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Abstract. We introduce a new light-field dataset of materials, and take advan-
tage of the recent success of deep learning to perform material recognition on the
4D light-field. Our dataset contains 12 material categories, each with 100 images
taken with a Lytro Illum, from which we extract about 30,000 patches in total. To
the best of our knowledge, this is the first mid-size dataset for light-field images.
Our main goal is to investigate whether the additional information in a light-field
(such as multiple sub-aperture views and view-dependent reflectance effects) can
aid material recognition. Since recognition networks have not been trained on 4D
images before, we propose and compare several novel CNN architectures to train
on light-field images. In our experiments, the best performing CNN architecture
achieves a 7% boost compared with 2D image classification (70% → 77%).
These results constitute important baselines that can spur further research in the
use of CNNs for light-field applications. Upon publication, our dataset also en-
ables other novel applications of light-fields, including object detection, image
segmentation and view interpolation.
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1 Introduction

Materials affect how we perceive objects in our daily life. For example, we would not
expect to feel the same when we sit on a wooden or leather chair. However, differenti-
ating materials in an image is difficult since their appearance depends on the confound-
ing effects of object shape and lighting. A more robust way to determine the material
type is using the surface reflectance or the bidirectional reflectance distribution function
(BRDF). However, measuring the reflectance is hard. Previous works use gonioreflec-
tometers to recover the reflectance, which is cumbersome, and does not easily apply to
spatially-varying BRDFs or Bidirectional Texture Functions (BTFs) [8, 24].

An alternative to directly measuring the reflectance, is to consider multiple views
of a point at once. By doing so, material recognition can be improved as demonstrated
by Zhang et al. [38]. We exploit the multi-views in a light-field representation instead.
Light-field cameras have recently become available and are able to capture multiple
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Fig. 1: Overview of our system and contributions. (a) We collect a new light-field
dataset, which contains 1200 images labeled with 12 material classes. (b) Using (micro-
lens) light-field patches extracted from this dataset, we train a CNN by modifying previ-
ous 2D models to take in 4D inputs. (c) Finally, we convert the patch model to an FCN
model by fine-tuning on full images, and perform full scene material segmentation.

viewpoints in a single shot. We can therefore obtain the intensity variation under differ-
ent viewing angles with minimal effort. Therefore, one of the main goals of this paper
is to investigate whether 4D light-field information improves the performance of ma-
terial recognition over 2D images. We adopt the popular convolutional neural network
(CNN) framework to perform material classification in this work. However, there are
two key challenges: First, all previous light-field datasets include only a few images, so
they are not large enough to apply the data-hungry deep learning approaches. Second,
CNN architectures have previously not been adapted to 4D light-fields; Thus, novel
architectures must be developed to perform deep learning with light-field inputs. Our
contributions are shown in Fig. 1 and summarized below:

1) We introduce the first mid-size light-field image dataset (Sec. 3). Our dataset
contains 12 classes, each with 100 images labeled with per pixel ground truth (Fig. 2).
We then extract 30,000 patches from these images. Although we use this dataset for
material recognition, it is not limited to this purpose and can be used for other light-
field related applications. Upon publication, the dataset will be released publicly.

2) We investigate several novel CNN architectures specifically designed for 4D
light-field inputs (Sec. 4). Since no recognition CNN has been trained on light-fields
before, we implement different architectures to work on 4D data (Figs. 4 and 5). In-
stead of training a new network from scratch, we reuse the spatial filters from previous
2D models, while adding new angular filters into the network architecture. We also find
directly training a fully convolutional network (FCN) very unstable, and thus train on
extracted patches first and fine-tune on full images afterwards. The proposed architec-
tures are not limited to material recognition, and may be used for other light-field based
tasks as well.

3) Using our best-performing architecture, we achieve about 6-7% boost compared
with single 2D image material classification, increasing the accuracy from 70% to 77%
on extracted patches and 74% to 80% on full images (Sec. 5). These act as important
baselines for future work in light-field based material recognition.
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2 Related work
Light-field datasets: The most popular dataset is the one introduced by Wanner et
al. [35], which contains 7 synthetic scenes and 5 real images captured using a gantry.
Another well-known one is the Stanford light-field archive [1], which provides around
20 light-fields sampled using a camera array, a gantry and a light-field microscope. The
synthetic light-field archive by Marwah et al. [23] contains 5 camera light-fields and 13
display light-fields. Other datasets contain fewer than ten images [13, 15, 33, 34] or are
only suitable for particular purposes [17, 27]. Clearly, there is a lack of large light-field
datasets in prior works. In this work, we use the Lytro Illum camera to build a dataset
with 1200 light-field images.
Material databases: The early work on material recognition was primarily on classi-
fying instance-level textures, such as the CUReT database [8] and the more diversified
KTH-TIPS [4,10] database. Recently, the Describable Textures Dataset (DTD) [5] fea-
tures real-world material images. Some work on computer-generated synthetic datasets
has also been introduced [18, 36].

