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Abstract. We present a deep learning approach to reconstruct scene
appearance from unstructured images captured under collocated point
lighting. At the heart of Deep Reflectance Volumes is a novel volumetric
scene representation consisting of opacity, surface normal and reflectance
voxel grids. We present a novel physically-based differentiable volume
ray marching framework to render these scene volumes under arbitrary
viewpoint and lighting. This allows us to optimize the scene volumes
to minimize the error between their rendered images and the captured
images. Our method is able to reconstruct real scenes with challenging
non-Lambertian reflectance and complex geometry with occlusions and
shadowing. Moreover, it accurately generalizes to novel viewpoints and
lighting, including non-collocated lighting, rendering photorealistic im-
ages that are significantly better than state-of-the-art mesh-based meth-
ods. We also show that our learned reflectance volumes are editable,
allowing for modifying the materials of the captured scenes.

Keywords: View synthesis, relighting, appearance acquisition, neural
rendering

1 Introduction

Capturing a real scene and re-rendering it under novel lighting conditions and
viewpoints is one of the core challenges in computer vision and graphics. This
is classically done by reconstructing the 3D scene geometry, typically in the
form of a mesh, and computing per-vertex colors or reflectance parameters, to
support arbitrary re-rendering. However, 3D reconstruction methods like multi-
view stereo are prone to errors in textureless and non-Lambertian regions [37, 47],
and accurate reflectance acquisition usually requires dense, calibrated capture
using sophisticated devices [5, 55].

Recent works have proposed learning-based approaches to capture scene ap-
pearance. One class of methods use surface-based representations [15, 20] but
are restricted to specific scene categories and cannot synthesize photo-realistic
images. Other methods bypass explicit reconstruction, instead focusing on re-
lighting [58] or view synthesis sub-problems [31, 56].
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(a) Sample input images

(b) Normal volume (c) Albedo volume (d) Roughness volume

(e) Rendering under novel viewpoints and lightings

Fig. 1. Given a set of images taken using a mobile phone with flashlight (sampled
images are shown in (a)), our method learns a volume representation of the captured
object by estimating the opacity volume, normal volume (b) and reflectance volumes
such as albedo (c) and roughness (d). Our volume representation enables free navigation
of the object under arbitrary viewpoints and novel lighting conditions (e).

Our goal is to make high-quality scene acquisition and rendering practical
with off-the-shelf devices under mildly controlled conditions. We use a set of
unstructured images captured around a scene by a single mobile phone camera
with flash illumination in a dark room. This practical setup acquires multi-
view images under collocated viewing and lighting directions—referred to as
photometric images [56]. While the high-frequency appearance variation in these
images (due to sharp specular highlights and shadows) can result in low-quality
mesh reconstruction from state-of-the-art methods (see Fig. 3), we show that
our method can accurately model the scene and realistically reproduce complex
appearance information like specularities and occlusions.

At the heart of our method is a novel, physically-based neural volume ren-
dering framework. We train a deep neural network that simultaneously learns
the geometry and reflectance of a scene as volumes. We leverage a decoder-like
network architecture, where an encoding vector together with the correspond-
ing network parameters are learned during a per-scene optimization (training)
process. Our network decodes a volumetric scene representation consisting of
opacity, normal, diffuse color and roughness volumes, which model the global
geometry, local surface orientations and spatially-varying reflectance parameters
of the scene, respectively. These volumes are supplied to a differentiable render-
ing module to render images with collocated light-view settings at training time,
and arbitrary light-view settings at inference time (see Fig. 2).

