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Abstract. We propose a learning-based approach for novel view syn-
thesis for multi-camera 360° panorama capture rigs. Previous work con-
structs RGBD panoramas from such data, allowing for view synthesis
with small amounts of translation, but cannot handle the disocclusions
and view-dependent effects that are caused by large translations. To ad-
dress this issue, we present a novel scene representation—Multi Depth
Panorama (MDP)—that consists of multiple RGBDa panoramas that
represent both scene geometry and appearance. We demonstrate a deep
neural network-based method to reconstruct MDPs from multi-camera
360° images. MDPs are more compact than previous 3D scene represen-
tations and enable high-quality, efficient new view rendering. We demon-
strate this via experiments on both synthetic and real data and com-
parisons with previous state-of-the-art methods spanning both learning-
based approaches and classical RGBD-based methods.

Keywords: 360° panoramas, view synthesis, image-based rendering,
virtual reality

1 Introduction

Panoramic images have been widely used to create immersive experiences in
virtual environments. Recently, commercial 360°cameras like the Yi Halo and
GoPro Odyssey have made panoramic imaging practical. However, the classi-
cal panoramic representation only allows for a 3-DoF experience with purely
rotational movements; it does not support translational motion, which is neces-
sary for a true 6-DoF immersive experience. While recent work has leveraged
panoramic depth to generate 6-DoF motion [23,27], it is highly challenging
for these RGBD-based methods to handle extensive disocclusions and view-
dependent effects caused by large movements. Meanwhile, deep learning tech-
niques for view synthesis have demonstrated photo-realistic results [20, 34, 37];
however, these methods are not designed for panoramic inputs and rely on per-
viewpoint scene representations that are expensive to store and render.

Our goal is to enable realistic, practical and efficient novel view synthesis that
supports translational motion with parallax for complex real scenes. To this end,
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Fig. 1. We use 360° image data captured from a Yi-Halo camera (a), which consists
of a ring of cameras as shown in (b). We present a learning based approach to recon-
struct novel Multi Depth Panoramas (MDP) from these multi-view images, which can
synthesize novel view images with both rotational and translational motions. We show
panorama results using our MDPs from the center of the device (c) like the standard
panorama synthesis, and also from a translated position (d) out of the rig. Note how
the camera moves toward the counter. Our method accurately reproduces challenging
disocclusion effects as shown in the cropped insets, which are significantly better than
previous state-of-the-art methods that are based on RGBD representations [1, 27]. For
better details on all the figures, please view the electronic version of this paper.

we propose Multi Depth Panoramas (MDPs)—a novel, compact, geometry-aware
panoramic representation inspired by classical layered depth images (LDIs) [28]
and learning-based multiple plane images (MPIs) [37]. MDPs consist of a small
set of multi-layer RGBDa (RGB pixel intensity, depth, opacity) panoramas that
fully express complex scene geometry and appearance.

We demonstrate the use of MDPs for novel view synthesis from images cap-
tured by commercial 360° camera rigs such as the Yi Halo that consist of a
sparse array of outward-facing cameras placed in a ring. Previous work proposes
limited translational motion [27] using RGBD panoramas reconstructed from
this setup [1]. In contrast, we propose an efficient MDP-based rendering scheme
that handles challenging occlusions and reflections that cannot be reproduced by
state-of-the-art RGBD-based methods (see Fig. 1). Our flexible MDP representa-
tion can encode an arbitrary number of layers, degrading gracefully to a regular
RGBD panorama when using a single layer. MDPs are also much more compact
than previous representations, providing either a similar or significantly better
view synthesis quality using fewer layers, as shown in our experiments in Tab. 2.
Finally, by encoding the entire 360° panorama in a global representation, MDPs
allow for complete panoramic view synthesis, unlike previous methods that focus
on synthesizing limited field-of-view images (see Fig. 2).

Our contributions can be summarized as:



Deep Multi Depth Panoaramas for View Synthesis 3

a 360° layered scene representation called Multi Depth Panorama (MDP),

offering a more compact and versatile 3D representation than previous work

(sec. 3);

— alearning-based method to convert images from common 360° camera setups
into our MDP representation (sec. 4.1-4.3);

— an efficient novel view synthesis method based on MDP (sec. 4.4);

— experiments to demonstrate the advantages of the MDP compared to existing

representations (sec. 6).

