
actual intensity of the light source. If the specularity component is saturated throughout
all (u,v), Mp does not represent specular-free color, causing the metric to fail. When
fs is small or the specular term is not present, the metric is unreliable. In both of these
cases, the confidence level, C, is low. These pixels are shown as zero (see supplemen-
tary). However, the pixels with high confidence suffice to estimate one or more light
source colors, and create the specular-free image and depth map.

Generating the specular-free image (Line 9) Using the L buffer from the previous step,
we can compute a specularity-free image by using the full light-field data. For each
pixel, z,y, u, v, of the light-field image, we subtract the specular term L fs, which is
represented by M; — Mp. For robustness, we search through a small neighborhood
around z,y, u, v and compute an average of the specular term. Since not all pixels in
the image contain L f,, we weight the subtracted specular value by favoring higher
confidence of the light source estimation, C'r,, and smaller difference between the pixel
color, I(x,y,u,v), and the neighbor’s M (which represents D f; + Lf,). We use the
following equation to compute the specular-free image:

Dfd(xv Y, u, U) = I(.’L’, Y, u, ’U) - <W X (Mf(xlv y/) - MD($/7 y/))> 9
W = =¥/ (Cr(@y") x| (z,y,u0)—Mr(z',y")]) ©)
where 2/, 3/ are within the search window around z, y, u, v. We normalize the value by
the sum of the weights. In our implementation, we use a 15 x 15 search window and
v = 0.5.
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Fig. 5. Quantitative Synthetic Results. We use synthetic light-field inputs to verify our light source
estimation, specular-free image, and depth estimation. We added Gaussian noise with zero mean
and variance as the variable parameter. We compute the RMSE of our results against the ground
truth light source color, diffuse image, and depth map. In the left, the light source estimation error
is linear with the Gaussian noise variance, while yielding low error. In the middle, because we
use the complete 4D-EPI to remove specularity, our specular-free result RMSE is very low. In the
right, the RMSE for depth estimation also performs favorably to increased noise. At variance of
0.02, the input image exhibits high noise throughout the image, but our method performs well,
even qualitatively (Fig. 6).

4 Results

We verified our results with synthetic images, where we have ground truth for the light
source, and diffuse and specular components. For all real images in the paper, we used
the Lytro camera. We tested the algorithms across images with multiple camera param-
eters, such as exposure, ISO, and focal length, and in controlled and natural scenes.

Quantitative validation In Figs. 5 and 6, we generated a scene using PBRT [31]
with a matte material red wood textured background and a similarly textured sphere
with Kd as the texture, Ks of color value, [1,1,1], and roughness of 0.01. We have
six point light sources scattered throughout the scene behind the camera with the same
normalized color of [0.03, 0.63, 0.78]. We added Gaussian noise to the input image with
mean of 0 and variance between 0 and 0.02. Our light source estimation, diffuse, and
depth estimation errors increase linearly with noise variance (Fig. 5). Qualitatively, our
algorithm is still robust with high noisy inputs (Fig. 6).

To measure the accuracy of our L color estimation, we took two examples of con-
trolled scenes. Both contain two light sources: one with highly glossy cans and the
other with semi-glossy crayons. The light source estimations are consistent with the
ground truth colors (see supplementary). Pixels that are indicated as black have low
confidence values, Cr,. We used a complex scene with multiple colors and materials
with one known light source color (see supplementary). The light source estimation
converges to the ground truth light source color. We tested the result by using a far-off
initial light source estimate, [0, 0, 1]. After 15 iterations, the light source estimation is
[0.62,0.59,0.52], which converges to the ground truth value of [0.60,0.61,0.52].

Depth map comparisons To qualitatively assess depth improvement, we compare
our work against Tao et al. [4]. We also compare against Wanner et al. [5], and Sun
et al. [9] in our supplementary. We tested our algorithm through multiple scenarios in-
volving specular highlights and reflections. In Fig. 7, the top left shows an example
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Fig. 6. Qualitative Synthetic Results. Using the zero noise and a high Gaussian noise with a vari-
ance of 0.02 as inputs, we can see that our specular-free image is very close to the ground truth,
showing our algorithm’s robustness against noise and successfully removing the six specular
reflections on the sphere.
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of a glossy butterfly. Our result is not thrown off by the specular surfaces. Tao et al.
shows inconsistent depth registrations at specular surfaces because these regions have
incorrect depths with high confidence values, which is also apparent in Fig. 8. The top
right is an example of a glossy plant. Our algorithm generates a much more reasonable
depth map while Tao et al. fails due to instability in confidence and depth estimation in
glossy regions. In both sculpture examples, we have sculptures with different specular
properties and complex shapes under low light. Our method is able to recover the sur-
faces. In Fig. 8, our method correctly estimates the shape of the dinosaur in a complex
scene where both the dinosaur and cloth have glossy surfaces; the locks example also
benefited from our specular separation. In both cases, we outperform Tao et al.’s depth
maps.