For category-level material databases, the most well-known is the Flickr Material
Database (FMD) [29], which contains ten categories with 100 images in each category.
Subsequently, Bell et al. [2] released OpenSurfaces which contains over 20,000 real-
world scenes labeled with both materials and objects. More recently, the Materials in
Context Database (MINC) [3] brought the data size to an even larger scale with 3 mil-
lion patches classified into 23 materials. However, these datasets are all limited to 2D,
and thus unsuitable for investigating the advantages of using multiple views. Although
our dataset is not as large as the MINC dataset, it is the first mid-size 4D light-field
dataset, and is an important step towards other learning based light-field research. Zhang
et al. [38] also propose a reflectance disk dataset which captures intensities of different
viewing angles for 20 materials. However, their dataset lacks the spatial information,
and is much smaller compared to our dataset.
Material recognition: Material recognition methods can mainly be classified into two
categories. The first one recognizes materials based on the object reflectance [7,20,21,
38]. Most work of this type requires the scene geometry or illumination to be known,
or requires special measurement of the BRDF beforehand.

The other body of work extracts features directly from the image appearance, and is
thus more flexible and can work on real-world images. Liu et al. [19] propose a model
to combine low- and mid-level features using a Bayesian generative framework. Hu et
al. [12] extend the Kernel descriptors with variances of gradient orientations and magni-
tudes to handle materials. Schwartz and Nishino [28] introduce visual material traits and
explicitly avoid object-specific information during classification. Qi et al. [26] introduce
a pairwise transform invariant feature and apply it to perform material recognition. Cim-
poi et al. [5] propose a framework based on neural network descriptors and improved
Fisher vectors (IFV). Recently, Cimpoi et al. [6] combine object descriptors and texture
descriptors to achieve state-of-the-art results on FMD. However, none of these methods
are applicable to the 4D case. In this work, we implement different methods to deal with
this dimensionality change from 2D to 4D.
Convolutional neural networks: Convolutional neural networks (CNNs) have proven
to be successful in modern vision tasks such as detection and recognition, and are now
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the state-of-the art methods in most of these problems. Since the work by Krizhevsky et
al. [16] (a.k.a. AlexNet), in recent years many advanced architectures have been intro-
duced, including GoogLeNet [32] and VGG [30]. For per-pixel segmentation, Farabet
et al. [9] employ a multi-scale CNN to make class predictions at every pixel in a seg-
mentation. A sliding window approach is adopted by Oquab et al. [25] to localize patch
classification of objects. Recently, a fully convolutional framework [22] has been pro-
posed to generate dense predictions from an image directly.
Multi-image CNNs: For CNNs trained on multiple image inputs, Yoon et al. [37]
train a super-resolution network on light-field images; however, their goal is different
from a high-level recognition task. Besides, only a couple of images instead of the full
light-fields are sent into the network at a time, so the entire potential of the data is not
exploited. Su et al. [31] propose a “viewpooling” framework to combine multiple views
of an object to perform object recognition. In their architecture, convolutional maps
independently extracted from each view are maxpooled across all views. However, we
find this does not work well in the light-field case. Rather, we demonstrate that it is
advantageous to exploit the structure of light-fields in combining views much earlier in
the network. This also has the advantage that memory usage is reduced. In this work,
to ease the training of 4D light-fields, we initialize the weights with pre-trained 2D
image models. We investigate different ways to map the 4D light-field onto the 2D CNN
architecture, which has not been explored in previous work, and may be beneficial to
learning-based methods for other light-field tasks in the future.

3 The light-field material dataset
While the Internet is abundant with 2D data, light-field images are rarely available on-
line. Therefore, we capture the images ourselves using the Lytro Illum camera. There
are 12 classes in our dataset: fabric, foliage, fur, glass, leather, metal, plastic, paper,
sky, stone, water, and wood. Each class has 100 images labeled with material types.
Compared with FMD [29], we add two more classes, fur and sky. We believe these two
classes are very common in natural scenes, and cannot be easily classified into any of
the ten categories in FMD.

