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Abstract

We study the problem of deblurring light fields of general
3D scenes captured under 3D camera motion and present
both theoretical and practical contributions. By analyzing
the motion-blurred light field in the primal and Fourier do-
mains, we develop intuition into the effects of camera mo-
tion on the light field, show the advantages of capturing a
4D light field instead of a conventional 2D image for motion
deblurring, and derive simple methods of motion deblurring
in certain cases. We then present an algorithm to blindly de-
blur light fields of general scenes without any estimation of
scene geometry, and demonstrate that we can recover both
the sharp light field and the 3D camera motion path of real
and synthetically-blurred light fields.

1. Introduction
Motion blur is the result of relative motion between the

scene and camera, where photons from a single incoming
ray of light are spread over multiple sensor pixels during the
exposure. In this work, we make both theoretical and prac-
tical contributions by studying the effects of camera motion
on light fields and presenting a method to restore motion-
blurred light fields. Light field cameras are typically used
in situations with optically significant scene depth ranges
and out-of-plane camera motion, so it is important to con-
sider how motion blur varies both spatially within each sub-
aperture image and angularly between sub-aperture images.

Theory We derive a forward model that describes a
motion-blurred light field as an integration over transforma-
tions of the sharp light field along the camera motion path.
By analyzing the motion-blurred light field in the primal
and Fourier domains (Sec. 3 and Figs. 3, 4, 5), we show that
capturing a light field enables novel methods of motion de-
blurring that are not possible with just a conventional image.
First, we show that a light field blurred with in-plane camera
motion is a simple convolution of the sharp light field with
the camera motion path kernel, regardless of the depth con-
tents of the scene (Sec. 3.2.1). This allows us to use simple
deconvolution to restore the sharp light field, which cannot
be done with conventional images because the magnitude

Figure 1. We theoretically study the effects of motion blur on a
captured light field and present a practical algorithm to deblur light
fields of general scenes captured with 3D camera motion. Left: a
4D light field (visualized as a 2D sub-aperture image and a 2D
epipolar slice) is blurred by the synthetic camera motion shown in
the inset. Right: absent knowledge of the synthetic motion path,
our algorithm is able to accurately recover the sharp light field
and the motion path. See Fig. 9 for examples with real handheld
camera motion.

of the motion blur is depth-dependent (Figs. 4, 6). Addi-
tionally, we show that a light field blurred with out-of-plane
camera motion is an integral over shears of the sharp light
field (Sec. 3.2.2). Therefore, we can blindly deblur a light
field of a textured plane captured with out-of-plane camera
motion by modulating a slice of the Fourier spectrum of the
motion-blurred light field (Figs. 4, 7). This is not possible
for conventional images due to the spatially-varying blur
caused by out-of-plane camera motion.

Practical Algorithm General light fields of 3D scenes
captured with 3D camera motion are integrals over com-
positions of shears and shifts of the sharp light field. The
general light field blind motion deblurring problem lacks a
simple analytic approach and is severely ill-posed because
there is an infinite set of pairs of sharp light fields and mo-
tion paths that explain any observed motion-blurred light
field. We propose a practical light field blind motion deblur-
ring algorithm to correct the complex blurring that occurs in
situations where light field cameras are useful (Sec. 4). Our



forward model is differentiable with respect to the camera
motion path parameterization and the estimated light field,
allowing us to simultaneously solve for both using first-
order optimization methods. Furthermore, by treating mo-
tion blur as an integration of transformations of the sharp
light field, we can simplify the problem by bypassing any
estimation of scene geometry. Instead of solving for a dense
matrix that represents spatially and angularly varying mo-
tion blurs or separately deblurring each sub-aperture image
by solving for a 2D blur kernel and 2D depth map, we di-
rectly solve for a parameterization of the continuous camera
motion curve in R3. This is a much lower-dimensional op-
timization problem, and it allows us to utilize the structure
of the light field to efficiently recover the motion curve and
sharp light field. Finally, we demonstrate the performance
of our algorithm on real (Fig. 9) and synthetically-blurred
(Figs. 1, 8) light fields.