We base our differentiable rendering module on classical volume ray march-
ing approaches with opacity (alpha) accumulation and compositing [24, 52]. In
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particular, we compute point-wise shading using local normal and reflectance
properties, and accumulate the shaded colors with opacities along each march-
ing ray of sight. Unlike the opacity used in previous view synthesis work [31, 62]
that is only accumulated along view directions, we propose to learn global scene
opacity that can be accumulated from both view and light directions. As shown
in Fig. 1, we demonstrate that our scene opacity can be effectively learned and
used to compute accurate hard shadows under novel lighting, despite the fact
that the training process never observed images with shadows that are taken un-
der non-collocated view-light setups. Moreover, different from previous volume-
based works [31, 62] that learn a single color at each voxel, we reconstruct per-
voxel reflectance and handle complex materials with high glossiness. Our neural
rendering framework thus enables rendering with complex view-dependent and
light-dependent shading effects including specularities, occlusions and shadows.
We compare against a state-of-the-art mesh-based method [37], and demonstrate
that our method is able to achieve more accurate reconstructions and renderings
(see Fig. 3). We also show that our approach supports scene material editing by
modifying the reconstructed reflectance volumes (see Fig. 8). To summarize, our
contributions are:

− A practical neural rendering framework that reproduces high-quality geome-
try and appearance from unstructured mobile phone flash images and enables
view synthesis, relighting, and scene editing.

− A novel scene appearance representation using opacity, normal and reflectance
volumes.

− A physically-based differentiable volume rendering approach based on deep
priors that can effectively reconstruct the volumes from input flash images.

2 Related Works

Geometry reconstruction. There is a long history in reconstructing 3D geom-
etry from images using traditional structure from motion and multi-view stereo
(MVS) pipelines [13, 25, 47]. Recently deep learning techniques have also been
applied to 3D reconstruction with various representations, including volumes [18,
45], point clouds [1, 42, 51], depth maps [16, 59] and implicit functions [10, 35, 40].
We aim to model scene geometry for realistic image synthesis, for which mesh-
based reconstruction [23, 32, 38] is the most common way in many applications
[6, 37, 44, 61]. However, it remains challenging to reconstruct accurate meshes
for challenging scenes where there are textureless regions and thin structures,
and it is hard to incorporate a mesh into a deep learning framework [26, 30];
the few mesh-based deep learning works [15, 20] are limited to category-specific
reconstruction and cannot produce photo-realistic results. Instead, we leverage
a physically-based opacity volume representation that can be easily embedded
in a deep learning system to express scene geometry of arbitrary shapes.

Reflectance acquisition. Reflectance of real materials is classically measured
using sophisticated devices to densely acquire light-view samples [12, 33], which
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is impractical for common users. Recent works have improved the practicality
with fewer samples [39, 57] and more practical devices (mobile phones) [2, 3, 17,
28]; however, most of them focus on flat planar objects. A few single-view tech-
niques based on photometric stereo [4, 14] or deep learning [29] are able to handle
arbitrary shape, but they merely recover limited single-view scene content. To
recover complete shape with spatially varying BRDF from multi-view inputs,
previous works usually rely on a pre-reconstructed initial mesh and images cap-
tured under complex controlled setups to reconstruct per-vertex BRDFs [7, 21,
53, 55, 63]. While a recent work [37] uses a mobile phone for practical acquisition
like ours, it still requires MVS-based mesh reconstruction, which is ineffective
for challenging scenes with textureless, specular and thin-structure regions. In
contrast, we reconstruct spatially varying volumetric reflectance via deep net-
work based optimization; we avoid using any initial geometry and propose to
jointly reconstruct geometry and reflectance in a holistic framework.

Relighting and view synthesis. Image-based techniques have been exten-
sively explored in graphics and vision to synthesize images under novel lighting
and viewpoint without explicit complete reconstruction [8, 11, 27, 43]. Recently,
deep learning has been applied to view synthesis and most methods leverage
either view-dependent volumes [49, 56, 62] or canonical world-space volumes [31,
48] for geometric-aware appearance inference. We extend them to a more general
physically-based volumetric representation which explicitly expresses both geom-
etry and reflectance, and enables relighting with view synthesis. On the other
hand, learning-based relighting techniques have also been developed. Purely
image-based methods are able to relight scenes with realistic specularities and
soft shadows from sparse inputs, but unable to reproduce accurate hard shadows
[19, 50, 58, 60]; some other methods [9, 44] propose geometry-aware networks and
make use of pre-acquired meshes for relighting and view synthesis, and their per-
formance is limited by the mesh reconstruction quality. A work [36] concurrent
to ours models scene geometry and appearance by reconstructing a continuous
radiance field for pure view synthesis. In contrast, Deep Reflectance Volumes
explicitly express scene geometry and reflectance, and reproduce accurate high-
frequency specularities and hard shadows. Ours is the first comprehensive neural
rendering framework that enables both relighting and view synthesis with com-
plex shading effects.