The images in our dataset are acquired by different authors, in different locations
(e.g. shops, campus, national parks), under different viewpoints and lighting conditions,
and using different camera parameters (exposure, ISO, etc). The spatial resolution of the
images is 376 × 541, and the angular resolution is 14 × 14. Since the pixel size of the
Lytro camera is small (1.4µm), one problem we encountered is that the images are of-
ten too dark to be usable. Water is also a particularly challenging class to capture, since
the corresponding scenes usually entail large motions. Overall, of the 1448 acquired
images, we retain 1200 not deemed too repetitive, dim or blurred. We then manually
classified and labeled the images with per pixel material category using the Quick Se-
lection Tool of Photoshop. For each material region, we manually draw the boundary
along the region. We check the segmentation results, and further refine the boundaries
until we obtain final accurate annotation.

In Fig. 2 we show some example images for each category of the dataset. Then, in
Fig. 3a we show example light-field images, where each block of pixels shows different
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Fabric Foliage Fur Glass Leather Metal 

Paper Plastic Sky Stone Water Wood 

Fig. 2: Example images in our dataset. Each class contains 100 images.

paper paper sky sky  

2D Light-field (micro-lens) 

(a) 2D vs. LF images

Original photo 2D prediction Printed photo LF prediction 

Fabric Paper 

(b) 2D vs. LF predictions

Fig. 3: Example benefits of using light-field images. (a) From the 2D images, it is difficult
to distinguish between paper and sky. However, with the light-field images it becomes
much easier. (b) We print out a picture of a pillow, and test both 2D and light-field
models on the picture. The 2D model, without any reflectance information, predicts the
material as fabric, while the light-field model correctly identifies the material as paper.

viewpoints of a 3D point. We then demonstrate the benefits of using light-fields: from
the 2D images alone, it is difficult to separate sky from blue paper due to their similar
appearances; However, with the aid from light-field images, it becomes much easier
since paper has different reflectance from different viewpoints while sky does not. Next,
in Fig. 3b we print out a photo of a pillow, and take a picture of the printed photo. We
then test both 2D and light-field models on the picture. It is observed that the 2D model
predicts the material as fabric since it assumes it sees a pillow, while the light-field
model correctly identifies the material as paper.

Finally, to classify a point in an image, we must decide the amount of surrounding
context to include, that is, determine the patch size. Intuitively, using small patches will
lead to better spatial resolution for full scene material segmentation, but large patches
contain more context, often resulting in better performance. Bell et al. [3] choose the
patch scale as 23.3% of the smaller image length, although they find that scale 32%
has the best performance. Since our images are usually taken closer to the objects, we
use 34% of the smaller image length as the patch size, which generates about 30,000
patches of size 128×128. This is roughly 2500 patches in each class. The patch centers
are separated by at least half the patch size; also, the target material type occupies at
least half the patch. Throughout our experiments, we use an angular resolution of 7×7.
We randomly select 70% of the dataset as training set and the rest as test set. Patches
from the same image are either all in training or in test set, to ensure that no similar
patches appear in both training and test sets.
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Fig. 4: Different CNN architectures for 4D light-field inputs. The RGB colors represent
the RGB channels, while (u, v) denotes different angular coordinates (from (−3,−3) to
(3, 3) in our experiments). (a) After each view is passed through the convolutional part,
they are max pooled and combined into one view, and then sent to the fully connected
part. (b) All views are stacked across the RGB channels to form the input. (c) The
inputs are the horizontal and vertical EPIs concatenated together (only vertical ones
are shown in the figure). (d) A 7 × 7 angular filter is first applied on the remap image.
The intermediate output is then passed to the rest of the network.

4 CNN architectures for 4D light-fields

We now consider the problem of material recognition on our 4D light-field dataset and
draw contrasts with recognition using 2D images. We train a Convolutional Neural
Network for this patch classification problem. Formally, our CNN is a function f that
takes a light-field image R as input and outputs a confidence score pk for each material
class k. The actual output of f depends on the parameters θ of the network that are
tuned during training, i.e., pk = f(R; θ). We adopt the softmax loss, which means the
final loss for a training instance is − log(ept/(

∑k
i=1 e

pi)), where t is the true label. At
test time, we apply the softmax function on the output pk, where the results can be seen
as the predicted probability per class.