2 Related Work

View synthesis. Novel view synthesis has been extensively studied in computer
vision and graphics [7], and has been performed via approaches such as light
fields [12,18] and image-based rendering [5, 10,29]. Recently, deep learning has
been applied in many view synthesis problems; the most successful ones leverage
plane sweep volumes to infer depth and achieve realistic geometric-aware view
synthesis [11,16,34,37,9]. We leverage plane sweep volumes to construct per-
view MPIs, similar to [37]. By merging multiple MPIs from multiple views in a
360° camera, we construct MDPs for 6-DoF view synthesis.

Layered representation. Layered and volumetric representations have been
applied in 3D and view synthesis applications [28, 8, 26, 35, 4, 37]. Unlike a single
RGBD image, layered representations make the scene content occluded behind
the foreground viewable from side views. In their seminal work, Shade et al. [28]
introduce the Layered Depth Images (LDIs) and Sprites with Depth (SwD) rep-
resentations to render scenes using multiple RGBD images. Our methods shares
the RGBDa concept used in SwD, with the distinction that we reason holis-
tically on the 360° scene while SwD decomposes it into multiple independent
sprites. LDIs has been extended to a panoramic case [36], where multiple con-
centric RGBD panoramas are reconstructed. In addition, Zitnick et al. [38] uti-
lizes multiple layers with alpha matting to produce interactive viewpoint videos.
In concurrent work, Broxton et al. [3] propose the multi-sphere image (MSI)
representation for 6-DoF light field video synthesis, yielding accurate results but
involving a memory-heavy process. In contrast with previous representations,
we propose a learning-based method to reconstruct multiple memory-efficient
RGBDa panoramic images for 6-DoF rendering. Our method uses differentiable
rendering to recover smooth object boundaries and specularities that are hard
to reproduce by RGBD representations alone.

Zhou et al. [37] leverage a deep network to predict multi plane images (MPIs)
[31] for realistic view extrapolation. These MPIs are a dense set of fronto parallel
planes with RGBA images at an input view, which enable rendering novel view
images locally for the view. Some recent works have extended this local view
synthesis technique for large viewing ranges [30, 20]. Mildenhall et al. [20] recon-
struct MPIs at multiple views and fuse the 2D renderings from multiple MPIs to
enable large viewpoint motion [20]. However, such a 2D image-level fusion tech-
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Fig. 2. 3D scene representations: the multiplane image (a) proposes a planar represen-
tation of the scene. In contrast, the layered depth image (b) encodes multiple depth
pixels along a ray. RGBD panoramas (c) encode the scene distance per-pixel from a
reference cylinder. Our multi depth panorama (d) takes inspiration from those previous
representations, where depth is encoded on each cylindrical shell.

nique requires expensively storing and rendering multiple view-dependent MPIs.
We leverage MPIs for panorama rendering and introduce multi depth panora-
mas (MDPs) that are view-independent RGBDa images. We propose to fuse
per-view MPIs in a canonical 3D space for MDP reconstruction, which allows
for efficient view synthesis from a sparse set of RGBDa images.

6-DoF rendering. Standard 360° panoramic rendering only allows for 2D ex-
perience with 3-DoF rotational motion. Omni-directional stereo [15, 21] has been
introduced to provide 3D stereo effects by leveraging panoramic depth [1]. More
advanced capture hardware can support 6-DoF rendering of 360° video [23], but
there is also research to enable 6-DoF for more accessible hardware. Researchers
have designed systems to acquire static scenes with different camera motions
over time [14,19,2,13] but they are unable to capture dynamic scenes without
artifacts. Other works use ring cameras to capture dynamic scenes and store
the scene model in single layer panoramas [32] or as a panorama with a static
background [27], but still have significant artifacts around object boundaries,
areas of poor depth reconstruction, and for large viewer head motions.

3 Multi Depth Panoramas

Given a 360° camera setup with k cameras, our goal is to infer a layered scene rep-
resentation that allows for high-quality 6-DoF novel view rendering. To achieve
this, we propose the multi depth panorama (MDP) representation.

