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Fig. 1. Our method reconstructs surfaces with the speed and robustness of NeRF-style methods. Left: In contrast to volume-based methods that minimize 2D
image losses, as shown in (a), we adopt a spatio-directional radiance field loss formulation, as shown in (b). At each step, our method considers a distribution
of optically independent surfaces, increasing the confidence of candidates that agree with the reference imagery. Right: A meaningful surface can be extracted
at any iteration during optimization.

We present a fast and simple technique to convert images into a radiance
surface-based scene representation. Building on existing radiance volume
reconstruction algorithms, we introduce a subtle yet impactful modification
of the loss function requiring changes to only a few lines of code: instead
of integrating the radiance field along rays and supervising the resulting
images, we project the training images into the scene to directly supervise
the spatio-directional radiance field.

The primary outcome of this change is the complete removal of alpha
blending and ray marching from the image formation model, instead moving
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these steps into the loss computation. In addition to promoting convergence
to surfaces, this formulation assigns explicit semantic meaning to 2D subsets
of the radiance field, turning them into well-defined radiance surfaces. We
finally extract a level set from this representation, which results in a high-
quality radiance surface model.

Our method retains much of the speed and quality of the baseline algo-
rithm. For instance, a suitably modified variant of Instant NGP maintains
comparable computational efficiency, while achieving an average PSNR that
is only 0.1 dB lower. Most importantly, our method generates explicit sur-
faces in place of an exponential volume, doing so with a level of simplicity
not seen in prior work.
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blend colors blend local losses

Fig. 2. Comparison of the loss in volumetric optimization and our
radiance field loss.We denote alpha blending by R and the color difference
metric as ℓ (𝐿) ≔ ℓ (𝐿, 𝐿target ) and drop its dependency on the target color
for simplicity. Traditional volumetric reconstruction minimizes the image-
space loss of blended colors. In contrast, our method minimizes a blended
radiance field loss that yields a distribution of surfaces out of which a surface
representation can be trivially extracted, e.g., via marching cubes.

1 Introduction
The task of reconstructing surfaces from a set of photographs has
been a long-standing challenge [Moons et al. 2010]. The appeal of
surface representations, aside of their natural alignment with the
physical reality of objects, lies in their suitability for editing, anima-
tion and efficient rendering, which explains their near-ubiquitous
use in 3D graphics applications. Unfortunately, the optimization
landscape of a differentiably rendered surface tends to be non-
convex and riddled with local minima. Consequently, the resulting
methods are often too fragile to handle complex, real-world scenes.

This problem can be cleverly sidestepped [Mildenhall et al. 2020;
Kerbl et al. 2023] by switching to a volumetric formulation of light
transport. The derivative of a continuous volumetric representation
is not only easier to evaluate, but it also leads to a smoother loss
landscape that brings enhanced robustness and scalability. However,
these improvements come at the cost of a more involved surface
extraction process requiring additional heuristics, such as surface-
promoting regularizers [Wang et al. 2021] or multi-stage optimiza-
tion [Guédon and Lepetit 2024].
In this work, we seek a simple and direct approach to optimize

surfaces that retains the robustness and convergence speed of vol-
umetric methods. Our proposed method builds on a simple yet
powerful idea: optimizing a distribution over surfaces. Concretely,
we propose projecting the training photographs into the scene
and minimizing the attenuated difference between the resulting
light field and the spatial-directional emission originating from the
surface distribution.

The resulting radiance field loss considers each point along a ray
as a surface candidate, individually optimized to match that ray’s
pixel color, leading to the desired distribution over surfaces. One
benefit is that points along a ray receive independent gradients,
allowing the color or density to simultaneously increase at one
point and decrease at another. This is notably different from the
volumetric approach, which integrates the color along the ray prior
to the loss computation (see Figure 1, left). That is, with volume
reconstruction, all points along a ray receive gradients with the

same sign if their integrated color is too dark or bright, leading to
correlated adjustments.

Interestingly, our proposed radiance field loss gives rise to equa-
tions remarkably similar to those of volumetric reconstruction meth-
ods (see Figure 2). In practical terms, this means that our method
is simple to integrate into existing volumetric frameworks. It also
means that we inherit many advantages of these prior works with-
out having to resort to additional heuristics to extract a surface.
While we have not focused on competing with existing methods in
terms of metrics, our proof-of-concept implementation in Instant
NGP [Müller et al. 2022] consists of only a few modified lines of
code in the core algorithm and runs at roughly the same speed (in
terms of PSNR vs. time) while producing surfaces whose PSNR is,
on average, only 0.1 dB lower than that of the volumetric baseline.