We use the network architecture of the recent VGG-16 model [30], a 16-layer
model, as it performs the best on our dataset when using 2D images. We initialize the
weights using the MINC VGG model [3], the state-of-the-art 2D material recognition
model, and then fine-tune it on our dataset.
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The biggest challenge, however, is we have 4D data instead of 2D. In other words,
we need to find good representations for 4D light-field images that are compatible with
2D CNN models. We thus implement a number of different architectures and report
their performance. The results may be used as baselines, and might be useful for design-
ing other learning-based methods for light-fields in the future. In our implementation,
the best performing methods (angular filter and 4D filter) achieve 77% classification ac-
curacy on the extracted patches, which is 7% higher than using 2D images only. Details
of each architecture are described below.
2D average First and the simplest, we input each image independently and average
the results across different views. This, however, definitely does not exploit the im-
plicit information inside light-field images. It is also time consuming, where the time
complexity grows linearly with angular size.
Viewpool Second, we leverage the recent “viewpool” method proposed in [31] (Fig. 4a).
First, each view is passed through the convolutional part of the network separately. Next,
they are aggregated at a max view-pooling layer, and then sent through the remaining
(fully-connected) part of the network. This method combines information from differ-
ent views at a higher level; however, max pooling only selects one input, so still only
one view is chosen at each pixel. Also, since all views need to be passed through the
first part of the network, the memory consumption becomes extremely large.
Stack Here, we stack all different views across their RGB channels before feeding them
into the network, and change only the input channel of the first layer while leaving the
rest of the architecture unchanged (Fig. 4b). This has the advantage that all views are
combined earlier and thus takes far less memory.
EPI For this method, we first extract the horizontal and vertical epipolar images (EPIs)
for each row or column of the input light-field image. In other words, suppose the
original 4D light-field isL(x, y, u, v), where (x, y) are the spatial coordinates and (u, v)
are the angular coordinates. We then extract 2D images from L by

L(x, y = yi, u, v = 0) ∀i = 1, ..., hs

L(x = xj , y, u = 0, v) ∀j = 1, ..., ws

(1)

where (u, v) = (0, 0) is the central view and (hs, ws) are the spatial size. These EPIs
are then concatenated into a long cube and passed into the network (Fig. 4c). Again
only the first layer of the pre-trained model is modified.
Angular filter on remap image The idea of applying filters on angular images was first
proposed by Zhang et al. [38]. However, they only considered 2D angular images, while
in our case we have 4D light-field images. Also, by incorporating the filters into the
neural network, we can let the network learn the filters instead of manually designing
them, which should achieve better performance.

For this method, we use the remap image instead of the standard image as input.
A remap image replaces each pixel in a traditional 2D image with a block of angular
pixels ha × wa from different views, where (ha, wa) are the angular size. The remap
image is thus of size (ha × hs) × (wa × ws). It is also similar to the raw micro-lens
image the Lytro camera captures; the only difference is that we eliminate the boundary
viewpoints where the viewing angles are very oblique.
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Fig. 5: (a)(b) New spatial and angular filters on a remap light-field image. The pooling
feature is also implemented in a similar way. (c) By interleaving the angular and spatial
filters (or vice versa), we mimic the structure of a 4D filter.

Before sending the remap image into the pre-trained network, we apply on it an
angular filter of size ha×wa with stride ha, wa and output channel number C (Fig. 4d).
After passing this layer, the image reduces to the same spatial size as the original 2D
input. Specifically, let this layer be termed I (intermediate), then the output of this layer
for each spatial coordinate (x, y) and channel j is

`j(x, y) = g
( ∑

i=r,g,b

∑
u,v

wj
i (u, v)L

i(x, y, u, v)
)
∀j = 1, ..., C (2)

where L is the input (RGB) light-field, i, j are the channels for input light-field and
layer I , wj

i (u, v) are the weights of the angular filter, and g is the rectified linear unit
(ReLU). Afterwards, `j is passed into the pre-trained network.
4D filter Finally, since the light-field has a 4D structure, it becomes intuitive to apply
a 4D filter to train the network. However, directly applying a 4D filter is problematic
due to several reasons. First, a 4D filter contains far more parameters than a 2D filter.
Even the smallest 4D filter (3× 3× 3× 3) contains the same number of parameters as
a 9× 9 2D filter. This is expensive in terms of both computation and memory. Second,
a 4D filter is not present in any pre-trained network, so we need to train it from scratch,
which means we cannot take advantage of the pre-trained model.

Our solution is to decompose a 4D filter into two consecutive 2D filters, a spatial
filter and an angular filter, implemented on a remap image as shown in Fig. 5. The
new spatial filter is similar to a traditional 2D filter, except that since we now work on
“blocks” of pixels, it takes only one pixel from each block as input (Fig. 5a). This can
be considered as a kind of “stride”, but instead of stride in the output domain (where the
filter itself moves), we have stride in the input domain (where the input moves while the
filter stays). The angular filter, on the other hand, convolves an internal block normally
just as a traditional 2D filter, but does not work across the block boundaries (Fig. 5b).
By interleaving these two types of filters, we can approximate the effect of a 4D filter
while not sacrificing the advantages stated above (Fig. 5c). The corresponding pooling
structures are also implemented in the same way. To use the pre-trained models, the
parameters from the original spatial filters are copied to the new spatial filters, while
the angular filters are inserted between them and trained from scratch.
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Architecture 2D 2D avg viewpool stack EPI angular 4D
Accuracy (%) 70.2±1.0 70.5±0.9 70.0±1.0 72.8±1.1 72.3±1.0 77.0±1.1 77.0±1.1

Table 1: Classification accuracy (average and variance) for different architectures. The
2D average method is only slightly better than using a single 2D image; the viewpool
method actually performs slightly worse. The stack method and the EPI method both
achieve better results. Finally, the angular filter method and the 4D filter method obtain
the highest accuracy.