The MDP representation is inspired by Layered Depth Images (LDI) [28] and
Multiplane Images (MPI) [37,30,20] (shown in Fig. 2(a) and (b) respectively).
LDIs and MPIs have been previously used as image-based representations and
encode only a limited field-of-view; instead, we are interested in representing the
entire 360° scene. Previous work has used RGBD panoramas (Fig. 2(c)) for novel
view synthesis for panoramas [27] but this does not encode sufficient information
to render the disocclusions that are produced at large translations.

Motivated by these limitations of previous representations, we propose the
MDP. An MDP consists of a sparse set of RGBD« panoramas that divide the
3D space into annulus-like cylindrical regions, as shown in Fig. 2(d). Each layer
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[ encodes color C, depth D; and pixel transparency «; of its corresponding re-
gion. Consequently, the MDP representation can be denoted by a set of RGBD«
layers as (Co, Do, ag), ..., (Cr, Dr,ay), where L specifies the maximum number
of cylindrical shells. This representation can be thought of as a set of cylindri-
cal shells representing the 3D scene, where in each shell, a pixel is composed of
five channels—diffuse RGB color, an alpha channel for occupancy, and a depth
channel for finer control over 3D geometry. These components allow for both a
more accurate and a more compact representation than previous work. In order
to synthesize novel views, we can forward splat each layer onto the target image
plane and then perform the standard “over” alpha compositing operation [22].

While similar to an MPI in its use of RGB and « layers, our representation
provides the following main benefits over the MPI:

Compactness The main advantage of the proposed MDP is its compactness,
yielding an appreciable compression ratio over existing representations. For ex-
ample, an MPI discretizes the scene into multiple depth planes and requires a
large number of such planes (32-128 [37,20]) for high-quality view synthesis for
complex scenes. In contrast, an MDP explicitly stores the depth value allowing it
to represent complex scene geometry with a small set of shells; we demonstrate
this experimentally in Sec. 6.

Free of depth conflicts Our MDP representation offers a canonical scene rep-
resentation for merging different views and resolving depth conflicts. MPI planes
are created in the viewing frustum of each input camera. In our 360° setup, where
individual cameras are placed in an outward-facing ring, there are significant
differences between these planes, making it difficult to blend between adjacent
per-view MPIs. To address this issue, we adopt a canonical cylindrical coordi-
nate system across all viewpoints, allowing a neural network to automatically
resolve depth conflicts and blend viewpoints. This also allows us to construct a
single global MDP instead of storing multiple per-view MPIs [20].

Geometry accuracy The depth component grants the MDP the same 3D
representational accuracy as a point cloud. This increased accuracy over MPI’s
equidistant planes prevents depth quantization artifacts [28], which are typically
more noticeable when the scene geometry is observed from grazing angles, and
leads to view synthesis results with fewer visual artifacts around geometry edges.

4 Reconstructing and Rendering MDPs

In this section, we describe our method to a) construct MDPs from images
captured with a 360° camera setup, and b) render novel viewpoints from this
representation. An overview of the full pipeline is shown in Fig. 3.

Given multiple images and their corresponding camera parameters, we first
construct per-view MPI volumes (Sec. 4.1). We then project these MPI volumes
to a canonical space—a cylindrical coordinate system centered at the center of
the 360° camera—and collapse them into a compact per-view MDP (Sec. 4.2).
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Fig. 3. Overview of our pipeline. Our network first warps multi-view images to each
view to construct per-view PSVs, and leverages a 3D CNN to predict per-view MPIs.
These MPIs are projected to a canonical cylindrical coordinate in the world space. We
group these per-view MPIs by different radius ranges and collapse them to reconstruct
per-view MDPs. The per-view MDPs are finally blended into a single global MDP,
which can be used to render new novel view images using forward splatting.

Finally, we blend the different per-view MDPs into a single MDP representation
(Sec. 4.3). Given the reconstructed MDP representation, we can render novel
views efficiently using forward splatting (Sec. 4.4).