2 Related work
This section reviews related work in the field of 3D surface recon-
struction for novel view synthesis and tasks centered on geometric
representations. Because this is such an active field, we highlight
particularly salient prior works rather than attempting an exhaus-
tive survey. As such, we only cover differentiable rendering and
omit classical techniques like silhouette carving [Laurentini 1994].

Evolving a surface. The first works on differentiable rendering
embraced the high-level approach of optimizing an initial guess
of a shape via gradient descent [Loper and Black 2014], variously
representing the surface using SDF level sets [Zhang et al. 2021;
Vicini et al. 2022; Wang et al. 2024], triangle meshes [Nicolet et al.
2021], points [Chen et al. 2024b], or hybrids [Munkberg et al. 2022].
Regardless of the underlying representation, it remains challeng-
ing to achieve satisfactory results in this way: this is partly due to
the complex loss landscape of an evolving surface, and partly due
to the numerical difficulties of computing visibility-induced gradi-
ents [Loubet et al. 2019; Zhang et al. 2020, 2023]. Without intricate
special-case handling, the optimization often fails when topologi-
cal changes are required [Mehta et al. 2023], or when the surface
does not overlap with the target shape [Xing et al. 2023]. Our work
sidesteps these limitations by replacing the surface boundary with
a distribution over surfaces.

Extracting geometry from a volume. After the advent of radiance
volume reconstruction (NeRF) for novel view synthesis [Milden-
hall et al. 2020], researchers developed various regularizers and
parameterizations of radiance volumes to ensure that their level sets
yield plausible geometry [Wang et al. 2021; Yariv et al. 2021, 2023].
Surfaces can then be extracted using established algorithms like
marching cubes. However, while efficient NeRF implementations
reconstruct in seconds to minutes [Müller et al. 2022], methods in
the aforementioned line of work require hours of computation [Li
et al. 2023] or result in substantially reduced quality [Wang et al.
2023]. In contrast, our method largely preserves the reconstruction
speed and quality of the baseline NeRF method.

In real-world reconstruction tasks, it is often ambiguous whether
fine details should be attributed to local color variation or geomet-
ric features. The optimal choice depends on whether the intended
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application emphasizes novel view synthesis performance or re-
construction of smooth surface geometry. In the former case, our
method is a drop-in replacement, e.g., for MobileNeRF [Chen et al.
2023]. For applications requiring smoother geometry, we propose a
lightweight Laplacian regularizer that maintains the efficiency of our
method, while delivering results comparable to significantly more
complex algorithms [Huang et al. 2024; Guédon and Lepetit 2024].

Optimizing a distribution over surfaces. Several prior works con-
ceptualized volumetric reconstruction as optimizing a distribution
over surfaces [Seyb et al. 2024; Miller et al. 2024; Wang et al. 2021].
These methods however represent objects as the union of multiple
interacting surfaces (whose contributions are integrated along the
ray), which conflicts with our end goal of extracting a single surface
to model an object geometry. Instead, we build upon the “many
worlds” concept proposed by Zhang et al. [2024], which considers a
distribution of non-interacting surfaces, and apply it to the problem
of radiance surface reconstruction. We show how, in this context,
the many worlds concept gives rise to a simple equation dual to the
one used in NeRF frameworks; see Figure 2.

3 Method
In this section, we derive our radiance field loss (Figure 2) by progres-
sively transforming the optimization of a single evolving surface.
While the final result resembles volumetric reconstruction, this pro-
gression demonstrates that the method’s origins are surface-based.