5 Experimental results
The various architectures in Sec. 4 are trained end-to-end using back-propagation. To
ease the training of 4D light-fields, we initialize the weights with pre-trained 2D image
models. The optimization is done with Stochastic Gradient Descent (SGD) using the
Caffe toolbox [14]. The inputs are patches of spatial resolution 128 × 128 and angular
resolution 7×7. To bring the spatial resolution to the normal size of 256×256 for VGG,
we add a deconvolution layer at the beginning. We use a basic learning rate of 10−4,
while the layers that are modified or newly added use 10 times the basic learning rate.
Below, we present a detailed performance comparison between different scenarios.

5.1 Comparison of different CNN architectures

We first compare the prediction accuracies for different architectures introduced in the
previous section. Each method is tested 5 times on different randomly divided training
and test sets to compute the performance average and variance. In Table 1, the first
column (2D) is the result of the MINC VGG-16 model fine-tuned on our dataset, using
only a single (central view) image. The remaining columns summarize the results of
the other 4D architectures. Note that these 4D methods use more data as input than a
2D image; we will make a comparison where the methods take in an equal number of
pixels in Sec. 5.3, and the results are still similar.

As predicted, averaging results from each view (2D avg) is only slightly better than
using a 2D image alone. Next, the viewpool method actually performs slightly worse
than using a 2D input; this indicates that the method is not suitable for light-fields,
where the viewpoint changes are usually very small. The stack method and the EPI
method achieve somewhat better performance, improving upon 2D inputs by 2-3%.
The angular filter method achieves significant improvement over other methods; com-
pared to using 2D input, it obtains about 7% gain. This shows the advantages of using
light-fields rather than 2D images, as well as the importance of choosing the appropri-
ate representation. The 4D filter method achieves approximately the same performance
as the angular filter method. However, the angular filter method consumes much less
memory, so it will be used as the primary comparison method in the following. The
performance of each material class for the angular filter method is detailed in Table 2.

To further test the angular filter method, we compare performances by varying three
parameters: the filter location, the filter size, and the number of output channels of
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Fabric: 65.5% Foliage: 92.5% Fur: 77.9% Glass: 65.2%
Leather: 91.1% Metal: 73.5% Paper: 60.4% Plastic: 50.0%

Sky: 98.2% Stone: 87.1% Water: 92.0% Wood: 72.6%

Table 2: Patch accuracy by category for the angular filter method.

Number of channels 3 16 32 64 128 147
Accuracy 71.6% 74.8% 76.7% 77.8% 73.6% 72.8%

Table 3: Number of output channels of the angular filter architecture. As we can see,
using more channels increases the performance up to some point (64 channels), then
the performance begins to drop, probably due to overfitting. This may also be related to
light-field compression, where we do not need the entire 49×3 input channels and can
represent them in fewer channels for certain purposes.

the angular filter. First, we apply the angular filter at different layers of the VGG-16
network, and compare their performance. The classification accuracies when the filter
is applied on layer 1 and layer 2 are 76.6% and 73.7%, respectively. Compared with
applying it on the input directly (77.8%), we can see that the performance is better when
we combine different views earlier. This also agrees with our findings on the viewpool
method and 4D method. Next, we decompose the 7×7 angular filter into smaller filters.
The accuracies for three consecutive 3×3 filters and a 5×5 filter followed by a 3×3 filter
are 74.8% and 73.6%, respectively. It can be seen that making the filters smaller does
not help improve the performance. One reason might be that in contrast to the spatial
domain, where the object location is not important, in the angular domain the location
actually matters (e.g. the upper-left pixel has a different meaning from the lower-right
pixel), so a larger filter can better capture this information. Finally, we vary the number
of output channels of the angular filter. Since the filter is directly applied on the light-
field input, this can be considered as a “compression” of the input light-field. The fewer
channels we output, the more compression we achieve using these filters. We test the
number from 3 (all views compressed into one view) to 147 (no compression is made),
and show the results in Table 3. It can be seen that the performance has a peak at 64
channels. We hypothesize that with fewer channels, the output might not be descriptive
enough to capture variations in our data, but a much larger number of channels leads to
overfitting due to the resulting increase in number of parameters.