3 Rendering with Deep Reflectance Volumes

Unlike a mesh that is comprised of points with complex connectivity, a volume
is a regular 3D grid, suitable for convolutional operations. Volumes have been
widely used in deep learning frameworks for 3D applications [54, 59]. However,
previous neural volumetric representations have only represented pixel colors;
this can be used for view synthesis [31, 62], but does not support relighting or
scene editing. Instead, we propose to jointly learn geometry and reflectance (i.e.
material parameters) volumes to enable broader rendering applications including
view synthesis, relighting and material editing in a comprehensive framework.
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Deep Reflectance Volumes are learned from a deep network and used to render
images in a fully differentiable end-to-end process as shown in Fig. 2. This is
made possible by a new differentiable volume ray marching module, which is
motivated by physically-based volume rendering. In this section, we introduce
our volume rendering method and volumetric scene representation. We discuss
how we learn these volumes from unstructured images in Sec. 4.

3.1 Volume rendering overview

In general, volume rendering is governed by the physically-based volume ren-
dering equation (radiative transfer equation) that describes the radiance that
arrives at a camera [34, 41]:

L(c,ωo) =

∫ ∞
0

τ(c,x)[Le(x,ωo) + Ls(x,ωo)]dx, (1)

This equation integrates emitted, Le, and in-scattered, Ls, light contributions
along the ray starting at camera position c in the direction −ωo. Here, x rep-
resents distance along the ray, and x = c− xωo is the corresponding 3D point.
τ(c,x) is the transmittance factor that governs the loss of light along the line
segment between c and x:

τ(c,x) = e−
∫ x
0
σt(z)dz, (2)

where σt(z) is the extinction coefficient at location z on the segment. The in-
scattered contribution is defined as:

Ls(x,ωo) =

∫
S
fp(x,ωo,ωi)Li(x,ωi)dωi, (3)

in which S is a unit sphere, fp(x,ωo,ωi) is a generalized (unnormalized) phase
function that expresses how light scatters at a point in the volume, and Li(x,ωi)
is the incoming radiance that arrives at x from direction ωi.

In theory, fully computing L(c,ωo) requires multiple-scattering computa-
tion using Monte Carlo methods [41], which is computationally expensive and
unsuitable for deep learning techniques. We consider a simplified case with a
single point light, single scattering and no volumetric emission. The transmit-
tance between the scattering location and the point light is handled the same
way as between the scattering location and camera. The generalized phase func-
tion fp(x,ωo,ωi) becomes a reflectance function fr(ωo,ωi,n(x), R(x)) which
computes reflected radiance at x using its local surface normal n(x) and the re-
flectance parameters R(x) of a given surface reflectance model. Therefore, Eqn. 1
and Eqn. 3 can be simplified and written concisely as [24, 34]:

L(c,ωo) =

∫ ∞
0

τ(c,x)τ(x, l)fr(ωo,ωi,n(x), R(x))Ll(x,ωi)dx, (4)

where l is the light position, ωi corresponds to the direction from x to l, τ(c,x)
still represents the transmittance from the scattering point x to the camera c, the



6 Bi et al.

( )
( )
( )

( )→

→

Volume
decoder

Encoding
vector

Deep re�ectance volume

Captured
image

Deep reflectance volume

Rendered
image

Per-voxel opacity,
normal, re�ectance

Training

−1

−1

( )