3.1 Non-local surface perturbation
Differentiating a rendering with respect to geometry reveals how
small geometric perturbations affect the resulting image. However,
because these derivatives are only nonzero on the surfaces them-
selves, they tend to cause convergence issues when used in opti-
mizations.
To overcome this limitation, consider the effect of introducing

a small surface patch at some distance above an existing visible
surface. This modification also impacts the rendered image and
can be interpreted as a perturbation of a more general non-local
derivative. A similar concept was previously used by Mehta et al.
[2023] to nucleate new shapes in 2D vector graphics, and by Zhang
et al. [2024] in the context of physically based rendering.
Optimizing surfaces on this extended domain mitigates two key

issues discussed previously: Because updates are no longer con-
strained to the surface, the algorithm can achieve faster and more
robust convergence within a higher-dimensional loss landscape, as
illustrated below:

Local surface perturbation Non-local perturbation

Initial surface

Target surface

Optimization states

Second, the need for complex, specialized methods to es-
timate boundary derivatives is eliminated, which simplifies

Semi-transparent

Opaque

(a) Alpha-blending

(b) Binary choice

Fig. 3. Non-local perturbations.We consider a single candidate surface
patch (with color 𝐿p) along the ray as a perturbation of a background
surface (with color 𝐿b). (a) Blending colors violates the surface assumption
and leads to volumetric results. (b)We instead treat the perturbation as a
random binary choice and optimize the associated discrete probability. The
final reconstruction is non-random and will never blend the contribution of
multiple surfaces.

the implementation and further improves performance. Be-
fore making these abstract notions concrete, we cover the
used geometric representation.

Geometric representation. Non-local perturbations require a rep-
resentation that spans the entire space. To this end, we use an
occupancy field [Mescheder et al. 2019; Niemeyer et al. 2020] that
encodes the discrete probability of a position x being occupied:

𝛼 (x) = Pr{x lies within an object} ∈ [0, 1] .
After convergence, the field is expected to have occupancy values
approaching 1 on the surface, and 0 in the exterior. We note that the
choice of an occupancy field is somewhat arbitrary. The primary
focus of this work is on optimizing geometry irrespective of the
specific details of the representation.

3.2 Radiance field loss
Single candidate. To explain the concept of a non-local perturba-

tion, we first focus on the case of a single candidate surface patch
along a ray. Figure 3 depicts this setup, in which a candidate at
position p with color 𝐿p and occupancy 𝛼p precedes a background1
with color 𝐿b. How this geometric configuration arises will be cov-
ered later—for now, we assume that is given, and that the color
values 𝐿p and 𝐿b are furthermore fixed.

In this case, the optimal reconstruction is straightforward: the
candidate should be created if it improves the match with respect
to a specified target color 𝐿target; otherwise, it should be discarded.
The occupancy parameter 𝛼p provides the means to achieve

this outcome. However, there are different ways to integrate it.
The standard volumetric approach (Figure 3a) interprets 𝛼p as
an opacity for alpha-compositing, minimizing a color difference
ℓ (𝐿̂, 𝐿) of the form

ℓ
(
𝛼p 𝐿p + (1 − 𝛼p) 𝐿b, 𝐿target

)
. (1)

The fundamental limitation of this approach is its inability to pro-
mote binary occupancy values. When the best match is given by a
blend of 𝐿p and 𝐿b, the loss will reach zero without forming a distinct
1For now, the term background could refer to a surface, an environment map, etc. Later
sections will provide a concrete definition.
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Subproblem 1

Subproblem 2

backgroundcandidates

Fig. 4. Surface candidates as independent subproblems.With multiple
candidates along a ray, each perturbation is treated as an independent
subproblem, resulting in local losses distributed spatially over the scene.

surface. A common remedy involves adding additional loss terms
to penalize such behavior, but this lacks a principled theoretical
foundation and adds complexity in the form of hyperparameters.

We instead interpret the non-local perturbation as a binary choice:
the candidate surface either exists, or it does not. Thus, the final color
value associated with the ray is either that of the candidate 𝐿p or the
background 𝐿b (Figure 3b). We quantify the quality of each possibil-
ity via ℓ and seek the occupancy value 𝛼p ∈ [0, 1] that minimizes:

L(p) = 𝛼p ℓ (𝐿p, 𝐿target) + (1 − 𝛼p) ℓ (𝐿b, 𝐿target). (2)

By blending the losses of the two surfaces instead of their colors,
this approach selects the surface that best explains the target color.
The simplified example shown here assumes that the candidate

color 𝐿p is static. In practice, 𝐿p (but not 𝐿b) is also subject to opti-
mization, which requires multiple viewpoints to resolve ambiguity;
more on this later.

Multiple candidates. We now extend the loss formulation to con-
sider multiple candidates. This is advantageous because it will allow
our method to simultaneously evaluate the effect of several pertur-
bations, which in turn accelerates convergence.