5.2 Comparison between 2D and light-field results
The confusion matrices for both 2D and light-field methods (using the angular filter
method) are shown in Fig. 6, and a graphical comparison is shown in Fig. 7a. Relative to
2D images, using light-fields achieves the highest performance boost on leather, paper
and wood, with absolute gains of over 10%. This is probably because the appearances
of these materials are determined by complex effects such as subsurface scattering or
inter-reflections, and multiple views help in disambiguating these effects. Among all
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Fig. 6: Confusion matrix comparison between 2D and light-field results.
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Fig. 7: Prediction accuracy comparison for using 2D and light-field inputs. (a) We first
show the accuracies for each category. It can be seen that using light-fields achieves
the highest performance boost on leather, paper and wood, obtaining absolute gains of
over 10%. On the other hand, only the performance of glass drops. (b) Next, we vary
the input patch size and test the performance again. It can be seen that as the patch size
becomes smaller, the gain steadily increases.

the 12 materials, only the performance for glass drops. This is probably because the
appearance of glass is often dependent on the scene rather than on the material itself.
Figure 8 shows some examples that are misclassified using 2D inputs but predicted
correctly using light-fields, and vice versa. We observe that light-fields perform the best
when the object information is missing or vague, necessitating reliance only on local
texture or reflectance. On the other hand, the 2D method often generates reasonable
results if the object category in the patch is clear.

Next, we change the patch size for both methods, and test their accuracies to see
the effect of patch size on performance gain. We tried patch sizes 32, 64, 128 and
256 (Fig. 7b). It is observed that as we shrink the patch size from 128, the absolute
gain steadily increases, from 7% to 10%. If we look at the relative gain, it is growing
even more rapidly, from about 10% at size 128 to 20% at size 32. At size 256 the
absolute gain becomes smaller. A possibility is that at this scale, the object in the patch
usually becomes apparent, and this information begins to dominate over the reflectance
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Fig. 8: Prediction result discrepancy between 2D and light-field inputs. The first 3 × 3
grids show example patches that are predicted correctly using LF inputs, but misclas-
sified using 2D inputs. The second grids show the opposite situation, where 2D models
output the correct class but LF models fail. We found that the LF model performs the
best when the object information is missing or vague, so we can only rely on the local
texture, viewpoint change or reflectance information.

information. Therefore, the benefits of light-fields are most pronounced when using
small patches. As the patch becomes smaller and smaller, it becomes harder and harder
to recognize the object, so only local texture and reflectance information is available.
Also note that although increasing the patch size will lead to better accuracy, it will
also reduce the output resolution for full scene classification, so it is a tradeoff and not
always better. Finally, while we have shown a significant increase in accuracy from
2D to 4D material recognition, once the dataset is published, our approach can still be
improved by future advances that better exploit the full structure of 4D light-field data.

5.3 Comparison between spatial/angular resolution

Since light-field images contain more views, which results in an effectively larger num-
ber of pixels than 2D images, we also perform an experiment where the two inputs have
the same number of pixels. Specifically, we extract the light-field image with a spatial
resolution of 128×128 and an angular resolution of 4×4, and downsample the image in
the spatial resolution by a factor of 4. This results in a light-field image of the same size
as an original 2D image. The classification results for using original 2D input and this
downsampled light-field are 70.7% and 75.2% respectively. Comparing with the orig-
inal light-field results (77.8%), we observe that reducing the spatial resolution lowers
the prediction accuracy, but it still outperforms 2D inputs by a significant amount.
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5.4 Results on other datasets

Finally, to demonstrate the generality of our model, we test it on other datasets. Since no
light-field material datasets are available, we test on the synthesized BTF database [36].
The database captures a large number of different viewing and lighting directions on 84
instances evenly classified into 7 materials. From the database we can render arbitrary
views by interpolation on the real captured data. We thus render light-field images and
evaluate our model on these rendered images.

First, directly applying our model on the BTF database already achieves 65.2%
classification accuracy (for the materials that overlap). Next, since the BTF database
contains different material categories from our dataset, we use our models to extract
the 4096-dimensional output of the penultimate fully connected layer. This is the vector
that is used to generate the final class probability in the network, and acts as a feature
descriptor of the original input. We then use this feature descriptor to train an SVM. We
pick two-thirds of the BTF dataset as training set and the rest as test set. The results for
using 2D and light-field inputs are 59.8% and 63.7% respectively. Note that light-field
inputs achieve about 4% better performance than using 2D inputs. Considering that the
rendered images may not look similar to the real images taken with a Lytro camera,
this is a somewhat surprising result. Next, we fine-tune our models on the training set,
and test the performance on the test set again. The results for using 2D and light-field
inputs are 67.7% and 73.0% respectively. Again using light-fields achieves more than
5% performance boost. These results demonstrate the generality of our models.

