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Abstract

Light-field cameras are now used in consumer and in-
dustrial applications. Recent papers and products have
demonstrated practical depth recovery algorithms from a
passive single-shot capture. However, current light-field
capture devices have narrow baselines and constrained
spatial resolution; therefore, the accuracy of depth recov-
ery is limited, requiring heavy regularization and produc-
ing planar depths that do not resemble the actual geome-
try. Using shading information is essential to improve the
shape estimation. We develop an improved technique for
local shape estimation from defocus and correspondence
cues, and show how shading can be used to further refine
the depth.

Light-field cameras are able to capture both spatial and
angular data, suitable for refocusing. By locally refocusing
each spatial pixel to its respective estimated depth, we pro-
duce an all-in-focus image where all viewpoints converge
onto a point in the scene. Therefore, the angular pixels have
angular coherence, which exhibits three properties: photo
consistency, depth consistency, and shading consistency.
We propose a new framework that uses angular coherence
to optimize depth and shading. The optimization framework
estimates both general lighting in natural scenes and shad-
ing to improve depth regularization. Our method outper-
forms current state-of-the-art light-field depth estimation
algorithms in multiple scenarios, including real images.

1. Introduction
Light-fields [15, 25] can be used to refocus images [27].

Light-field cameras also enable passive and general depth
estimation [32, 33, 35]. A key advantage is that multiple
cues, such as defocus and correspondence can be obtained
from a single shot [32]. Our main contribution is integrating
a third cue: shading, as shown in Fig. 1.

We make the common assumption of Lambertian sur-
faces under general (distant) direct lighting. We differ from

Figure 1. Light-field Depth Estimation Using Shading, Defocus,
and Correspondence Cues. In this work, we present a novel al-
gorithm that estimates shading to improve depth recovery using
light-field angular coherence. Here we have an input of a real
scene with a shell surface and a camera tilted slightly toward the
right of the image (a). We obtain an improved defocus and corre-
spondence depth estimation (b,c). However, because local depth
estimation is only accurate at edges or textured regions, depth es-
timation of the shell appears regularized and planar. We use the
depth estimation to estimate shading, which is S (d), the compo-
nent in I = AS, where I is the observed image and A is the
albedo (e) With the depth and shading estimations, we can refine
our depth to better represent the surface of the shell (f,g). Through-
out this paper, we use the scale on the right to represent depth.

shape from shading from single images, by exploiting the
full angular data captured by the light-field. Our algorithm
is able to use images captured with the Lytro and Lytro Il-
lum cameras. We compare our results against the Lytro Il-
lum software and other state of the art methods (Fig. 7),
demonstrating that our results give accurate representations
of the shapes captured. Upon publication, we will release
our source code and dataset.

Shape from shading is a heavily under-constrained prob-
lem and usually only produces accurate results when
fairly accurate initial depths are available for subsequence
shading-based optimization [3, 6, 9, 21, 39]. Unfortunately,
captured light-field data typically does not provide such in-
formation, because of the narrow baseline and limited reso-



lution. The depth estimation performs poorly, especially in
smooth surfaces where even sparse depth estimation is ei-
ther inaccurate or non-existent. Moreover, because we use a
consumer camera to capture real world images, noise poses
a large problem in estimating shading.

We represent the 4D light-field data as an epipolar im-
age (EPI) with spatial pixel coordinates (x, y) and their
angular pixel coordinates (u, v). When refocused to the
correct depth, the angular pixels corresponding to a sin-
gle spatial pixel represent viewpoints that converge on one
point on the scene, exhibiting angular coherence. Angu-
lar coherence means the captured data would have photo
consistency, depth consistency, and shading consistency,
shown in Fig. 2. We extend this observation from Seitz and
Dyer [30] by finding the relationship between refocusing
and achieving angular coherence (Fig. 2). The extracted
central pinhole image from the light-field data helps us en-
force the three properties of angular coherence. We then
exploit these three properties to improve the depth from de-
focus and correspondence introduced by Tao et al. [32]. The
angular coherence and accurate confidence measures pro-
vide robust constraints to estimate shading, previously not
possible with low-density depth estimation.
In this paper, our main contributions are
1. Analysis of refocusing and angular coherence (Sec. 3).
We show the relationship between refocusing a light-field
image and angular coherence to formulate new depth mea-
surements and shading estimation constraints.
2. Depth estimation and confidence metric (Sec. 4.1).
We formulate a new local depth algorithm to perform cor-
respondence and defocus using angular coherence.
3. Shading estimation constraints (Sec. 5.1 and 5.2).
We formulate a new shading constraint, that uses angular
coherence and a confidence map to exploit light-field data.
4. Depth refinement with the three cues (Sec. 5.3).
We design a novel framework that uses shading, defocus,
and correspondence cues to refine shape estimation.