2. Related Work
Light Fields The 4D light field [13, 21, 23] is the total
spatio-angular distribution of light rays passing through free
space, and light field cameras capture the light field that ex-
ists inside the camera body [26]. A conventional 2D full-
aperture image is produced by integrating the rays enter-
ing the entire aperture for each spatial location. Therefore,
a captured light field will be interesting and more useful
than a conventional image when the equivalent full-aperture
image contains significant depth-of-field effects, because
this indicates that rays from different regions of the aper-
ture have different values. Common photography situations
where capturing a 4D light field would be useful include
macro and portrait photography.

Previous work has demonstrated the benefits of lifting
problems in computer vision, computer graphics, and com-
putational photography into the 4D light field space. These
include rendering 2D pinhole images as slices of the 4D
light field [21], stereo reconstruction from a single cap-
ture [2], changing the focus and depth of field of pho-
tographs after capture [26], correcting lens aberrations [25],
passive depth estimation [32], glare artifact reduction [30],
and scene flow estimation [31].

Previous works have also examined the Fourier spectrum
of light fields for various purposes. Chai et al. [6] analyzed
the spectral support of light fields for sampling in light field
rendering and showed that Lambertian objects at specific
depths correspond to angles in the Fourier domain. Durand
et al. [10] analyzed the effects of shading, occlusion, and
propagation on the light field spectrum. Ng [24] showed
that refocusing a 2D full-aperture image is equivalent to tak-
ing 2D slices of the 4D light field spectrum and analyzed
the performance of light field refocusing. Liang and Ra-
mamoorthi [22] developed a light transport framework to
investigate the fundamental limits of light field camera res-
olution. Dansereau et al. [8] derived the 4D spectral support

of light fields for rendering, denoising, and refocusing. Ad-
ditionally, Egan et al. [11] analyzed the spectrum of motion-
blurred 3D space-time images to derive filters for efficient
rendering of motion-blurred images. In this work, we ana-
lyze the Fourier spectrum of motion-blurred light fields to
provide intuition for the effects of camera motion on the
captured light field and methods to deblur light fields.

Motion Deblurring Blind motion deblurring, removing
the motion blur given just a noisy blurred image, is a
very challenging problem that has been extensively stud-
ied (see [18] for a recent review and comparison of vari-
ous algorithms). Representative methods for single image
blind deblurring include the variational Bayes approaches
of Fergus et al. [12] and Levin et al. [20], and algorithms us-
ing novel image priors such as normalized sparsity [17], an
evolving approximation to the L0 norm [33], and L0 norms
on both image gradients and intensities [27].

Previous multi-image blind deblurring works have also
presented algorithms that recover a single 2D image, given
multiple observations that have been blurred differently [9,
34, 35]. Jin et al. [14] present a method that uses a motion-
blurred light field of a scene with two depth layers to recover
a 2D image and bilayer depth map. Our method also takes a
motion-blurred light field as input, but we recover a full 4D
deblurred light field as opposed to a 2D texture. Moreover,
our method does not need to estimate a depth map.

Finally, many computational photography works have
modified the imaging process to make motion deblurring
easier. Raskar et al. [29] used coded exposures to pre-
serve high frequency details that would be attenuated due
to object motion. Another line of work focused on mod-
ified imaging methods to engineer point spread functions
that would be invariant to object motion. This includes fo-
cal sweeps [4, 16], parabolic camera motions [7, 19], and
circular sensor motions [3]. In contrast, we focus on the
problem of deblurring light fields that have already been
captured, and we do not modify the imaging process.