Fig. 2. We propose Deep Reflectance Volume representation to capture scene geometry
and appearance, where each voxel consists of opacity α, normal n and reflectance
(material coefficients)R. During rendering, we perform ray marching through each pixel
and accumulate contributions from each point xs along the ray. Each contribution is
calculated using the local normal, reflectance and lighting information. We accumulate
opacity from both the camera αc→s and the light αl→t to model the light transport loss
in both occlusions and shadows. To predict such a volume, we start from an encoding
vector, and decode it into a volume using a 3D convolutional neural network; thus the
combination of the encoding vector and network weights is the unknown variable being
optimized (trained). We train on images captured with collocated camera and light by
enforcing a loss function between rendered images and training images.

term τ(x, l) (that was implicitly involved in Eqn. 3) is the transmittance from
the light l to x and expresses light extinction before scattering, and Ll(x,ωi)
represents the light intensity arriving at x without considering light extinction.

3.2 A discretized, differentiable volume rendering module

To make volume rendering practical in a learning framework, we further approx-
imate Eqn. 4 by turning it into a discretized version, which can be evaluated by
ray marching [24, 34, 52]. This is classically expressed using opacity compositing,
where opacity α is used to represent the transmittance with fixed ray marching
step size ∆x. Points are sequentially sampled along a given ray, ωo from the
camera position, c as:

xs = xs−1 − ωo∆x = c− sωo∆x. (5)

The radiance Ls and opacity αc→s along this path, c→ s, are recursively accu-
mulated until xs exits the volume as:

Ls = Ls−1 + [1− αc→(s−1)][1− αl→(t−1)]α(xs)L(xs), (6)

αc→s = αc→(s−1) + [1− αc→(s−1)]α(xs), (7)

L(xs) = fr(ωo,ωi,n(xs), R(xs))Ll(xs,ωi). (8)

Here, L(xs) computes the reflected radiance from the reflectance function and
the incoming light, αc→s represents the accumulated opacity from the camera c
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to point xs, and corresponds to τ(c,x) in Eqn 4. αl→t represents the accumu-
lated opacity from the light l—i.e., τ(x, l) in Eqn. 4—and requires a separate
accumulation process over samples along the l→ xs ray, similar to Eqn. 7:

xs = xt = xt−1 − ωi∆x = l− tωi∆x, (9)

αl→t = αl→(t−1) + [1− αl→(t−1)]α(xt). (10)

In this rendering process (Eqn. 5-10), a scene is represented by an opacity
volume α, a normal volume n and a BRDF volume R; together, these express
the geometry and reflectance of the scene, and we refer to them as Deep Re-
flectance Volumes. The simplified opacity volume α is essentially one minus the
transmission τ (depending on the physical extinction coefficient σt) over a ray
segment of a fixed step size ∆x; this means that α is dependent on ∆x.

Our physically-based ray marching is fully differentiable, so it can be easily
incorporated in a deep learning framework and backpropagated through. With
this rendering module, we present a neural rendering framework that simulta-
neously learns scene geometry and reflectance from captured images.

We support any differentiable reflectance model fr and, in practice, use the
simplified Disney BRDF model [22] that is parameterized by diffuse albedo and
specular roughness (please refer to the supplementary materials for more details).
Our opacity volume is a general geometry representation, accounting for both
occlusions (view opacity accumulation in Eqn. 7) and shadows (light opacity
accumulation in Eqn. 10). We illustrate our neural rendering with ray marching
in Fig. 2. Note that, because our acquisition setup has collocated camera and
lighting, αl→t becomes equivalent to αc→s during training, thus requiring only
one-pass opacity accumulation from the camera. However, the learned opacity
can still be used for re-rendering under any non-collocated lighting with two-pass
opacity accumulation.

Note that while alpha compositing-based rendering functions have been used
in previous work on view synthesis, their formulations are not physically-based
[31] and are simplified versions that don’t model lighting [49, 62]. In contrast,
our framework is physically-based and models single-bounce light transport with
complex reflectance, occlusions and shadows.