The key property of the single-candidate loss formulation is that
it isolates the candidate from the background surface (i.e., observing
one or the other). The generalization to multiple candidates pre-
serves this property by treating each candidate as an independent
subproblem (Figure 4), minimizing the sum of respective losses:

Lray (r) =
𝑚∑︁
𝑖=1

L(p𝑖 ), (3)

where L(p𝑖 ) (following Equation 2) represents the loss of the 𝑖-th
of𝑚 candidates sampled along the ray r.

Spatio-directional loss. Reconstruction tasks evaluate the loss (3)
along a large set of rays r𝑘 (𝑘 = 1, . . . , 𝑛), where 𝑛 denotes the total
number of pixels across all reference images. This further expands
the set of independently considered candidate surfaces and leads to
the combined loss

Ltotal =
𝑛∑︁

𝑘=1
Lray (r𝑘 ) . (4)

radiance field loss

Fig. 5. Stochastic background. Selecting the background surface at ran-
dom from a distribution 𝑓b enables visibility through high-occupancy re-
gions. Each sampled background surface defines a new perturbation problem
solvable with the radiance field loss. Taking an expectation of this process
leads to a simple deterministic expression that we implement in practice.

Whereas conventional surface optimization only propagates gra-
dients to the surface itself, the use of 𝛼p and 𝐿p in Equation (2)
covers the entirety of the observed 3D space. For positions viewed
from multiple directions, the loss generally also varies with respect
to direction:

spatial

directional

background
surface

In other words: by moving the evaluation of ℓ from image space into
the scene, we have created a spatio-directional radiance field loss.

3.3 Stochastic background surface
To complete our derivation of the loss function, what remains is
the definition of the background surface. Rather than a determin-
istic surface (e.g., a level set of the occupancy field), we draw the
background from a per-ray distribution 𝑓b. This enables occasional
“visibility” through high-occupancy regions, allowing occluded ob-
jects to be considered as the background (Figure 5). Crucially, we
thereby support complex topological changes in our optimization
without having to explicitly account for them [Mehta et al. 2023];
see Supplementary Material C for additional details.

The design of the distribution 𝑓b is flexible. One straightforward
approach is to prioritize sampling in high-occupancy regions, as
these areas are more likely to correspond to surfaces. During ray
traversal, we stochastically decide whether to use a position as the
background surface based on its occupancy value. This sequential
decision process reflects the concept of free-flight distance [Novák
et al. 2018], forming the free-flight background distribution.
We can formulate the expectation of sampling the background

surface from such a free-flight distribution analytically and derive a
corresponding aggregated local loss analogous to classical volumet-
ric light transport:

L(p𝑖 ) = ©­«
𝑖−1∏
𝑗=1

(1 − 𝛼p𝑗 )
ª®¬𝛼p𝑖 ℓ (𝐿p𝑖 ) , (5)
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which, when plugged into Equation (4), yields the radiance field
loss (Figure 2). See Supplementary Material A for the complete
derivation.

Implementation. An implementation of our loss function can be
arranged to resemble the color blending structure of standard vol-
ume reconstruction methods like NeRF [Mildenhall et al. 2020]. As
such, it is exceedingly simple to implement in existing codebases,
as illustrated in the following comparison of pseudocode.

NeRF Ours

This resemblance also suggests that the optimization landscape of
our method is similar to that of NeRF, inheriting its robustness.
However, while NeRF’s loss supervises all samples along the ray to
collectively match the target color, our loss aims for each sample to
match the target color independently or become transparent when
the background is a better match. This distinction fundamentally
defines our approach as a surface reconstruction algorithm.

3.4 Volume relaxation
We also propose a heuristic-based generalization of our method. It
is orthogonal to the above algorithm and optional during training.
While a surface representation offers many advantages, the

opaque surface assumption has inherent limitations in certain sce-
narios. For example, sub-pixel structures are challenging to model
with geometry, and a single surface may fail to accurately represent
the appearance of directional-varying materials. In these regions, a
volumetric representation is more suitable.