4.1 Reconstructing per-view MPIs from images

In the following, we describe our pipeline for predicting per-view MPI volumes
from a 360° camera setup. Our pipeline takes k input views and their correspond-
ing camera parameters as input. For each viewpoint, we create a plane-sweep
volume (PSV) by warping images from the four nearest neighboring cameras as
shown in Fig. 3. Following previous work [20], we sample the depths linearly in
disparity to ensure that the resulting PSV covers accurate object depths.
These PSVs are processed by a 3D CNN that predicts an MPI volume. Please
see the supplementary material for a full description of our 3D CNN. Taken
as is, these MPI volumes require a large amount of memory to perform novel
view synthesis. For example, Mildenhall et al.[20] use 32-128 depth planes for
their experiments. We address this by projecting these MPI volumes to canonical
cylindrical coordinates and collapsing them into a compact MDP representation.

4.2 Per-view MPIs to Per-view MDPs

The previous step gives us, for every input view v, an L-layer MPI volume. Our
goal is to convert these multiple limited field-of-view volumes into a compact and
unified representation. We do this by projecting each MPI volume to a canonical
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cylindrical coordinate system with its origin at the center of projection of the
entire camera rig. Concretely, for a pixel (xs,ys) on layer [ of the MPI for view
v, its corresponding 3D point in the global world coordinates is given by:

LT Ts
Yw _ —17—1 Ys
Zw - EwEv Iv ]-/dl ’ (1)
1 1

where d; represents the depth of layer [, I, and FE, are the intrinsic and extrinsic
matrices of the camera view v, and E,, is the extrinsic matrix for the geomet-
ric center of our camera rig. Once projected to the world coordinates, we can
calculate their cylindrical coordinates (p, ¢, z) as:

Pw =V $w2 + nga ¢w = arctan (yw/xw)' (2)

Applying the above operation to an MPI volume produces a point cloud of
3D points each with the color, depth, and opacity. Moreover, since each pixel
coordinate in the MPI volume has multiple points at different depths, in the
cylindrical coordinate system this leads to a set of multiple points along rays
originating from the origin. We collapse this large set of points into a more
compact set. More specifically, we divide the 3D space into a small number
M << L of annulus-like 3D cylindrical regions with equidistant radius ranges
that cover the entire scene from the nearest to the farthest radius. We bin the
3D MPI points into these M bins based on the radius p,, (see Fig. 4).

For each subset of points within the same bin, we use a back-to-front “over”
alpha compositing operation (as is used to render novel views with MPIs [37,
20]) to compute a single RGBDa value. Because the over operator is associative,
we can process each bin individually. Thus, this operation replaces a large set
of RGBa values with a single RGBDa« value, thereby significantly reducing the
data footprint of the representation. In practice, as demonstrated in Tab. 2, we
find that even 2—4 layer MDPs produce results better in visual quality than MPIs
with 32 layers, leading to a significant compression.
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4.3 Per-view MDP Blending

The previous step produces k per-view MDPs with M layers each. Next we
blend them all into a single global MDP. Since all the MDPs are in a canonical
cylindrical representation, we can blend the individual corresponding layers. If
layer m for the view-v MDP is represented as (Cy,, D?,, a?,), the blended global
MDP is given by:
(Cm,DW“am) — va am(Cm7Dm7am). (3)
iwray,

This represents a weighted average of the color, depth, and opacity of the per-
view MDPs where the weights are a product of the opacity and a per-view
weight, w? that we set to the cosine of the angular difference from the optical
axis, which gets lower the further a pixel is away from the principal point.

4.4 Differentiable MDP Rendering with Forward Splatting

In this section, we describe our differentiable rendering module. It is achieved
by forward splatting and utilizing soft z-buffering to resolve depth conflicts.

One distinction from previous MPI methods is that we cannot do planar
homography warping for each layer to synthesize a novel view since each layer
now lies on a cylindrical shell with a depth component. In order to render novel
viewpoints, we treat the predicted MDP representation as a set of RGBa point
clouds and forward-project each point onto the target image plane. Concretely,
we can get the world coordinates (2, Y, 2w) by doing the inverse of the cylin-
drical coordinate transformation (Eqn. 2) and then splat these points onto the
target image plane with a bilinear kernel.