3. A Theory of Light Field Motion Blur
In our analysis below, we perform a flatland analysis

of motion-blurred light fields with a single angular dimen-
sion u and a single spatial dimension x, and note that it is
straightforward to extend this to the full 4D light field with
spatial dimensions (x, y) and angular dimensions (u, v).
We focus on 3D as opposed to 6D camera motion, so the
camera motion path is a general 3D curve and the optical
axis does not rotate.
3.1. Forward Model

The observed blurred light field is the integration over
the light fields captured at each time t during the exposure:

f(x, u) =

∫
t

lt(xt, ut)dt, (1)



Figure 2. Left: we use a 2-plane parameterization for light fields,
where each ray (x, u) is defined by its intercept with the u and
x planes separated by distance s. Note that the x coordinate is
relative to the u coordinate, which is convenient for later deriva-
tions. Right: consider a camera translating along a path p(t) =
(px(t), py(t), pz(t)) during its exposure (in flatland we consider
x and z only). The local camera coordinate frame for each time
t has its origin located at the center of the camera aperture. The
light field lt(xt, ut) is the sharp light field that would have been
recorded by the camera at time t, in the local camera coordinates
at time t. The diagram shows that ray (xt, ut) in the local coordi-
nate frame at time t is equal to ray (xt, ut + px(t)− xt

s
pz(t)) in

the local coordinate frame at time t = 0.

where f is the observed light field and lt(xt, ut) is the sharp
light field at time t during the exposure.

Figure 2 illustrates that the light field at time t is a trans-
formation of the sharp light field at time t = 0, l(x, u),
based on the camera motion path p(t) = (px(t), pz(t))
(py(t) is not included in the flatland analysis but is included
in the full 3D model). Our light field parameterization is
equivalent to considering the light field as a collection of
pinhole cameras with centers of projection u and sensor pix-
els x, and we set the separation between the x and u planes
s = 1 so x is a ray’s spatial intercept 1 unit above u in the
z direction. The observed motion-blurred light field is then

f(x, u) =

∫
t

l(x, u+ px(t)− xpz(t))dt. (2)

Since the light field contains all rays that intersect the
two parameterization planes, this forward model accounts
for occluded points, as long as the parameterization planes
lie outside the convex hull of the visible scene geometry.
Certain rare scenarios, such as a macro photography shot
where the camera moves between blades of grass during
the exposure, may violate this assumption, but it generally
holds for typical photography situations. This model also
assumes that the light field parameterization planes are infi-
nite, because camera motion can cause the sharp light field
at time t to contain rays outside the field-of-view of the light
field at a previous time.

3.2. Space-Angle and Fourier Analysis

We examine the motion-blurred light field in the primal
space-angle and Fourier domains to better understand the
effects of camera motion on the captured light field. We
denote signals in the Fourier domain with capital letters, and
use Ωx and Ωu to denote spatial and angular frequencies.

It is useful to utilize the Affine Theorem for Fourier
transforms [5, 28]: if h(a) = g(Mb + c), where M is a
matrix, a, b, and c are vectors, and h and g are functions,
the relevant Fourier transforms are related as follows:

H(Ω) = |det(M)|−1G(M−TΩ) exp(2πiΩTM−1c),
(3)

where det(M) is the determinant of M and i =
√
−1.

We use this to take the Fourier transform of the observed
motion-blurred light field in Eq. 2, with transformation ma-
trices M =

(
1 0

−pz(t) 1

)
and c =

(
0

px(t)

)
:

F (Ωx,Ωu) =

∫
t

L (Ωx + pz(t)Ωu,Ωu) exp [2πiΩupx(t)] dt.

(4)

As visualized in Fig. 5, the Fourier spectrum is an inte-
gration over shears based on the out-of-plane motion pz(t)
and there is also a phase in the complex exponential corre-
sponding to in-plane motion. This complex exponential is
the Fourier transform of δ(x)δ(u+px(t)), so we can rewrite
the flatland primal domain motion-blurred light field as

f(x, u) =

∫
t

[l(x, u− xpz(t))⊗ δ(x)δ(u+ px(t))]dt. (5)

The spatial and frequency domain expressions now sep-
arate in-plane motion, which is a convolution with a kernel
corresponding to the in-plane camera motion path, and out-
of-plane motion, which is an integration over shears in both
the spatial and frequency domains. Note that this convolu-
tion kernel is restricted to a subspace of the light field space
(1D subspace of 2D for flatland light fields, and 2D sub-
space of 4D for full light fields).