2. Previous Work

2.1. Shape from Shading and Photometric Stereo

Shape from shading has been well studied with multi-
ple techniques. Extracting geometry from a single capture
[18, 40] was shown to be heavily under constrained. Many
works assumed known light source environments to reduce
the under constrained problem [11, 12, 17, 40]; some use
partial differential equations, which require near ideal cases
with ideal capture, geometry, and lighting [8, 24]. In gen-
eral, these approaches are especially prone to noise and re-
quire very controlled settings. Recently, Johnson and Adel-
son [22] described a framework to estimate shape under nat-
ural illumination. However, the work requires a known re-
flectance map, which is hard to obtain. In our work, we
focus on both general scenes and unknown lighting, with-
out requiring geometry or lighting priors. To relax lighting
constraints, assumptions about the geometry can be made

Figure 2. Angular Coherence and Refocusing. In a scene where
the main lens is focused to point P with a distance α∗ from the
camera, the micro-lenses enable the sensor to capture different
viewpoints represented as angular pixels as shown on the bottom.
As noted by Seitz and Dyer [30], the angular pixels exhibit angular
coherence, which gives us photo, depth, and shading consistency.
In our paper, we extend this analysis by finding a relationship be-
tween angular coherence and refocusing, as described in Sec. 3.
In captured data, pixels are not guaranteed to focus at α (shown
on the top). Therefore, we cannot enforce angular coherence on
the initial captured light-field image. We need to shear the initial
light-field image using Eq. 1 from Sec. 3, use the angular coher-
ence constraints from Sec. 3, and remap the constraints back to the
original coordinates using Eq. 7 from Sec. 3.1.

such as faces [7, 31] or other data-driven techniques [3].
The method by Barron and Malik [1, 2] works for real-
world scenes and recovers shape, illumination, reflectance,
and shading from an image. However, many constraints are
needed for both geometry and illumination. In our frame-
work, we do not need any priors and have fewer constraints.

A second set of works focuses on using photometric
stereo [4, 10, 12, 17, 36, 37]. These works are not pas-
sive and require the use of multiple lights and captures. In
contrast, shape from shading and our technique just require
a single capture.

2.2. Shape from Depth Cameras and Sensors
More recent work has been done using Kinect data [13].

Barron and Malik [3] introduce SIRFS that reconstructs
depth, shading, and normals. However, the approach re-
quires multiple shape and illumination priors. Moreover,
the user is required to assume the number of light sources
and objects in the scene. Chen and Koltun [9] introduce a
more general approach to perform intrinsic image decompo-
sition. However, the method does not optimize depth and,
given sparse input depth with poor normal estimations at
smooth surfaces, their shading estimation is poor and un-
suitable for refining depth. Other works [26, 38] introduce
an efficient method to optimize depth using shading infor-
mation. The limitations of these approaches are that they re-
quire very dense and accurate depth estimation, achieved by



active depth cameras. Even in non-textured surfaces, these
active systems provide meaningful depth estimations. With
passive light-field depth estimation, the local depth output
has no or low-confidence data in these regions.

2.3. Shape from Light-Fields and Multi-View Stereo
Since light-fields and multi-view stereo are passive sys-

tems, these algorithms struggle with the accuracy of depth
in low-textured regions [23, 29, 32, 33, 35] because they
rely on local contrast, requiring texture and edges. With tra-
ditional regularizers [20] and light-field regularizers, such
as one proposed by Wanner et al. [14], depth labeling is
planar in these low-textured regions. In this paper, we show
how the angular coherence of light-field data can produce
better 1) depth estimation and confidence levels, and 2) reg-
ularization. Van Doorn et al. [34] explain how light-fields
provide useful shading information and Hasinoff and Ku-
tulakos [16] explain how focus and aperture provide shape
cues. We build on Tao et al. [32] and these observations to
improve depth estimation from defocus and correspondence
cues, and additionally incorporate shading information.

