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The supplementary material is divided into three parts.
In Section 1, we present a detailed comparison on the effec-
tiveness of various terms of our energy function using syn-
thetic data. In Section 2, we show more mesh reconstruc-
tions with real data using a single light-field image. In Sec-
tion 3, we present detailed derivations of our optimization
framework for depth reconstruction and the BRDF-invariant
term.

1. Ablation Study with Synthetic Data

Figure 1 shows qualitative comparisons of surface depths
estimated from a synthetic light-field image, with different
variations of our energy function. We also show the relative
performance of two related works — one that uses a Lam-
bertian shading model instead of BRDF-invariance [2] and
another that uses BRDF-invariance, but without a robust
variational minimization framework and without achieving
a balance with traditional gradient-based multiview stereo
[6]. Quantitative comparisons based on mean square error
are demonstrated in Table 1.

The first column shows the input image while the second
column is the ground truth depth map. The depth map gener-
ated by optimizing our energy function is shown in the third
column, which is very similar to the ground truth for both
diffuse and specular regions. Next, we remove the BRDF-
invariant term, thus, only the gradient-based and smooth-
ness terms are used for reconstruction (“Only Gradient”).
The reconstructed depth map is shown in the fourth column,
from which we can see that there is an obvious distortion
caused by specular highlights. Quantitative comparisons in
Table 1 also show higher errors when removing the BRDF-
invariant term, which is consistent with intuition.

Next, we remove the adaptive weighting cue wy ([, z)
which balances between the BRDF-invariant term and the
gradient-based photo-consistency term (“No Weighting”).
The reconstruction again suffers from artifacts and fine de-
tails of object shape are oversmoothed. Similar effects can
be observed from the surface reconstruction results by op-
timizing only the BRDF-invariant term and the smoothness
term (“Only BRDF”). However, our surface reconstruction

results without gradient-based photoconsistency term are
still much better than those of [6]. This is because we use
a better variational framework and a robust coarse-to-fine
strategy to optimize the energy function. The reconstruc-
tion error using the two optimization frameworks are shown
in the fifth and seventh columns of Table 1, respectively.
Finally we use a Lambertian shading term to replace the
BRDF invariance term for surface reconstruction, recreat-
ing the method of [2]. However, as shown in the seventh
column of Figure | (“Diffuse Shading”), using Lambertian
shading instead of our physically-based BRDF-invariance
deteriorates the reconstruction results due to the highly spec-
ular surface, which is also observed quantitatively in Table
1.

2. Comparisons Using Real Data

Similar to Section 4.2 or Figure 7 of the main paper, we
show surface reconstruction results with real light-field im-
ages using our method and compare with prior works, but
using a depth map visualization.

The second column of Figure 2 presents the reconstruc-
tion using our method while the third column shows the re-
sults by removing the BRDF-invariant term. From the third
column, we can see that minimizing the gradient-based
stereo and smoothness terms can only recover most details
for diffuse regions, but suffers from strong artifacts and dis-
tortions near the specular highlights. On the other hand, in-
corporating the BRDF-invariant term can effectively drive
the optimization process, which leads to satisfactory surface
reconstruction results for both diffuse and specular regions.

Next, we compare with methods such as [6, 4], which
also use light-field cameras for surface reconstruction with
unknown BRDF. As shown in the fourth column, even
though our BRDF-invariant term is shared with [6], their
surface reconstruction results are more noisy and inaccurate.
This is because it fails to balance between BRDF-invariance
and photoconsistency cues, while its optimization method
is also not as robust as our variational approach. We also
compare with a light-field reconstruction method based on
a purely Lambertian assumption [5], in the sixth column,



which also exhibits strong distortions due to the glossy na-
ture of the materials in these experiments.