Specular-free image comparisons We verified specular reflection separation im-
provements over iterations (see supplementary). The specular color, after multiple it-
erations, is close to the light source color. We also compare our work against Mallick
et al. [7] and Yoon et al. [8]. In Fig. 8, we tested the algorithms on two difficult cases.
In the dinosaur example, we chose a glossy cloth for the background, and a glossy di-
nosaur with highly glossy teeth. Our result removes the reflections correctly while the
other methods produce heavy artifacts and fail to remove most of the cloth’s glossiness.
In the locks example, our method correctly removes the glossiness from the metallic
locks and road reflectors in the background. The other methods result in heavy artifacts.
This is clearly shown in the specular components of the other methods. Both Mallick
et al. and Yoon et al. bias the specular estimation close to white; while in real world
scenarios, light sources are not always white.

Limitations and Discussion Because of the small-baseline nature of light-field data, the
light source cannot be too close to the reflective surface. In these situations, the light
source cannot be easily detected as it will not move too much with respect to the view-
point change. Saturated highlights also cannot be completely removed. As explained in
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Fig.7. Depth Map Comparisons. We compare our results against Tao et al. [4]. On the top left,
the butterfly is placed perpendicular to the camera direction. Our depth estimation shows more
consistent depth registration. Tao et al. shows spikes and instabilities in glossy regions. On the top
right, we have a glossy plant, where our result still produces consistent results and Tao et al. show
inconsistent depth registrations. On the bottom two, we have two different complex sculptures with
different specular properties. The glossy surface creates instabilities in Tao et al.’s algorithm,
which fails to estimate both depth and confidence correctly. Even in this complex glossy scene,
our algorithm produces reasonable results that far outperform Tao et al.

Eqn. 5, in these cases, Mp(x,y) does not represent the specular-free color, making the
estimation hard. However, our confidence measure prevents this from affecting results
and is further alleviated through our window search as described in our specular-free
image generation. As with most specular-diffuse separation methods, our method does
not perform well with mirrors and other highly specular surfaces. By using the dichro-
matic model described in Eqn. 1, our algorithm supports dielectric materials only, and
will not work as well for metallic or highly specular surfaces, where highlights also take
on the material color.

5 Conclusion and Future Work

In this paper, we present an iterative approach that uses light-field data to estimate and
remove the specular component, improving the depth estimation. The method is the
first to exploit light-field data depth estimation to support both specular and diffuse
scenes. Our light-field analysis uses a physically-based method that estimates one or
multiple light source colors. Upon publication, image datasets and source code will be
released. The source code will allow ordinary users to acquire depth maps using a $400
consumer Lytro camera, in a point-and-shoot passive single-shot capture, including of
specular and glossy materials. For future work, we will expand our analysis to more
general reflection models to separate specular components for dielectric materials and
incorporate shading information to improve robustness of the depth map regularization.

Acknowledgements We acknowledge support from ONR grants N00014-09-1-0741
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Fig. 8. Specular-Free Comparison. We compare our separation results against Mallick et al. [7]
and Yoon et al. [8] and depth results against Tao et al. [4]. Our outputs are highlighted in yellow.
Our method uses the depth maps to estimate L, which provides a significant benefit in generating
our specular-free image. In the dinosaur example, our method’s diffuse result shows reduced
reflections on the very glossy teeth and semi-glossy cloth and scales of the dinosaur while the
other methods result in artifacts. Because of the glossiness of the whole scene, Tao et al. fail
dramatically due to the MRF instability in glossy surfaces, where confidence is high and depth is
inaccurate. In the bottom, we have a natural outdoor scene with locks and street reflectors in the
background. Both the metallic areas of the lock and the street reflector are correctly removed, but
the other methods show hole artifacts. Both Mallick et al. and Yoon et al. exhibit noisy artifacts in
the results, and incorrectly estimate the light source color as close to white. Note: our result does
not completely remove saturated highlights, which is discussed in limitations and discussion. The
results are best seen electronically and in our supplementary materials.
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