3. Angular Coherence and Refocusing
Angular coherence plays a large role in our algorithm to

establish formulations for both depth estimation and shad-
ing constraints. Our goal is to solve for 1) depth map, α∗,
and 2) shading in P = AS, where P is the central pinhole
image of the light-field input L0, A is the albedo, and S
is shading. In order to address the limitations of light-field
cameras, we exploit the angular resolution of the data.

Here, we explain why a light-field camera’s central pin-
hole image provides us with an important cue to obtain an-
gular coherence. For an input light-field, L0, we can shear
to refocus the image (introduced by Ng et al. [27]). To shear,
the EPI remapping is as follows,

Lα(x, y, u, v) = L0(xf (α), yf (α), u, v)

xf (α) = x+ u(1− 1

α
) yf (α) = y + v(1− 1

α
)

(1)

where L0 is the input light-field image, Lα is the refocused
image, (x, y) are the spatial coordinates, and (u, v) are the
angular coordinates. The central viewpoint is located at
(u, v) = (0, 0).

Given the depth α∗(x, y) for each spatial pixel (x, y), we
calculate Lα∗ by refocusing each spatial pixel to its respec-
tive depth. All angular rays converge to the same point on
the scene when refocused at α∗, as shown in Fig. 2. We can
write this observation as

Lα∗(x, y, u, v) = L0(xf (α∗(x, y)), yf (α∗(x, y)), u, v)
(2)

We call this equation the angular coherence. Effectively,
Lα∗ represents the remapped light-field data of an all-in-

focus image. However, utilizing this relationship is dif-
ficult because α∗ is unknown. From Eqn, 1, the cen-
ter pinhole image P , where the angular coordinates are at
(u, v) = (0, 0), exhibits a unique property: the sheared
xf (α), yf (α) are independent of (u, v). At every α,

Lα(x, y, 0, 0) = P (x, y) (3)

The central angular coordinate always images the same
point in the scene, regardless of the focus. This property
of refocusing allows us to exploit photo consistency, depth
consistency, and shading consistency, shown in Fig. 2. The
motivation is to use these properties to formulate depth es-
timation and shading constraints.

Photo consistency. In Lα∗ , since all angular rays con-
verge to the same point in the scene at each spatial pixel,
the angular pixel colors converge to P (x, y). In high noise
scenarios, we use a simple median filter to de-noise P (x, y).
Therefore, we represent the photo consistency measure as,

Lα∗(x, y, u, v) = P (x, y) (4)

Depth consistency. Additionally, the angular pixel values
should also have the same depth values, which is repre-
sented by,

ᾱ∗(x, y, u, v) = α∗(x, y) (5)

where ᾱ∗ is just an up-sampled α∗ with all angular pixels,
(u, v), sharing the same depth for each (x, y). 1

Shading consistency. Following from the photo consis-
tency of angular pixels for each spatial pixel inLα∗ , shading
consistency also applies, since shading is viewpoint inde-
pendent for Lambertian surfaces. Therefore, when solving
for shading across all views, shading consistency gives us,

S(xf (α∗(x, y)), yf (α∗(x, y)), u, v) = S(x, y, 0, 0) (6)

3.1. Inverse Mapping
For all three consistencies, the observations only apply to

the coordinates in Lα∗ . To map these observations back to
the space of L0, we need to use the coordinate relationship
between Lα∗ and L0, as shown in Fig. 2 on the bottom.

L0(xi(α∗), yi(α∗), u, v) = Lα∗(x, y, u, v)

xi(α) = x− u(1− 1

α
) yi(α) = y − v(1− 1

α
)

(7)

We use this property to map depth and shading consis-
tency to L0.

1Although depths vary with the viewpoint, (u, v), we can assume the
variation of depths between angular pixels is minimal since the aperture is
small and our objects are comparatively far away.