To gain greater insight into these expressions, we con-
sider two special cases for purely in-plane camera motion,
and purely out-of-plane camera motion, with general mo-
tion being an integral over compositions of these two cases.

3.2.1 In-Plane Camera Motion

For camera motion paths that are parallel to the x and u
parameterization planes, pz(t) = 0, and the expression for
the primal domain motion-blurred light field simplifies to

f(x, u) = l(x, u)⊗
∫
t

δ(x)δ(u+ px(t))dt

= l(x, u)⊗ δ(x)k(u),

(6)



Figure 3. In-plane camera motion is equivalent to a convolution of the light field and the corresponding multiplication of the Fourier
spectrum. We are able to easily recover a light field blurred with known in-plane camera motion using 4D deconvolution. Note that
in-plane camera motion causes spatially-varying (with x) blur due to varying scene depths, as shown by the white brackets, while the blur
magnitude does not vary angularly (with u), as shown by the yellow vertical arrows.

Figure 4. Out-of-plane camera motion is equivalent to an integration over shears in both the primal and Fourier domains. Note that out-of-
plane camera motion causes both spatially and angularly varying blur. Given a light field of a single fronto-parallel textured plane (Vincent
van Gogh’s “Wheat Field with Cypresses”) with out-of-plane camera motion, we can blindly recover the texture, with slight artifacts due
to finite aperture and edge effects, by modulating a 2D slice of the 4D Fourier spectrum.

Figure 5. General 3D camera motion is an integration over shears and shifts of the light field and an integration over shears and phase
multiplications of the Fourier spectrum. Blindly deblurring light fields captured with general camera motion lacks a simple analytic
approach and is severely ill-posed, so we solve this as a regularized inverse problem.

where k(u) =
∫
t

δ(u + px(t))dt is the integrated in-plane

camera motion path.
In the Fourier domain,

F (Ωx,Ωu) =L(Ωx,Ωu)

∫
t

exp[2πiΩupx(t)]dt

=L(Ωx,Ωu)K(Ωu),

(7)

where K(Ωu) =
∫
t

exp[2πiΩupx(t)]dt is the integrated in-

plane blur kernel spectrum.

An important insight is that for in-plane camera motion,
it is possible to take the original light field out of the in-
tegral. This clearly identifies the motion-blurred light field
as a simple convolution of the sharp light field with the in-
plane blur kernel, regardless of the content and range of
depths present in the scene, as illustrated in Fig. 3. No such



Figure 6. Light fields of general 3D scenes blurred with known
in-plane camera motion can be recovered by simple 4D deconvo-
lution. This is not possible with conventional 2D images because
the motion blur magnitude is depth-dependent. We synthetically
blur a light field with increasing linear in-plane motion, and note
that the root mean square error (RMSE) of the central sub-aperture
image obtained by 2D deconvolution consistently increases, while
the RMSE of the central sub-aperture image obtained by 4D de-
convolution of the full light field stays relatively constant.

simple result holds for conventional 2D images, as quanti-
fied in Fig. 6, because the motion blur magnitude is depth-
dependent. Intuitively, in-plane motion is a convolution of
the sharp light field because light field cameras at points
along the motion path observe the same set of rays shifted,
while conventional cameras at points along the motion path
observe disjoint sets of rays. If we know the blur kernel, we
can recover the sharp light field by simple deconvolution,
as shown in Figs. 3, 6. However, if both the blur kernel and
light field are unknown, we need to use priors to estimate
the blur kernel and sharp light field, as discussed in Sec. 4.

3.2.2 Out-of-Plane Camera Motion

For purely out-of-plane camera motion, px(t) = 0, and the
expression for the primal domain motion-blurred light field
simplifies to

f(x, u) =

∫
t

l(x, u− xpz(t))dt (8)

In the Fourier domain,

F (Ωx,Ωu) =

∫
t

L(Ωx + pz(t)Ωu,Ωu)dt. (9)

These are simply integrations over different shears of the
light field, as illustrated in Fig. 4. It is particularly interest-
ing to consider the light field of a textured fronto-parallel
plane w(x) at depth z′. The geometry of our light field pa-
rameterization indicates that l(x, u) = w(xz′ + u). In the
primal domain, the out-of-plane motion-blurred light field
of this textured plane is

f(x, u) =

∫
t

w(x(z′ − pz(t)) + u)dt =

∫
t

w(xz(t) + u)dt,

(10)

where we define z(t) = z′ − pz(t).