Directly projecting the points to their corresponding target location might re-
sult in depth conflicts. Similar to rasterization, when a query ray passes through
several surfaces along its direction, the resulting pixel might simultaneously have
different color information. To ensure only the closest pixel is selected, we use
z-buffering to resolve the conflicts. Since z-buffering is non-differentiable, we in-
stead employ soft z-buffering [24, 33] to compute the weighted average pixel value
C(z,y) of all conflicting pixels. Soft z-buffering can be formulated as:

STIRND Dol 20" Gl ol
C(IE, y) - Z e(d(m,y)—dmaw)T ’ (4)

where C(z,y) and d(z,y) denote the pixel value and inverse depth value at (z, y)
of a layer, respectively. 7 is a scale factor to control the discriminative power of
soft z-buffering. The maximum inverse depth across the image d,;, 4, is subtracted
to prevent overflow. As a pixel gets closer, its inverse depth d increases, thus
increasing the weight for this pixel. Finally, by resolving the self-occlusion depth
conflicts within each layer via soft z-buffering, we can then alpha-composite the
projected maps from back to front to produce the final rendering (see Fig. 3).
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5 Implementation details

In the following, we describe the datasets used and the training procedure to
learn to project images from a 360° camera setup to the MDP representation.

5.1 Dataset

Throughout our experiments, we assume the number of cameras k = 16, each
with a 100° field of view, similar to commercial cameras such as the Yi Halo and
GoPro Odyssey. Each camera viewing direction is 22.5° apart horizontally. This
configuration yields a stereo overlap of over 50% between neighboring cameras.

In order to create photorealistic training data, we chose the Unreal Engine as
our renderer since it offers complex effects and high quality rendering. We create
two datasets of different camera configurations with UnrealCV [25]: the first with
a similar sampling scheme as in [20], and the second with a ring-like camera setup
similar to the Yi Halo and GoPro Odyssey. Both datasets are generated from the
same 21 large-scale scenes, which consist of indoor and outdoor scenes modeled
with high resolution textures and complex scene geometry. These datasets offer
a large variety of albedo, depth complexity and non-Lambertian specular effects.
The first dataset contains thousands of points of interest, from each of which
we sample 6 images with a random baseline to ensure various levels of disparity.
Image resolution ranges from 320 x 240 to 640 x 480 to allow the network to
generalize on various resolutions. In the second dataset, the input images follow
the predefined 16-camera configuration, while the output images have a random
look-at direction and translational movement with a maximum radius of 25cm.
Image resolution for the second dataset is adjusted to range from 320 x 320 to
512 x 512 in order to better match the field-of-view of 360° cameras.

5.2 Training

To train our method, we adopt a two-step training scheme. During the first step,
we train the 3D CNN on the first dataset to output a per-view MPI volume.
The first step is performed by selecting 6 neighboring views, using a random set
of 5 as inputs and using the last image as a target view for supervision. During
the second step, the 3D CNN is fine-tuned end-to-end with our second dataset
by synthesizing a target view from its closest 5 cameras. The network is trained
using the perceptual loss from [6] and a learning rate of 2 x 10~* for roughly
600k and 70k iterations for each respective phase.

6 Results

We now evaluate and compare our MDP representation and panorama-based
novel view synthesis method.

Evaluation of the numbers of layers. Our approach works for an arbitrary
numbers of MDP layers. In this section, we evaluate how the number of layers
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impact the representation accuracy using a synthetic test set that consists of two
large indoor scenes different from our training set. Several hundreds viewpoints
are randomly sampled within each scene. Table 1 shows the quantitative results
of our method when varying the number of layers from one to five. Our method
consistently improves with an increasing number of layers. This increase typically
allows a more accurate representation of scenes with more complex geometry and
appearance. Note that an MDP reverts to a standard RGBD panorama when its
number of layers is one (see the first row of Tab. 1). In fact, the depth obtained
using an MDP with a single layer are significantly better than a state-of-the-art
depth estimation method [17] (see Tab. 3). The number of layers is a user-
tunable parameter that provides a trade-off between representation accuracy
and memory usage. We use five layers for the remaining experiments in this
paper. Note that, even with five layers, our MDPs are still compact and more
memory-efficient than previous learning-based methods (see Tab. 2).