Figure 3. Pipeline. The pipeline of our algorithm contains multiple steps to estimate the depth of our input light-field image (a). The first
is to locally estimate the depth (line 2), which provides us both confidence (b) and local estimation (c). We use these two to regularize
depth without shading cues (d) (line 3). The depth is planar, which motivates us to use shading information to refine our depth. We first
estimate shading (e) (line 4), which is used to estimate lighting (f) (line 5). We then use the lighting, shading, initial depth, and confidence
to regularize into our final depth (g) (line 6).

Algorithm 1
Depth from Shading, Defocus, and Correspondence

1: procedure DEPTH(L0)
2: Z,Zconf = LocalEstimation(L0) . Sec. 4.1
3: Z∗ = OptimizeDepth(Z,Zconf) . Sec. 4.2
4: S = EstimateShading(L0) . Sec. 5.1
5: l = EstimateLighting(Z∗, S) . Sec. 5.2
6: Z∗ = OptimizeDepth(Z∗, Zconf, l, S) . Sec. 5.3
7: return Z∗

8: end procedure

4. Algorithm
In this section, we discuss local estimation using angular

coherence (4.1) and regularization (4.2), corresponding to
lines 2 and 3 of the algorithm. Section 5.1 describes shad-
ing and lighting estimation and the final optimization. Our
algorithm is shown in Algorithm 1 and Fig. 3.

4.1. Depth Cues using Angular Coherence [Line 2]
We start with local depth estimation, where we seek to

find the depth α∗ for each spatial pixel. We follow Tao
et al. [32], which combines defocus and correspondence
cues. However, there are some limitations in their approach.
Since out-of-focus images still exhibit high contrast, cue re-
sponses are incorrect. These situations are common because
of lens properties, out-of-focus blur (bokeh), and refocusing
artifacts from light-field cameras, as shown in Fig. 4.

We use photo consistency (Eq. 4) to formulate an im-
proved metric for defocus and correspondence. From angu-
lar coherence (Eq. 2), we want to find α∗ such that

α∗(x, y) = argmin
α

|L0(xf (α), yf (α), u, v)− P (x, y)|

(8)

The equation enforces all angular pixels of a spatial pixel
to equal the center view pixel color, because regardless of

α the center pixel color P does not change. We will now
reformulate defocus and correspondence to increase robust-
ness of the two measures.

Defocus. Instead of using a spatial contrast measure to
find the optimal depth [32], we use Eq. 8 for our defocus
measure. The first step is to take the EPI and average across
the angular (u, v) pixels,

L̄α(x, y) =
1

N(u,v)

∑
(u′,v′)

Lα(x, y, u′, v′) (9)

where N(u,v) denotes the number of angular pixels (u, v).
Finally, we compute the defocus response by using a mea-
sure:

Dα(x, y) =
1

|WD|
∑

(x′,y′)∈WD

|L̄α(x′, y′)− P (x′, y′)|

(10)
where WD is the window size (to improve robustness). For
each pixel in the image, we compare a small neighborhood
patch of the refocused image and its respective patch at the
same spatial location of the center pinhole image.

Even with refocusing artifacts or high frequency out-of-
focus blurs, the measure produces low values for refocusing
to non-optimal α. In Fig. 4, we can see that the new measure
responses are more robust than responses proposed by Tao
et al. [32] (Fig. 4).

Correspondence By applying the same concept as
Eqn. 8, we can also formulate a new correspondence mea-
sure. To measure photo consistency, instead of measuring
the variance of the angular pixels, we measure the differ-
ence between the refocused angular pixels at α and their
respective center pixel. This is represented by



Figure 4. Depth estimation using angular coherence. On the top,
we have a scene with a dinosaur. Even refocused to an unopti-
mal depth, not equal to α∗, high contrast still exists. By using
a contrast based defocus measure, the optimal response is hard to
distinguish. On the bottom, we have a scene with a black dot in the
center. When refocused at a non-optimal depth, the angular pixels
may exhibit the same color as the neighboring pixels. Both the
optimal and non-optimal α measures would have low variance.
However, by using angular coherence to compute the measures,
we can see that, in both cases, the resulting measure better dif-
ferentiates α∗ from the rest, giving us better depth estimation and
confidence (also in Fig. 7). Note: For defocus measurement, we
inverted the Tao et al. response for clearer visualization.