Using the Affine Theorem for Fourier transforms with
transformation matrices M =

(
z(t) 1

0 1

)
and c = ( 0

0 ), after
noting that the original Fourier transform of the textured
plane is W (Ωx)δ(Ωu), the Fourier transform of the out-of-
plane motion-blurred light field is

F (Ωx,Ωu) =

∫
t

1

|z(t)|
W

(
Ωx
z(t)

)
δ

(
Ωu −

Ωx
z(t)

)
dt.

(11)
This is also an integration over various shears, each a line

with slope given by Ωu = Ωx/z(t). The motion-blurred
light field takes the original texture frequencies (in a line)
and shears them to lines of different slopes, followed by
integration. Using the sifting property of the delta function,
we can simplify the above expression,

F (Ωx,Ωu) =W (Ωu)

∫ zmax

zmin

δ

(
Ωu −

Ωx
z

)
γ(z) dz,

(12)

where we have switched to integration over z directly (ef-
fectively substituting z for t), and for simplicity, we as-
sume z(t) monotonically increases with time. The term
γ(z) = (|z|dz/dt)−1 accounts for the 1/|z| factor and
change of variables.

Intuitively, the motion-blurred light-field spectrum is a
double wedge [6, 8, 10], bounded by slopes zmin and zmax

and containing an infinite number of lines in the frequency-
domain. The magnitudes along each line are the same, de-
termined by the original texture W (Ωu), but every value is
uniformly scaled by a factor γ(z), based on the amount of
time the camera lingered at that depth (other than W (0),
which is constant for all lines).

The delta function in Eq. 12 can then be evaluated, set-
ting z = Ωx/Ωu, leading to the simple expression,

F (Ωx,Ωu) = W (Ωu)β

(
Ωx
Ωu

)
, (13)

where the function β includes γ, as well as the change of
variables from the delta function, and is given by

β(z) =
|z|

Ωxdz/dt
β(Ωx/Ωu) =

(
|Ωu|

dz

dt

∣∣∣∣
Ωx/Ωu

)−1

.

(14)

Texture Recovery The structure of the out-of-plane
motion-blurred light field enables blind deblurring by a very
simple factorization (essentially a rank-1 decomposition of
the 2D light field matrix into 1D factors for W and γ or β).
One simple approach is to estimate W from any line, then
fix the scaling by comparing the overall magnitude of W
across lines to estimate the motion blur kernel (β or γ), and
finally divide W (0) by the total exposure time.



Figure 7. Visualization of process to blindly recover a textured
plane from a light field captured with out-of-plane camera motion.

Taking a slice of the light field in the Fourier domain
can be implemented in the primal domain by a sheared in-
tegral projection, and this is equivalent to refocusing the
full-aperture image to a specific depth [24]. Intuitively, this
means that blind deblurring of the texture can be performed
in the primal domain by computing the full-aperture image
refocused to a single depth during the exposure. In sum-
mary, we can separately estimate the blur kernel and the
original texture for out-of-plane motion of a light field cam-
era, assuming a single fronto-parallel textured plane, by ex-
tracting a slice in the Fourier domain or equivalently refo-
cusing the full-aperture image in the primal domain.

Figure 4 shows an example of a light field of a textured
plane blurred by linear out-of-plane motion. We are able to
blindly recover the texture, with slight artifacts due to finite
aperture and edge effects, by computing a sheared integral
projection (equivalent to taking a 2D slice of the 4D Fourier
spectrum). As a practical note, when computing this in the
discrete case, we must linearly scale frequencies in the ex-
tracted slice by |ζΩx| + 1 to correct for the value of each
discrete frequency being spread across the shear length dur-
ing the exposure, where ζ is a constant corresponding to the
relative time the camera lingers at the depth corresponding
to that slice. ζ can be automatically determined by sampling
Fourier slices and comparing their magnitudes to calculate
the relative time spent at each depth along the motion path.
This process is visualized in Fig. 7. As detailed in [24], the
resolution of the recovered Fourier slice is limited by the
angular resolution of the light field camera.