Layers| PSNR{ SSIM{ L1} Table 1. Quantitative evalu-
1 25.75  0.8565 0.0269 ation of the number of MDP
2 26.17 0.8628 0.0254 layers. Please see the supple-
3 26.27  0.8655 0.0251 mentary material for additional
4 26.35 0.8661 0.0251 qualitative results.
5 26.39 0.8664 0.0251

Comparison with MPIs. Our method effectively converts the costly per-view
MPIs to the novel compact view-independent MDPs. MPIs consist of dense
planes and only support local view extrapolation, which requires rendering mul-
tiple dense sets of planes from multiple views to enable arbitrary rotational
motion. In contrast, our MDPs are in a canonical world space, which only re-
quires splatting a single sparse set of depth layers for 360° 6-DoF view synthesis.
In Tab. 2, we show the quantitative results of our method with 2 and 5 layer
MDPs. We also compare against a naive solution that directly uses the per-view
MPIs to do view synthesis with 16-view MPIs and 32 planes per MPI. For this,
following the method of Mildenhall et al. [20], we linearly blend the five neigh-
boring per-view MPI renderings with the pixel-wise cosines of the angles between
the per-pixel viewing directions and the central direction of each camera. The
corresponding memory usage of these MPIs and MDPs are shown in the table.
The naive MPI method is not able to effectively blend the multi-view render-
ings; training it end-to-end to learn the 2D blending process may improve the
quality. In contrast, our approach can leverage its priors learned during training
to merge the per-view MPIs, which leads to a method that outperforms the MPI
approach. Moreover, our method is significantly more memory-efficient, taking
an order of magnitude less memory than the MPI method.

Comparisons with other methods on synthetic scenes. We now compare
our method with other 360° view synthesis techniques that allow for translational
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Methods | PSNRt SSIM{ L1 | Dimension Storage

MPI 24.75 0.8278  0.0306 | 16 x 640 x 640 x 32 x4  3.355GB
Ours - 2 Layers 26.17 0.8628  0.0254 2560 x 640 x 2 x 5 0.066GB
Ours - 5 Layers | 26.39 0.8664 0.0251 2560 x 640 x 5 x 5 0.165GB

Table 2. Quantitative results of our method compared to a MPI-based method on syn-
thetic scenes, along with their memory usages. Please see the supplementary material
for more qualitative results.

Methods PSNRt SSIM+t L1| Table 3. Comparison on synthetic
Depth [17] as points | 23.06 0.766 0.047 scenes. We compare with other
Depth [17] as mesh | 23.75 0.780 0.040 methods that use a single RGBD

Depth [17] + [27] | 23.20 0.767 0.043 panorama for 6DoF rendering. We
Our depth + [27] 2498 0.827 0.031 show results of SSIMs, PSNRs and
Our single layer MDP| 25.75  0.857 0.027 L1 loss of these methods.
Our MDPs (5 layers) | 26.39 0.866 0.025

motion and demonstrate quantitative comparisons on our synthetic testing set.
The most popular way to do 360° rendering is to reconstruct the depth of a
panorama and render the RGBD panorama as a point cloud or mesh, as in-
troduced in [23,1]. These techniques rely on a pre-computed depth map, and
we use a state-of-the-art deep learning based depth estimation method [17] to
generate depth for input panoramas. This depth map is used to generate a cor-
responding RGBD point cloud and mesh that are used in turn to render novel
views. We also compare against a state-of-the-art method [27] that is designed to
improve the 2D images rendered from the RGBD panorama mesh by resolving
the disocclusions around the geometric boundaries.

Disparity (PSNR/SSIM) | 32 64 128
Depth [17] + [27] 22.40 / 0.7490  20.20 / 0.6911  18.17 / 0.6322
Our MDPs (5 layers) 26.90 / 0.8839  24.96 / 0.8436  21.94 / 0.7579

Table 4. Quantitative comparison on maximum disparity. Our method consistently
outperforms [27] on image quality over all tested disparity levels.

Table 3 shows the quantitative results of these methods. Our MDPs generate
significantly better results than the other comparison methods as reflected by
the highest PSNRs and SSIMs and the lowest L1 loss. We also show our single
layer MDP result in Table 3, which is essentially doing single RGBD panorama-
based point cloud rendering. Interestingly, even this performs better than the
point cloud rendering using the prior state-of-the-art depth estimation method.
This demonstrates that our method can be used as an effective panorama depth
estimation technique by estimating a single MDP. We also show that, by giving
the depth from our single MDP as input to Serrano et al.’s enhancing tech-
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Fig. 5. Visualization of synthetic results. We show two examples of synthetic results
to illustrate the visual quality corresponding to the numbers in Tab. 3.

nique [27], it improves their result over using the depth from Lee et al. [17].
Note that, Serrano et al. [27] focus on improving user experience and mitigate
unpleasant artifacts, which may decrease the accuracy of direct mesh rendering.