4 Learning Deep Reflectance Volumes

4.1 Overview

Given a set of images of a real scene captured under multiple known viewpoints
with collocated lighting, we propose to use a neural network to reconstruct a
Deep Reflectance Volume representation of a real scene. Similar to Lombardi et
al. [31], our network starts from a 512-channel deep encoding vector that encodes
scene appearance; in contrast to their work, where this volume only represents
RGB colors, we decode a vector to an opacity volume α, normal volume n
and reflectance volume R for rendering. Moreover, our scene encoding vector is
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not predicted by any network encoder; instead, we jointly optimize for a scene
encoding vector and scene-dependent decoder network.

Our network infers the geometry and reflectance volumes in a transformed 3D
space with a learned warping function W . During training, our network learns
the warping function W , and the geometry and reflectance volumes αw, nw, Rw,
where the subscript w refers to a volume in the warped space. The corresponding
world-space scene representation is expressed by V (x) = Vw(W (x)), where V is
α, n or R. In particular, we use bilinear interpolation to fetch a corresponding
value at an arbitrary position x in the space from the discrete voxel values. We
propose a decoder-like network, which learns to decode the warping function
and the volumes from the deep scene encoding vector. We use a rendering loss
between rendered and captured images as well as two regularizing terms.

4.2 Network architecture

Geometry and reflectance. To decode the geometry and reflectance volumes
(αw, nw, Rw), we use upsampling 3D convolutional operations to 3D-upsample
the deep scene encoding vector to a multi-channel volume that contains the opac-
ity, normal and reflectance. In particular, we use multiple transposed convolu-
tional layers with stride 2 to upsample the volume, each of which is followed by a
LeakyRelu activation layer. The network regresses an 8-channel 128× 128× 128
volume that includes αw, nw and Rw—one channel for opacity αw, three chan-
nels for normal nw, and four channels for reflectance Rw (three for albedo and
one for roughness). These volumes express the scene geometry and reflectance in
a transformed space, which can be warped to the world space for ray marching.

Warping function. To increase the effective resolution of the volume, we learn
an affine-based warping function similar to [31]. The warping comprises a global
warping and a spatially-varying warping. The global warping is represented by
an affine transformation matrix Wg. The spatially varying warping is modeled in
the inverse transformation space, which is represented by six basis affine matrices
{Wj}16j=1 and a 32×32×32 16-channel volume B that contains spatially-varying
linear weights of the 16 basis matrices. Specifically, given a world-space position
x, the complete warping function W maps it into a transformed space by:

W (x) = [

16∑
j=1

Bj(x)Wj ]
−1Wgx, (11)

where Bj(x) represents the normalized weight of the jth warping basis at x.
Here, each global or local basis affine transformation matrix W∗ is composed of
rotation, translation and scale parameters, which are optimized during the train-
ing process. Our network decodes the weight volume B from the deep encoding
vector using a multi-layer perceptron network with fully connected layers.
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4.3 Loss function and training details

Loss function. Our network learns the scene volumes using a rendering loss
computed using the differentiable ray marching process discussed in Sec. 3. Dur-
ing training, we randomly sample pixels from the captured images and do the
ray marching (using known camera calibration) to get the rendered pixel colors
Lk of pixel k; we supervise them with the ground truth colors L̃k in the captured
images using a L2 loss. In addition, we also apply regularization terms from ad-
ditional priors similar to [31]. We only consider opaque objects in this work and
enforce the accumulated opacity along any camera ray αck→s′ (see Eqn. 7, here
k denotes a pixel and s′ reflects the final step that exits the volume) to be either
0 or 1, corresponding to a background or foreground pixel, respectively. We also
regularize the per-voxel opacity to be sparse over the space by minimizing the
spatial gradients of the logarithmic opacity. Our total loss function is given by:∑
k

‖Lk−L̃k‖2+β1
∑
k

[log(αck→s′)+log(1−αck→s′)]+β2
∑
‖∇x logα(x)‖ (12)

Here, the first part reflects the data term, the second regularizes the accumulated
α and the third regularizes the spatial sparsity.