3. Optimization Framework

For completeness, this section provides a detailed de-
scription of our variational framework for surface recon-
struction. Following [2], we adopt the surface representa-
tion of [3] based on continuous bicubic patches and use a
Gauss-Newton method for optimization. We next provide
the derivation of the BRDF-invariant term in our energy
function following [ |, 6], except for details of camera setup
and then formulate it with respect to our surface representa-
tion.

3.1. Surface Representation

We represent the surface using a set of square bicubic
patches. The shape of each patch is controlled by four nodes
placed on the image grid. Each node is represented by four
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values, the depth z, the first derivatives d—z il and the sec-
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node of the patch to recover the object surface. Let us de-

note the four nodes of a patch by 0, 1, 2 and 3. Let w be
the size of the patch. Then, the normalized coordinate of a
pixel covered by the patch is

ond derivative . We optimize the four values of each
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The depth at each pixel is given by bicubic interpolation:
2(u,0) =YY ag(i)'(9) )

As a result, the first and second derivative of each pixel can
be represented as
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The 16 parameters {a;; } can be calculated by solving a lin-
ear system once we know the values at the four nodes. Let
A be a constant coefficient matrix derived from bicubic in-
terpolation (2). By stacking the 16 parameters {a;;} into a
vector a and the values of the four nodes into a vector z, we
have

a=A"1z 4)
.. . dz
By combining (2), (3) and (4), we can easily compute &’
Z

d U d v d UV d U d Vv . :
- - “ : and : using the chain rule. To
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minimize our energy function, we update the z vector for
each patch iteratively using the Gauss-Newton method to

obtain the surface reconstruction.

3.2. Derivation of BRDF-Invariant term

We follow the derivations of [0] to incorporate the
BRDF-invariant term into our variational model. Here, we
place the origin at the optical center instead of the center
of the image plane, thus, the formulation is slightly differ-
ent from [6]. As discussed in the main paper, the BRDF
invariant energy term is defined as

Egror = (k1 + Kko2)ng + (k3 + Kaz)ny + (K5 + Ke2)ns],

)
where
k1 = IyHy1 —I,Hia
ke = Hi2B(va+ Iym) — Hi1B(vs + Iym)
k3 = I Hoy — I, Hoo
ky = HypB(v2 + Iuy1) — Ha18(v3 + Lym)
ks = 1I,H3y —I,Hz3o
ke = HzaB(v2+ Luy1) — H31B8(73 + Lum1).

To compute the BRDF-invariant term, we need to compute
the normal vector of each pixel, which will be introduced in
the following.

Derivation of the normal vector Using the continuous
surface representation based on bicubic interpolation (2),
(3), (4), we have
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With some abuse of notation, here (u,v) is the coordinate

of the pixel on the image grid. Further, {&;;} can be com-
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puted easily using the transformation @ = and
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Figure 1. Study of importance of various terms in our energy formulation. From left to the right are (a) input image, (b) ground truth depth
map, (c) depth reconstruction results by optimizing the full version of our energy function, (d) results without the BRDF-invariant term, (e)
results without the weighting cue, (f) results without the gradient-based multiview stereo term, (g) results with the Lambertian shading cue
of [2], instead of our physically-based BRDF-invariance and (h) BRDF-invariant term optimized using the framework of [6]. Please refer
to the text for comparisons and analysis.

Model Our method Only Gradient No Weighting Only BRDF Term Diffuse Shading [2] Wang et al. [6]
bunny 0.0011 0.0014 0.0021 0.0258 0.0020 0.0551
dragon 0.0025 0.0032 0.0036 0.0116 0.0088 0.0194

Table 1. Study of the importance of various terms in our energy formulation. We use mean squared error to measure reconstruction
accuracy.
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Figure 2. Single view shape reconstruction results on real data. From the left to the right are the original images, the ground-truth depth map,
the reconstruction results using our method, the BRDF-invariant method of [6], the clustering method of [4] and the Lambertian method of
[5]. We again observe that our robust optimization framework produces good reconstructions without sensitive parameter tuning.
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