To visualize the comparisons, we show two results on synthetic data in Fig. 5.
Our results offers increased visual quality than all other comparison methods,
especially around object boundaries. Our results are also the most similar to
the ground truth images, which is consistent with the quantitative results in
Tab. 3. Note that, a single RGBD representation used in other methods is very
limited and cannot well reproduce the challenging disocclusion effects. This leads
to holes in the point cloud rendering, and noisy and stretched boundaries in
the mesh rendering; Serrano et al. [27] smooth out the boundaries in the mesh
rendering, which in turn introduces blurriness and distortion. Our MDPs can
describe complex scenes with multiple objects on the line-of-sight and effectively
handle challenging boundaries, disocclusions and other appearance effects.

We now analyze the robustness of our method on large disparities. To do
so, we translate the target viewpoints in our test set and record the amount
of maximum scene disparity with respect to the reference viewpoint. We use a
32-layers MPI to perform the sampling. We compare our method to [27] and
report the results in Tab. 4. In this table, we focus on larger disparity levels as
these correspond to larger translations. As expected, larger translations yields
a more difficult task, which reduces the novel view visual quality. Despite this,
our method outperforms [27] across all disparity levels. These observations also
match the sampling guidelines in Mildenhall et al. [20].

We also show an example of specular reflection in Fig. 6. Note that the other
methods use a single depth, which bakes the reflections in the object color and
fails to accurately capture the motion of reflections from different viewpoints.
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Fig. 6. Reflection effects. We show one example of specular reflection with zoomed-in
insets. Note that, our method recovers the specular reflection motion that matches the
ground truth very well, while the reflections in the comparison methods do not move.

In contrast, our novel MDP allows the reflections to be encoded at a different
depth, which effectively models the moving reflection.

Comparisons on real scenes. We now evaluate our method on complex real
scenes and compare them with the methods using RGBD panoramas. We cap-
tured these real scenes with a Yi Halo and used Google Jump Manager [1] to
stitch the multi-view images and generate the depth. Figure 7 shows the re-
sults of our method with 5-layers MDPs, rendering an RGBD panorama as a
point cloud and mesh, and using [27] to improve the mesh rendering. Similar
to the synthetic comparisons, our method produces more realistic results than
the comparison ones. Note that, the disocclusion effects introduce obvious holes
and significant discontinuous noise in the baseline point cloud rendering and
mesh rendering techniques. While [27] resolves the noisy boundaries in the mesh
rendering for better user experience, the edges are in fact distorted in many
regions and still look physically implausible. Our results are significantly more
photorealistic. Please refer to supplementary material for more experiments and
ablation study on end-to-end training.

Limitations Our proposed MDP representation can be used to represent com-
plex geometry and appearance, given enough layers. While five layers are suf-
ficient for most cases as previously shown, it might not be adapted to more
complex and challenging scenes and can exhibit blurriness or distortion. Increas-
ing the number of layers can potentially address this. Besides, our novel view
synthesis method is limited to relatively small motions for two reasons. First,
large translations will potentially expose large unseen parts of the scene, not
encoded in the MDP representation. We hypothesize that future work on gen-
erative models might provide a solution to this issue. Second, moving past the
first concentric sphere of the MDP would break the alpha ordering.
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Depth [1] Depth [1] Our MDPs

Our MDPs (5 layers) Serrano et al. [27]

as points as mesh (5 layers)

Fig. 7. Qualitative results on complex real scenes. We show results on novel viewpoints
comparing our 5-layers MDP (leftmost) to RGBD based methods.

7 Conclusion

We presented a novel 3D scene representation—Multi Depth Panoramas, or
MDP—that represents complex scenes using multiple layers of concentric RGBD«
panoramas. MDPs are more compact than prior scene representations such as
MPIs. As such, they can be used to generate high-quality novel view synthesis
results with translational motion parallax, using our proposed forward-splatting
rendering method. Furthermore, we presented a learning-based method to accu-
rately reconstruct MDPs from commercial 360° camera rigs.
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