Training details. We build our volume as a cube located at [−1, 1]3. During
training, we randomly sample 128× 128 pixels from 8 captured images for each
training batch, and perform ray marching through the volume using a step size
of 1/64. Initially, we set β1 = β2 = 0.01; we increase these weights to β1 =
1.0, β2 = 0.1 after 300000 iterations, which helps remove the artifacts in the
background and recover sharp boundaries.

5 Results

In this section we show our results on real captured scenes. We first introduce our
acquisition setup and data pre-processing. Then we compare against the state-
of-the-art mesh-based appearance acquisition method, followed by a detailed
analysis of the experiments. We also demonstrate material editing results with
our approach. Please refer to the supplementary materials for video results.

Data acquisition. Our approach learns the volume representation in a scene
dependent way from images with collocated view and light; this requires ad-
equately dense input images well distributed around a target scene to learn
complete appearance. Such data can be practically acquired by shooting a video
using a handheld cellphone; we show one result using this practical handheld
setup in Fig. 4. For other results, we use a robotic arm to automatically capture
more uniformly distributed images around scenes for convenience and thorough
evaluations; this allows us to evaluate the performance of our method with dif-
ferent numbers of input images that are roughly uniformly distributed as shown
in Tab. 5. In the robotic arm setups, we mount a Samsung Galaxy Note 8 cell-
phone to the robotic arm and capture about 480 images using its camera and
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the built-in flashlight in a dark room; we leave out a subset of 100 images for
validation purposes and use the others for training. We use the same phone to
capture a 4-minute video of the object in Captain and select one image for
training for every 20 frames, which effectively gives us 310 training images.

Data pre-processing. Our captured objects are roughly located around the
center of the images. We select one fixed rectangular region around the center
that covers the object across all frames and use it to crop the images as input
for training. The resolution of the cropped training images fed to our network
ranges from 400 × 500 to 1100 × 1100. Note that we do not use a foreground
mask for the object. Our method leverages the regularization terms in training
(see Sec. 4.3), which automatically recovers a clean background. We calibrate the
captured images using structure from motion (SfM) in COLMAP [46] to get the
camera intrinsic and extrinsic parameters. Since SfM may fail to register certain
views, the actual number of training images varies from 300 to 385 in different
scenes. We estimate the center and bounding box of the captured object with
the sparse reconstructions from SfM. We translate the center of the object to
the origin and scale it to fit into the [−1, 1]3 cube.

Implementation and timing. We implement our system (both neural net-
work and differentiable volume rendering components) using PyTorch. We train
our network using four NVIDIA 2080Ti RTX GPUs for about two days (about
450000 iterations; though 200000 iterations for 1 day typically already converges
to good results, see Fig. 7). At inference time, we directly render the scene from
the reconstructed volumes without the network. It takes about 0.8s to render a
700 × 700 image under collocated view and light. For non-collocated view and
light, the rendering requires connecting each shading point to the light source
with additional light-dependent opacity accumulation, which is very expensive
if done naively. To facilitate this process, we perform ray marching from the
light’s point of view and precompute the accumulated opacity at each spatial
position of the volume. During rendering, the accumulated opacity for the light
ray can be directly sampled from the precomputed volume. By doing so, our
final rendering under arbitrary light and view takes about 2.3s.

Comparisons with mesh-based reconstruction. We use a practical acquisi-
tion setup where we capture unstructured images using a mobile phone with its
built-in flashlight on in a dark room. Such a mildly controlled acquisition setup is
rarely supported by previous works [7, 21, 55, 56, 58, 63]. Therefore, we compare
with the state-of-the-art method proposed by Nam et al. [37] for mesh-based
geometry and reflectance reconstruction, that uses the same cellphone setup as
ours to reconstruct a mesh with per-vertex BRDFs, and supports both relight-
ing and view synthesis. Figure 3 shows comparisons on renderings under both
collocated and non-collocated view-light conditions. The comparison results are
generated from the same set of input images, and we requested the authors of [37]
run their code on our data and compared on the rendered images provided by
the authors. Please refer to the supplementary materials for video comparisons.