Our goal is to relax our method to reconstruct most of the scene as
surfaces (regions where low loss can be reached) and use volumetric
representations only in the remaining challenging regions. To this
end, we first train with our algorithm for 20k iterations to obtain an
initial surface representation. We then identify challenging regions
by evaluating where local losses remain high. In subsequent training
steps, we relax the surface assumption, allowing volumetric alpha
blending in these regions.
After training, rather than extracting a surface, we render the

scene volumetricall, with surface regions treated as fully opaque
“volumes”. Comparing to a volume scene optimized with NeRF, our
method still benefits from the compact representation of surface
regions. When accumulating colors along a ray, very few samples
are required to saturate the transmittance, leading to faster inference
and reduced computational resources during training.
Where not explicitly stated, all results in this paper (marked as

“ours”) are trained without volume relaxation.

Table 1. Visual quality comparison. We integrate our loss into Instant
NGP and train on the MipNeRF360 dataset using default hyperparams.

Indoor mean Outdoor mean

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
Ours 29.02 dB 0.888 0.275 22.41 dB 0.679 0.563
Ours (relaxed) 29.41 dB 0.897 0.284 22.62 dB 0.690 0.626
NeRF 29.19 dB 0.893 0.303 22.47 dB 0.683 0.638

4 Results

4.1 Novel view synthesis
Visual quality. Despite the inherently fewer degrees of freedom

of surfaces, Figure 9 shows that our method achieves results that are
qualitatively comparable to NeRF. We also visualize the surface ren-
derings at occupancy level sets {0.01, 0.1, 0.5, 0.9, 0.99}. Renderings
of the scene optimized by our algorithm barely change, indicating a
near-Heaviside step function in the occupancy field. In contrast, the
inherently volumetric nature of NeRF does not produce meaningful
visualizations for these level sets. Figure 10 highlights the recon-
struction of another scenewhere ourmethodwith volume relaxation
addresses challenges in modeling a semi-transparent object.

Table 1 shows that our method achieves visual quality comparable
to exponential volume reconstruction (NeRF) when trained on the
MipNeRF360 dataset, using default Instant NGP hyperparameters,
despite using a surface-based representation. A small PSNR gap is
expected, as volume representations offer inherently more degrees
of freedom that can be repurposed to model pixel-wise colors. A
similar trend is observed when implementing our method in the
ZipNeRF codebase, where we measured mean PSNR of 29.73 dB for
our method and 31.45 dB for NeRF on indoor scenes, and 24.06 dB
and 25.24 dB on outdoor scenes, respectively.
When evaluating our relaxed variant—which switches to volu-

metric rendering in hard regions—the visual quality slightly exceeds
the NeRF baseline. This improvement arises because our method en-
courages surface-like, sparse distributions, resulting in more empty
space that the renderer can efficiently skip. Consequently, at equal
batch size, Instant NGP automatically spawns more rays when us-
ing our method, thereby covering more reference pixels per batch,
in turn leading to a better reconstruction. When the ray count is
restricted to match NeRF, the relaxed variant delivers results that
are approximately equal.
These trends are consistent across other metrics as well. For

instance, both our method and NeRF achieve SSIM scores of 0.89
(indoor) and 0.68 (outdoor). The full set of evaluation results is
provided in the supplementary material.

Rendering performance. Our implementation builds on the Instant
NGP codebase, which ray-marches fields (𝛼p, 𝐿p) represented us-
ing an interpolated hash grid lookup combined with a lightweight
MLP. We repurpose this ray-marching code for surface rendering
by returning the color of the first sample with an occupancy value
exceeding 0.5. This straightforward modification results in a 2.4×
average speedup in frames per second (FPS) across MipNeRF360
scenes compared to the baseline. An average speedup of 2.0× is
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Laplacian

Fig. 6. Regularization. For simple scenes with enough observations, the
reconstructed surface closely matches the ground truth geometry without
requiring additional constraints. Adding Laplacian refinement helps smooth
out unnecessary small kinks, resulting in a more accurate final geometry.

Table 2. Average Chamfer distance comparison on the DTU dataset with
NeuS [Wang et al. 2021] and NeuS2 [Wang et al. 2023].

Ours (1 min) NeuS (8 hr) NeuS2 (5 min)

CD 0.80 0.77 0.68

achieved for the relaxed version of our method, as most of the scene
remains surface-like.
An additional 2× speedup can be achieved by replacing ray-

marching with rasterization of a meshed isosurface. In this case,
the color network is only used for mesh shading, maintaining
the same visual quality as before. Various strategies exist to
further boost rendering performance, e.g., by storing precom-
puted hash grid lookups alongside mesh vertices [Chen et al.
2023], or by projecting the directional MLP dependence into
spherical harmonics [Reiser et al. 2024].