Cα(x, y) =
1

N(u′,v′)

∑
(u′,v′)

|Lα(x, y, u′, v′)− P (x, y)|

(11)
Previous work such as Tao et al. [32] only consider the vari-
ance in Lα directly, while we also compare to the intended
value. This has the following advantages: the measurement
is more robust against small angular pixel variations such
as noise. See Fig. 4 bottom, where at an incorrect depth,
the angular pixels are similar to their neighboring pixels.
Measuring the variance will give an incorrect response as
opposed to our approach of comparing against the center
view.

Confidence and Combining Cues Since the relative con-
fidences of the different cues are important, we surveyed a
set of confidence measures. We found Attainable Maximum
Likelihood (AML), explained in Hu and Mordohai [19], to
be the most effective.

To combine the two responses, for each spatial pixel, we
use a simple average of the defocus and correspondence re-
sponses weighted by their respective confidences. To find
the optimal depth value for each spatial pixel, we use the
depth location of the minimum of the combined response
curve, which we will label as Z. We used the same AML
measure for the new combined response to compute the
overall confidence level for local depth estimation, which
we label as Zconf (see Fig. 3b,c).

4.2. Regularization w/ Confidence Measure [Line 3]
Up to this point, we have obtained a new local depth es-

timation. Now the goal is to propagate the local estimation
to regions with low confidence.

In our optimization scheme, given Z, the local depth es-
timation, and its confidence, Zconf, we want to find a new
Z∗ that minimizes

E(Z∗) =
∑
(x,y)

λdEd(x, y) + λvEv(x, y) (12)

where Z∗ is the optimized depth, Ed is our data constraint,
and Ev is our smoothness constraint. In our final optimiza-
tion, we also use Es, our shading constraint (line 6). In our
implementation, we used λd = 1 and λv = 4.

Data constraint (Ed) To weight our data constraint, we
want to optimize depth to retain the local depth values with
high confidence. Note that since we use light-field data, we
have a confidence metric from defocus and correspondence,
which may not always be available with other RGBD meth-
ods. Therefore, we can establish the data term as follows,

Ed(x, y) = Zconf(x, y) · ||Z∗(x, y)− Z(x, y)||2 (13)

Smoothness constraint (Ev) The smoothness term is the
following:

Ev(x, y) =
∑

i=1,2,3

||(Z∗ ⊗ Fi)(x, y)||2 (14)

In our implementation, we use three smoothness kernels,

F1 =

 0 −1 0

−1 4 −1

0 −1 0

F2 =
[
−1 0 1

]
F3 =

−1

0

1


(15)

where F1 is the second derivative and F2 and F3 are hori-
zontal and vertical first derivatives respectively.

5. Finding Shading Constraints
The problem with just using the data and smoothness

terms is that the smoothness terms do not accurately rep-
resent the shape (Fig. 3d). Since smoothness propagates
data with high local confidence, depth regularization be-
comes planar and incorrect (See Fig. 1). Shading informa-
tion provides important shape where our local depth estima-
tion does not. Before we can add a shading constraint to the
regularizer, we need to estimate shading and lighting.

5.1. Shading w/ Angular Coherence [Line 4]
The goal of the shading estimation is to robustly esti-

mate shading with light-field data. We use the decompo-
sition, P = AS, where P is the central pinhole image, A



Figure 5. Angular Coherence and Robust Shading. From the shad-
ing image we generate (a), without angular coherency causes
noise and unwanted artifacts (b). With angular coherence, the
noise reduces. Quantitatively, we can see these effects in Fig. 6.

is the albedo, and S is the shading. However to improve
robustness, we use the full light-field data L0 = AS. Our
optimization solves for S(x, y, u, v). In this section, to sim-
plify our notation, we use I to denote L0, following the
standard intrinsic image notation. We use the log space
log I = log (A · S). We also use a = i − s where the
lower case (i, a, s) are the log of (I, A, S) RGB values. We
solve for s by using the following error metric,

E(s) =
∑

t=(x,y,u,v)

Els(t) + Ela(t) + Ens(t)

+ Ena(t) + Eac(t).