Deep Reflectance Volumes 11

Captured image [Nam et al. 2018] Ours [Nam et al. 2018] Ours

PO
N

Y
G

IR
L

H
O

U
SE

Fig. 3. Comparisons with mesh-based reconstruction. We show renderings of the cap-
tured object under both collocated (column 2, 3) and non-collocated (column 4, 5)
camera and light. We compare our volume-based neural reconstruction against a state-
of-the-art method [37] that reconstructs mesh and per-vertex BRDFs. Nam et al. [37]
fails to handle such challenging cases and recovers inaccurate geometry and appearance.
In contrast our method produces photo-realistic results.

As shown in Fig. 3, our results are significantly better than the mesh-based
method in terms of both geometry and reflectance. Note that, Nam et al. [37]
leverage a state-of-the-art MVS method [47] to reconstruct the initial mesh from
captured images and performs an optimization to further refine the geometry;
this however still fails to recover the accurate geometry in texture-less, specular
and thin-structured regions in those challenging scenes, which leads to seriously
distorted shapes in Pony, over-smoothness and undesired structures in House,
and degraded geometry in Girl. Our learning-based volumetric representation
avoids these mesh-based issues and models the scene geometry accurately with
many details. Moreover, it is also very difficult for the classical per-vertex BRDF
optimization in [37] to recover high-frequency specularities, which leads to over-
diffuse appearance in most of the scenes; this is caused by the lack of constraints
for the high-frequency specular effects, which appear in very few pixels in limited
input views. In contrast, our optimization is driven by our novel neural rendering
framework with deep network priors, which effectively correlates the sparse spec-
ularities in different regions through network connections and recovers realistic
specularities and other appearance effects.



12 Bi et al.

Captured image Rendered view 1

CA
RT

O
O

N
A

N
IM

A
LS

CA
PT

A
IN

View 1 relighting Rendered view 2 View 2 relighting

Fig. 4. Additional results on real scenes. We show renderings under novel view and
lighting conditions. Our method is able to handle scenes with multiple objects (top
two rows) and model the complex occlusions between them. Our method can also
generate high-quality results from casual handheld video captures (third row), which
demonstrates the practicability of our approach.

25 50 100 200 385

PSNR 25.33 26.36 26.95 27.85 28.13
SSIM 0.70 0.73 0.75 0.80 0.81

Fig. 5. We evaluate the performance of our
method on the House scene with different
numbers of training images. Although we
use all 385 images in our final experiments,
our method is able to achieve comparable
performance with as few as 200 images for
this challenging scene.

House Cartoon

[48] 0.786/25.81 0.532/16.34
Ours 0.896/30.44 0.911/29.14

Fig. 6. We compare against DeepVoxels on
synthesizing novel views under collocated
lights and report the PSNR/SSIM scores.
The results show that our method gener-
ates more accurate renderings. Note that
we retrain our model with a resolution of
512 × 512 for a fair comparison.

Comparison on synthesizing novel views. We also make a comparison on
synthesizing novel views under collocated lights against a view synthesis method
DeepVoxels [48], which encodes view-dependent appearance in a learnt 3D-aware
neural representation. Note that DeepVoxels does not support relighting. As
shown in Fig. 6, our method is able to generate renderings of higher quality with
higher PSNR/SSIM scores. In contrast, DeepVoxels fails to reason about the
complex geometry in our real scenes, thus resulting in degraded image quality.
Please refer to the supplementary materials for visual comparison results.
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Fig. 7. We compare our deep prior based
optimization against direct optimization of
the volume and warping function without
using networks. Direct optimization con-
verges significantly slower than our method,
which demonstrates the effectiveness of reg-
ularization by the networks.