4.2 Geometry reconstruction
Our method is also applicable to geometry reconstruction tasks, in
which achieving high-quality meshes matching the ground truth
geometry is of interest. For simple multi-view input (Figure 6), our
method produces highly detailed geometry with the speed of Instant
NGP (seconds). A mesh can be extracted at any point during the op-
timization (Figure 7). However, complex real-world reconstruction
tasks are often under-constrained. For example, a reflective object
seen only from a narrow cone of directions does not provide suffi-
cient information for accurate shape recovery. Even with a larger
set of viewpoints, it can be challenging to disambiguate whether
surface detail is due to local color variation or small-scale geometry.
As a consequence, the reconstructed geometry often exhibits unde-
sirable bump-like artifacts representing such misattributed detail.
While our algorithm still excels at novel view synthesis under these
conditions, the reconstructed geometry can significantly deviate
from the ground truth.
To mitigate this issue, we incorporate an exponentially decay-

ing Laplacian regularizer during training. This regularizer initially
enforces flat surfaces and progressively provides more degrees of
freedom as its influence decays. Figure 11 examines the influence of
the final Laplacian weight on reconstruction quality. Figure 12 show-
cases geometry reconstructions of scenes from the DTU [Jensen
et al. 2014] and BlendedMVS [Yao et al. 2020] datasets, all made
with a consistent Laplacian weight of 2 × 10−5.

Table 2 shows that using only minimal Laplacian regularization,
our method achieves an average Chamfer distance on the DTU

10 seconds training 50 seconds 1 minute

Ours NeuS2

Fig. 7. Straightforward extraction. Since our algorithm does not use an in-
termediate volume representation, efficient surface extraction is possible at
any point. At equal time, a fast NeuS2 baseline [Wang et al. 2023] still models
the scene as a fuzzy volume, and a surface cannot be confidently extracted.

Surface
rendering

Ground
truth

Surface
rendering

Surface
normal

Surface
normal

(a) Laplacian strength (b) Smooth conductor

Fig. 8. Limitations. (a) Our Laplacian smoothing strategy fails to recon-
struct the flat can surface due to its view-dependent appearance. A larger
Laplacian weight can help, but this also suppresses geometric detail seen in
Figure 12. (b) High-frequency color variation is more challenging to accu-
rately represent on a surface compared to a volumetric representation.

dataset that is just 0.12 higher than NeuS2 [Wang et al. 2023], while
reducing runtime to only 1 minute thanks to our algorithmic sim-
plicity. The complete evaluation results are provided in the sup-
plementary material. In this work, we do not intend to compete
on geometric reconstruction metrics and have not incorporated
other regularization extensions, which would detract from the sim-
plicity of the presented idea. Such extensions include multi-view
consistency losses [Fu et al. 2022; Chen et al. 2024a] to reduce ambi-
guities in regions with limited observations, or the TSDF algorithm
[Izadi et al. 2011] that helps extract smooth meshes while removing
unnecessary geometry.

5 Discussion

5.1 Choice of background distribution
In subsection 3.3, we used the free-flight background distribution
to derive a loss form dual to the NeRF loss. This choice is some-
what arbitrary, and other distributions could be used with different
trade-offs. In Supplementary Material B, we discuss how alternative
designs can enable new optimization strategies that are not possible
in image-space methods, with one such example provided.
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(b) Volume rendering of NeRF

Surface rendering at varying occupancy levels

(a) Surface rendering of ours

ray marching rendering: 23 ms/frame

58 ms/frame

Fig. 9. Nature of the reconstructed occupancy. Surface rendering at varying level sets of a scene reconstructed by our method and NeRF, both implemented
in Instant NGP using the same hyperparameters. (a) For our method, the surface rendering shows minimal changes across different level set thresholds,
indicating that the occupancy field has converged to a near-Heaviside step function on the surface, allowing for extraction of a surface-based representation.
(b) NeRF reconstructs the scene volumetrically, and any surface extracted using a level set is a poor approximation of the true color.