5.5 Full scene material segmentation

Finally, we convert our patch model to a fully convolutional model and test it on an
entire image to perform material segmentation. We do not directly train a fully con-
volutional network (FCN) since we find it very unstable and the training loss seldom
converges. Instead, we first train our model on image patches as described previously,
convert it to a fully convolutional model, and then fine-tune it on entire images. To train
on a full image, we add another material class to include all other materials that do
not fall into any of the 12 classes in our dataset. We repeat this process for both our
models of patch size 256 and 128 to get two corresponding FCN models, and com-
bine their results by averaging their output probability maps. Finally, as the probability
map is low-resolution due to the network stride, we use edge-aware upsampling [11]
to upsample the probability map to the same size as the original image. The per pixel
accuracy for FCN prediction before and after the guided filter is 77.0% and 79.9%, re-
spectively. The corresponding accuracies for 2D models are 70.1% and 73.7%, after we
apply the same procedure. Note that our method still retains 6-7% boost compared with
2D models. Example results for both methods are shown in Fig. 9.

6 Conclusion
We introduce a new light-field dataset in this work. Our dataset is the first one acquired
with the Lytro Illum camera, and contains 1200 images, which is much larger than all
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(a) Input		 (b) Ground truth 	 (c) 2D prediction	 (d) LF prediction	

Fig. 9: Full scene material classification examples. Bottom: legend for material colors.
Compared with using 2D inputs, we can see that our light-field method produces more
accurate prediction results.

previous datasets. Since light-fields can capture different views, they implicitly contain
the reflectance information, which should be helpful when classifying materials. In view
of this, we exploit the recent success in deep learning approaches, and train a CNN on
this dataset to perform material recognition. To utilize the pre-trained 2D models, we
implement a number of different architectures to adapt them to light-fields, and propose
a “decomposed” 4D filter. These architectures provide insights to light-field researchers
interested in adopting CNNs, and may also be generalized to other tasks involving light-
fields in the future. Our experimental results demonstrate that we can benefit from using
4D light-field images, obtaining an absolute gain of about 7% in classification accuracy
compared with using a single view alone. Finally, although we utilize this dataset for
material recognition, it can also spur research towards other applications that combine
learning techniques and light-field imagery.

Acknowledgements

This work was funded in part by ONR grant N00014152013, NSF grant IIS-1617234, Draper
Lab, a Google Research Award, support by Nokia, Samsung and Sony to the UC San Diego
Center for Visual Computing, and a GPU donation from NVIDIA.



15

References

1. Adams, A., Levoy, M., Vaish, V., Wilburn, B., Joshi, N.: Stanford light field archive, http:
//lightfield.stanford.edu/ 3

2. Bell, S., Upchurch, P., Snavely, N., Bala, K.: Opensurfaces: A richly annotated catalog of
surface appearance. ACM Transactions on Graphics (TOG) 32(4), 111 (2013) 3

3. Bell, S., Upchurch, P., Snavely, N., Bala, K.: Material recognition in the wild with the mate-
rials in context database. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR) (2015) 3, 5, 6

4. Caputo, B., Hayman, E., Mallikarjuna, P.: Class-specific material categorisation. In: Proceed-
ings of the IEEE International Conference on Computer Vision (ICCV) (2005) 3

5. Cimpoi, M., Maji, S., Kokkinos, I., Mohamed, S., Vedaldi, A.: Describing textures in the
wild. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR) (2014) 3

6. Cimpoi, M., Maji, S., Vedaldi, A.: Deep filter banks for texture recognition and segmenta-
tion. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR) (2015) 3

7. Cula, O.G., Dana, K.J.: 3D texture recognition using bidirectional feature histograms. Inter-
national Journal of Computer Vision 59(1), 33–60 (2004) 3

8. Dana, K.J., Van Ginneken, B., Nayar, S.K., Koenderink, J.J.: Reflectance and texture of real-
world surfaces. ACM Transactions on Graphics (TOG) 18(1), 1–34 (1999) 1, 3

9. Farabet, C., Couprie, C., Najman, L., LeCun, Y.: Learning hierarchical features for scene
labeling. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI) 35(8),
1915–1929 (2013) 4