Comparison with a Conventional Image It is also in-
sightful to compare this to information available from a con-
ventional 2D image (1D in flatland), corresponding to the
view from the central pinhole of a light field camera. In this
case, we set u = 0 in Eq. 10, defining l(x) = w(xz′). Since
we are now working in 1D, from the Fourier scale theorem,

F (Ωx) =

∫
t

1

|z(t)|W
(

Ωx

z(t)

)
dt =

∫ zmax

zmin

W

(
Ωx

z

)
γ(z)dz.

(15)
This is similar to the light field case, except that we no

longer have the delta function for multiple sheared lines in
2D; indeed we only have a single 1D line, with a frequency
spectrum scaled according to z. It is clear that from the per-
spective of analysis and recovery, the conventional image
case provides far less insight than in the light field case. We
cannot separate out the texture W , and the methods for re-

covery discussed in the light field case do not apply, since
there are not multiple lines in a 2D spectrum we can study.
In fact, it is not even straightforward to recover texture and
motion blur kernel even when one of the factors is known.

3.2.3 General 3D Motion and Scenes
General 3D camera motion is an integral over compositions
of shears and shifts of the light field, as shown in Fig. 5.
Blindly deblurring a light field of a general scene captured
with 3D camera motion lacks a simple analytic approach
and is a severely ill-posed problem because there is an infi-
nite set of pairs of light fields and motion paths that explain
any observed motion-blurred light field. Below, we present
an algorithm to estimate the sharp light field and camera
motion path by solving a regularized inverse problem.

4. Blind Light Field Deblurring Algorithm
For blind light field motion deblurring, we estimate both

the camera motion curve p(t) and the sharp light field l.
We utilize our forward model derived in Eq. 2 to formulate
a regularized inverse problem, and our approach is particu-
larly efficient due to our direct representation of the camera
motion curve, as discussed below. We solve a discrete opti-
mization problem, since light field cameras record samples
and not continuous functions:

min
l,p(t)
||̂f(l,p(t))− f ||22 + λψ(l), (16)

where the first term minimizes the L2 norm of the differ-
ence between the observed motion-blurred light field f and
that predicted by the forward model f̂ , and the second term,
ψ(l), is a prior on the sharp light field. To address finite
aperture and sensor planes, we assume replicating bound-
aries for the sharp light field. We use bilinear interpolation
to transform the sharp light field along the camera motion
path, so our forward model is differentiable with respect to
the camera path and the sharp light field.

Camera Motion Path Representation We model the
camera motion path p(t) as a Bézier curve made up of n
control points in R3. This approach is much more efficient
than the alternative approaches of solving for a dense matrix
to represent spatially and angularly varying blurs, or sepa-
rately deblurring each sub-aperture image. A dense motion
blur ray transfer matrix would have size r×r, where r is the
number of rays sampled by the light field camera (this ma-
trix would have size 2560000× 2560000 for the light fields
used in this work). Separately deblurring each sub-aperture
image involves estimating a 2D depth map and a 2D convo-
lution kernel, each of size s × s, where s is the number of
samples along each spatial dimension (this equates to solv-
ing for two matrices of size 200 × 200 for the light fields
used in this work). Instead, we solve for a much lower-
dimensional vector of control points with 3n elements. In
practice, we find that typical camera motion paths can be
represented by n = 3 or n = 4 control points.



Figure 8. Blind deblurring results on synthetically motion-blurred light fields. Our algorithm is able to correctly recover the sharp light field
and estimate the 3D camera motion path, while alternative methods perform poorly due to the large spatial variance in the blur. Additionally,
as demonstrated by the epipolar images, other algorithms do not recover a light field that is consistent across angular dimensions. The root
mean square error (RMSE) of our deblurred results are consistently lower than those of the alternative methods.