(16)

We use a least squares solver to optimize for s(x, y, u, v).
To map to s(x, y) (the shading decomposition of P ), we
take the central viewpoint, s(x, y, 0, 0). We use the shad-
ing component of P for lighting and depth refinement for
Sec. 5.2 and 5.3.

Depth propagation. Since the shading constraints de-
pend on normals of the entire (x, y, u, v) space, we
need to propagate depth and constraints from Z∗(x, y)
to Z∗(x, y, u, v). By looking at Fig. 2, we need to
map Z∗(x, y) to Z̄∗(x, y, u, v) by using Eqn 6. To map
Z̄∗(x, y, u, v) back to the inverse coordinates, we use,

Z∗(xi(α∗), yi(α∗), u, v) = Z̄∗(x, y, u, v) (17)

Local shading and albedo constraint (Els, Ela) To
smooth local shading, we look at the 4-neighborhood nor-
mals. If the normals are similar, we enforce smoothness.

Els(t) = wls(t) · ||(s⊗ F1)(t)||2

Ela(t) = wla(t) · ||((i− s)⊗ F1)(t)||2
(18)

where wls is the average of the dot product between n(p)
and wla is the average of the dot product of the RGB chro-
maticity. F1 is the second derivative kernel from Eqn. 15.

Nonlocal shading and albedo constraint (Ens, Ena) To
smooth nonlocal shading, we search for the global closest

normals and enforce smoothness. For the pixels with simi-
lar normals, we enforce similarity.

Ens(t) =
∑

p,q∈ℵns

wns(p, q) · ||s(p)− s(q)||2

Ena(t) =
∑

p,q∈ℵna

wna(p, q) · ||(i− s)(p)− (i− s)(q)||2

(19)

where p and q represent two unique (x, y, u, v) coordinates
within ℵns and ℵna, the top 10 pixels with nearest normal
and chromaticity respectively. wns and wna are the dot
product between each pairwise normals and chromaticities.

Angular coherence constraint (Eac) So far, we are oper-
ating largely similar to shape from shading systems in a sin-
gle (non light-field) image. We only constrain spatial pixels
for the same angular viewpoint. Just like our depth propa-
gation, we can enforce shading consistency. We do this by
the constraints represented by Eq. 6, as shown in Fig. 2. For
each pair of the set of (x, y, u, v) coordinates, we impose
the shading constraint as follows,

Eac(t) =
∑

p,q∈ℵac

||s(p)− s(q)||2 (20)

where p, q are the coordinate pairs (x, y, u, v) in ℵac, all the
pixels within the shading constraint. The term plays a large
role in keeping our shading estimation robust against typ-
ical artifacts and noise associated with light-field cameras.
Without the term, the shading estimation becomes noisy and
creates errors for depth estimation (Figs. 5, 6).

5.2. Lighting Estimation [Line 5]
With shading, S, we use spherical harmonics to estimate

general lighting as proposed by Ramamoorthi and Hanra-
han [28] and Basri and Jacobs [5].

P = A(x, y)

8∑
k=0

lkHk(Z∗(x, y)) (21)

where P is the observed image (L0), A is the albedo, l
are the light source coefficients, and Hk are the spherical
harmonics basis functions that take a unit surface normal
(nx, ny, nz) derived from Z∗(x, y).

We have computed S. A is estimated as P = AS. There-
fore, l is the only unknown and can be estimated from these
equations using a linear least squares solver.

5.3. Regularization w/ Shading Constraints [Line 6]
With both shading S and lighting l, we can regularize

with the shading cue. The new error metric is

E(Z∗) =
∑
(x,y)

λdEd(x, y) + λvEv(x, y) + λsEs(x, y)

(22)



Figure 6. Qualitative and quantitative synthetic measurement. We have a simple diffuse ball lit by a distant point light-source (a). With just
regularization without shading information, our depth estimation does not represent the shape (b,c). With our shading image (d), our depth
estimation recovers the ball’s surface (e,f). We also added a Gaussian noise with a variable variance. Without the shading constraint, the
RMSE against ground truth shading and depth are high. Angular coherence results significantly lower RMSE for both shading and depth.

where Ed and Ef are the same as Eq. 21 and Es is our
shading constraint. We use λs = 2 in our implementation.
We use a non-linear least squares approach with a 8 nearest-
neighbors Jacobian pattern to solve for the minimization.