Before editing After editing

Fig. 8. Our approach supports intuitive
editing of the material properties of a
captured object. In this example we de-
crease the roughness of the object to
make it look like glossy marble instead
of plastic.

Additional results. We show additional relighting and view synthesis results
of complex real scenes in Fig. 4. Our method is able to handle scenes with
multiple objects, as shown in scene Cartoon and Animals. Our volumetric
representation can accurately model complex occlusions between objects and
reproduce realistic cast shadows under novel lighting, which are never observed
by our network during the training process. In the Captain scene, we show the
result generated from handheld mobile phone captures. We select frames from the
video at fixed intervals as training data. Despite the potential existence of motion
blur and non-uniform coverage, our method is able to generate high-quality
results, which demonstrates the robustness and practicality of our approach.
Please refer to the supplementary materials for video results.

Evaluation of the number of inputs. Our method relies on an optimization
over adequate input images that capture the scene appearance across different
view/light directions. We evaluate how our reconstruction degrades with the
decrease of training images on the House scene. We uniformly select a subset of
views from the full training images and train our model on them. We evaluate
the trained model on the test images, and report the SSIMs and PSNRs in Fig. 5.
As we can see from the results, there is an obvious performance drop when there
are fewer than 100 training images due to insufficient constraints. On the other
hand, while we use the full 385 images for our final results, our method in fact
achieves comparable performance with only 200 for this scene, as reflected by
their close PSNRs and SSIMs.

Comparison with direct optimization. Our neural rendering leverages a
“deep volume prior” to drive the volumetric optimization process. To justify the
effectiveness of this design, we compare with a naive method that directly opti-
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mizes the parameters in each voxel and the warping parameters using the same
loss function. We show the optimization progress in Fig. 7. Note that, the naive
method converges significantly slower than ours, where the independent voxel-
wise optimization without considering across-voxel correlations cannot properly
disentangle the ambiguous information in the captured images; yet, our deep
optimization is able to correlate appearance information across the voxels with
deep convolutions, which effectively minimizes the reconstruction loss.

Material editing. Our method learns explicit volumes with physical meaning
to represent the reflectance of real scenes. This enables broad image synthesis
applications like editing the materials of captured scenes. We show one example
in Fig. 8, where we successfully make the scene glossier by decreasing the learned
roughness in the volume. Note that, the geometry and colors are still preserved
in the scene, while novel specularities are introduced which are not part of the
material appearance in the scene. This example illustrates that our network dis-
entangles the geometry and reflectance of the scene in a reasonable way, thereby
enabling sub-scene component editing without influencing other components.

Limitations. We reconstruct the deep reflectance volumes with a resolution
of 1283, which is restricted by available GPU memory. While we have applied
a warping function to increase the actual utilization of the volume space, and
demonstrated that it is able to generate compelling results on complex real
scenes, it may fail to fully reproduce the geometry and appearance of scenes
with highly complex surface normal variations and texture details. Increasing
the volume resolution may resolve this issue. In the future, it would also be in-
teresting to investigate how to efficiently apply sparse representations such as
octrees in our framework to increase the capacity of our volume representation.
The current reflectance model we are using is most appropriate for opaque sur-
faces. Extensions to other materials like hair, fur or glass could be potentially
addressed by applying other reflectance models in our neural rendering frame-
work.

6 Conclusion

We have presented a novel approach to learn a volume representation that models
both geometry and reflectance of complex real scenes. We predict per-voxel opac-
ity, normal, and reflectance from unstructured multi-view mobile phone captures
with the flashlight. We also introduce a physically-based differentiable rendering
module to enable renderings of the volume under arbitrary viewing and lighting
directions. Our method is practical, and supports novel view synthesis, relighting
and material editing, which has significant potential benefits in scenarios such
as 3D visualization and VR/AR applications.
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