10. Hayman, E., Caputo, B., Fritz, M., Eklundh, J.O.: On the significance of real-world condi-
tions for material classification. In: Proceedings of the IEEE European Conference on Com-
puter Vision (ECCV) (2004) 3

11. He, K., Sun, J., Tang, X.: Guided image filtering. In: Proceedings of the IEEE European
Conference on Computer Vision (ECCV) (2010) 13

12. Hu, D., Bo, L., Ren, X.: Toward robust material recognition for everyday objects. In: BMVC
(2011) 3

13. Jarabo, A., Masia, B., Bousseau, A., Pellacini, F., Gutierrez, D.: How do people edit light
fields? ACM Transactions on Graphics (TOG) 33(4), 146–1 (2014) 3

14. Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadarrama, S.,
Darrell, T.: Caffe: Convolutional architecture for fast feature embedding. In: Proceedings of
the ACM International Conference on Multimedia (2014) 9

15. Kim, C., Zimmer, H., Pritch, Y., Sorkine-Hornung, A., Gross, M.H.: Scene reconstruction
from high spatio-angular resolution light fields. ACM Transactions on Graphics (TOG)
32(4), 73 (2013) 3

16. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional
neural networks. In: Advances in neural information processing systems (2012) 4

17. Li, N., Ye, J., Ji, Y., Ling, H., Yu, J.: Saliency detection on light field. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2014) 3

18. Li, W., Fritz, M.: Recognizing materials from virtual examples. In: Proceedings of the IEEE
European Conference on Computer Vision (ECCV) (2012) 3

19. Liu, C., Sharan, L., Adelson, E.H., Rosenholtz, R.: Exploring features in a bayesian frame-
work for material recognition. In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR) (2010) 3

20. Liu, C., Gu, J.: Discriminative illumination: Per-pixel classification of raw materials based on
optimal projections of spectral BRDF. IEEE Transactions on Pattern Analysis and Machine
Intelligence (PAMI) 36(1), 86–98 (2014) 3

http://lightfield.stanford.edu/
http://lightfield.stanford.edu/


16

21. Lombardi, S., Nishino, K.: Single image multimaterial estimation. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2012) 3

22. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmenta-
tion. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR) (2015) 4

23. Marwah, K., Wetzstein, G., Bando, Y., Raskar, R.: Compressive light field photography using
overcomplete dictionaries and optimized projections. ACM Transactions on Graphics (TOG)
32(4), 1–11 (2013) 3

24. Nicodemus, F.E., Richmond, J.C., Hsia, J.J., Ginsberg, I.W., Limperis, T.: Geometrical con-
siderations and nomenclature for reflectance, vol. 160. US Department of Commerce, Na-
tional Bureau of Standards Washington, DC, USA (1977) 1

25. Oquab, M., Bottou, L., Laptev, I., Sivic, J.: Learning and transferring mid-level image repre-
sentations using convolutional neural networks. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR) (2014) 4

26. Qi, X., Xiao, R., Li, C.G., Qiao, Y., Guo, J., Tang, X.: Pairwise rotation invariant co-
occurrence local binary pattern. IEEE Transactions on Pattern Analysis and Machine In-
telligence (PAMI) 36(11), 2199–2213 (2014) 3

27. Raghavendra, R., Raja, K.B., Busch, C.: Exploring the usefulness of light field cameras for
biometrics: An empirical study on face and iris recognition. IEEE Transactions on Informa-
tion Forensics and Security 11(5), 922–936 (2016) 3

28. Schwartz, G., Nishino, K.: Visual material traits: Recognizing per-pixel material context. In:
Proceedings of the IEEE International Conference on Computer Vision (ICCV) Workshops
(2013) 3

29. Sharan, L., Rosenholtz, R., Adelson, E.: Material perception: What can you see in a brief
glance? Journal of Vision 9(8), 784–784 (2009) 3, 4

30. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recog-
nition. arXiv preprint arXiv:1409.1556 (2014) 4, 6

31. Su, H., Maji, S., Kalogerakis, E., Learned-Miller, E.: Multi-view convolutional neural net-
works for 3d shape recognition. In: Proceedings of the IEEE International Conference on
Computer Vision (ICCV) (2015) 4, 7

32. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V.,
Rabinovich, A.: Going deeper with convolutions. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR) (2015) 4

33. Tao, M.W., Hadap, S., Malik, J., Ramamoorthi, R.: Depth from combining defocus and cor-
respondence using light-field cameras. In: Proceedings of the IEEE International Conference
on Computer Vision (ICCV) (2013) 3

34. Wang, T.C., Efros, A., Ramamoorthi, R.: Occlusion-aware depth estimation using light-field
cameras. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV)
(2015) 3
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