Shading constraint (Es) To constrain the depth with

shading, we want Z∗ to satisfy
8∑
k=0

lkHk(Z∗(x, y)) = S.

Hence, the error term is

Es(x, y) = ws(x, y) · ||
8∑
k=0

lkHk(Z∗(x, y))− S||2 (23)

where ws(x, y) = (1 − Zconf(x, y)) to enforce the shading
constraint where our local depth estimation is not confident.

6. Results

We validated our algorithm (depth regularized without
shading constraints, shading estimation, and depth regular-
ized with shading constraints) using a synthetic light-field
image (Fig. 6), and compared our work against other algo-
rithms on real images (Fig. 7). To capture all natural images
in the paper, we reverse engineered the Lytro Illum decoder
and used varying camera parameters and scenes under dif-
ferent lighting conditions. Please look at our supplementary
materials for comprehensive comparisons.

6.1. Synthetic

To validate the depth and shading results of our algo-
rithm, we compare our results to the ground truth depth and
shading for a synthetic light-field image of a Lambertian
white sphere illuminated by a distant point light source. We
added Gaussian noise (zero mean with variance from 0 to
0.03) to the input image. In Fig 6, we see that using shading
information helps us better estimate the sphere. With an-
gular coherence constraints on our shading, both depth and
shading RMSE are reduced especially with increased noise.

6.2. Natural Images
For natural images, we compare our depth results (depth

regularized without and with shading constraints) to the
state-of-the-art methods by the Lytro Illum Software, Tao et
al. [32], and Wanner et al. [35]; we compare our algorithm
to related work by Chen and Koltun [9] as well as Barron
and Malik [3] in our supplementary material.

In Fig. 7 top, we have an orange plastic shell, illuminated
by an indoor lighting. The Illum produces noisy results.
Wanner and Goldlucke regularization propagates errors in
regions where local estimation fails. In Tao et al.’s results,
graph-cut block artifacts are present. Even without shading
constraints, we produce a less noisy result. Our depth es-
timation recovers the shell shape, including the ridges and
curvature. In the middle, we have an image of a cat fig-
urine. Our algorithm recovers the curvature of the body and
face. On the bottom, we have an example of a dinosaur
toy with varying albedo. The dinosaur teeth, claws, and
neck ridges are salient in our results, while other algorithms
have trouble recovering these shapes. Using shading gives
a significant benefit in recovering the object shapes. Our
supplementary materials showcase more comparisons.

7. Conclusion and Future Work
We have proposed a new framework where angular co-

herence improves the robustness of using cues from defo-
cus, correspondence, and shading. Our optimization frame-
work can be used for consumer grade light-field images to
incorporate shading for better shape estimation.

Our algorithm assumes Lambertian surfaces. In future
work, more robust approaches could be used for scenes
with more varying albedos and occlusions. For example, we
could regularize using specularity constraints or reduce ef-
fects from specularities by diffuse-specular separation [33].
Additionally, as can be seen in Fig. 6, image noise still cor-
rupts both our depth and shading estimation; more advanced
de-noising could be used in the future.

In summary, we have proposed a robust shading-based
depth estimation algorithm for light field cameras, suitable
for a passive point-and-shoot acquisition from consumer
light-field cameras.



Figure 7. Real World Depth Comparisons.We compare our work against the light-field depth estimation algorithms: Lytro Illum Software,
Wanner and Goldluecke [35], and Tao et al. [32]. On the top, we have a diffuse orange plastic shell, illuminated by a typical indoor area
lighting. In our shading estimation, we are able to recover the shape of the shell, including the ridges and curvature. In the middle, we
have an image of a cat figurine. We can see that our algorithm is able to recover the curvature of the body and face. On the bottom, we
have another example of a dinosaur toy with varying albedo. We can see that the dinosaur teeth, claws, and neck ridges are salient in
our results, while other algorithms have trouble recovering these shapes. Moreover, with our initial depth estimation, we already see that
our results are smoother and less prone to noise. We can see the shape recovery with the side profiles. We encourage the readers to look
through our supplementary materials for more views, examples, and comparisons.
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