Light Field Prior To regularize the inverse problem
above, we use a 4D version of the sparse gradient prior pro-
posed in [33]:

ψ(l) =
∑
x,y,u,v

{
1
ε2 |∇l|2 if |∇l| ≤ ε,
1 otherwise.

(17)

This function gradually approximates the L0 norm of
gradients by thresholding a quadratic penalty function pa-
rameterized by ε, and approaches the L0 norm as ε→ 0.

Implementation Details We utilize the automatic differ-
entiation of Tensorflow [1] to differentiate the loss of the
blind deblurring problem in Eq. 16 with respect to the cam-
era motion path control points and sharp light field, and use
the first-order Adam solver [15] for optimization.

While the prior in Eq. 17 is effective for estimating the
camera motion path, the sharp light fields estimated using
this prior typically appear unnatural and over-regularized.
We hold the camera motion path constant and solve Eq. 16
for the sharp light field using a 4D total variation (L1 norm
of gradients) prior to obtain the final sharp light field.
4.1. Results

We validate our algorithm using light fields captured
with the Lytro Illum camera, that have been blurred by both
synthetic camera motion within a 2 mm cube using our for-
ward model in Eq. 2 and real handheld camera motion using

a shutter speed of 1/20 second. We compare our results to
the alternative of applying state-of-the-art blind image mo-
tion deblurring algorithms to each sub-aperture image. As
shown in a recent review and comparison paper [18], the al-
gorithms of Krishnan et al. [17] and Pan et al. [27] are two
of the top performers for blind deblurring of both real and
synthetic images with spatially-varying blur, so we com-
pare our algorithm to these two methods. As demonstrated
by both the synthetically motion-blurred results in Fig. 8
and the real motion-blurred results in Fig. 9, our algorithm
is able to accurately estimate both the sharp light field and
the camera motion path. The state-of-the-art blind image
motion deblurring algorithms are not as successful due to
the significant spatial variance of the blur. Furthermore,
they are not designed to take advantage of the light field
structure and do not estimate a 3D camera motion path, so
their results are inconsistent between sub-aperture images,
as demonstrated by the epipolar image results.

In the synthetically-blurred examples in Fig. 8, note that
our algorithm correctly estimates the ground truth com-
plex camera motion paths and corrects the large spatially-
varying blurs in the flowers and leaves. In the real handheld
blurred examples in Fig. 9, note that our algorithm corrects
the blur in the specularities and edges of the circuit compo-
nent, the leaves and flower of the rosemary plant, and the
hair, eyebrows, teeth, and background plants.



Figure 9. Blind deblurring results on real handheld motion-blurred light fields. Our algorithm is able to correctly recover the sharp light
field and estimate the 3D camera motion path. Note that we correct the motion seen in the specular reflections and object edges in the circuit
component example, the motion seen in the leaves and flower in the rosemary plant example, and the motion seen in the hair, eyebrows,
teeth, and background plants of the portrait example. Furthermore, our method produces angularly-consistent results, as demonstrated by
the epipolar slices of all 3 examples. Please view our supplementary video and project webpage for animated visualizations of our results.

5. Conclusion
In this work, we studied the problem of deblurring light

fields of general scenes captured with 3D camera motion.
We analyzed the effects of motion blur on the light field
in the primal and Fourier domains, derived simple meth-
ods to deblur light fields in specific cases, and presented
an algorithm to infer the sharp light field and camera mo-
tion path from real and synthetically-blurred light fields. It
would be interesting to extend our forward model to account
for 3D rotations of the optical axis, and theoretically an-
alyze the effects of camera rotation on the motion-blurred
light field. Since the forward model would be differentiable
with respect to the rotation parameters, our blind deblurring

optimization algorithm can easily generalize to account for
camera rotation.

We think that the insights of this work enable future in-
vestigations of light field priors that more explicitly con-
sider the effects of motion blur on the light field, as well
as novel interpretations of single and multi-image motion
deblurring as subsets of the general light field motion de-
blurring problem.
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