Ours Ours (relaxed) NeRF

Surface rendering Volume rendering

ray marching rendering: 22 ms/frame 33 ms/frame 57 ms/frame

Fig. 10. Volumetric relaxation.We compare reconstructions of our method without and with volume relaxation to NeRF, all implemented in Instant NGP
using the same hyperparameters. While our method achieves comparable visual quality using a surface-based representation, we highlight a region (white
arrow) where it fails to model a semi-transparent object due to the opaque surface assumption. The relaxed variant of our algorithm can recover by adopting
volume rendering in such regions. Rendering the reconstructions using the same ray marching implementation leads to significant performance differences:
our surface-only reconstruction is 2.6× faster than NeRF. The relaxed variant benefits from the surface representation in most regions, and is 1.7× faster.
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Surface rendering

Fig. 11. Effect of Laplacian weight on geometry reconstruction. The above results demonstrate the trade-off between geometric detail and surface
smoothness. For simple scenes lacking intricate features (bottom row), the reconstruction is insensitive to this hyperparameter.

5.2 Relation to many-worlds inverse rendering
Our method builds on the core idea of Zhang et al. [2024] (we re-
fer to their method as PBR-MW ), namely that surface distributions
can be optimized more directly without involving exponential vol-
umes. We reconstruct purely emissive objects2, while PBR-MW
handles differentiable shadowing and interreflection to reconstruct
reflecting objects in scenes with global illumination. Viewed superfi-
cially, our method could be mistaken for a stripped down version of
PBR-MW.
Our contribution lies in leveraging this simplicity to develop

a specialized method. We identify and implement optimizations
unique to radiance surfaces to fully realize the potential of the
many-worlds idea.
In radiance surface rendering, image formation is a direct 1:1

mapping between a ray and the nearest intersected surface, while
PBR-MW requires a complex nested integration over materials,
lighting, and geometry. Our approach to project training images
into the scene to establish a radiance field loss depends on this 1:1
mapping and does not efficiently translate to the nested integral
structure of a global illumination renderer.

Another important contribution is the introduction of a stochastic
background distribution, which enables topological changes and
substantially improves reconstruction quality. We show how to
cheaply evaluate this strategy in expectation, which is needed to
maintain algorithmic parity with NeRF. The associated derivations
and simplifications (Supplementary Material A) are specific to radi-
ance surfaces and do not transfer to PBR-MW.

5.3 Limitations and future work
Moving the evaluation of the color loss ℓ from image space into the
radiance field makes our method incompatible with loss functions
that depend on image-space neighborhoods (e.g., style losses).
As shown in Figure 8, our lightweight Laplacian regularization

fails when there are insufficient observations to constrain the geome-
try. Using alternative regularization techniques from state-of-the-art

2In the equations of physically based rendering, radiance fields manifest in the emission
term [Nimier-David et al. 2022].

geometry reconstruction methods could help mitigate this issue.
Our method also struggles to accurately capture the appearance of
conductive materials, which could be addressed by incorporating
solutions from prior work [Verbin et al. 2022].

An interesting extension of our work could involve implementing
a particle-based storage approach, such as Gaussian splatting [Kerbl
et al. 2023]. However, 3D Gaussians are inherently semi-transparent,
which conflicts with our assumption of opacity. Future work could
explore the use of opaque primitives, such as 2D disks, to replace
semi-transparent particles.

6 Conclusion
The “many worlds” paradigm—i.e., optimizing a distribution over
non-interacting primitives—is relatively new in the field of differ-
entiable rendering. In this paper, we apply it to radiance surface
reconstruction, which yields a fast and simple alternative to prior
works. Particularly notable is that the derivation began with an
evolving surface, yet resulted in remarkably similar equations to
volumetric scene reconstructions: ones where losses rather than
colors are integrated along rays.
As reconstruction tasks increase in difficulty, a key challenge

lies in deciding whether a region of space is best represented by a
surface or a volume. While the relaxed variant of our method offers
an effective heuristic, it also underscores the need for a principled
answer to this important question.
Much engineering has gone into the design of optimized algo-

rithms, regularizers, and heuristics for NeRF-based 3D reconstruc-
tion. Our hope is that a large portion of this effort will translate
to the radiance field loss and yield state-of-the-art results in the
future.
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Fig. 12. Reconstruction showcase. Surface rendering and normals of various scenes from the DTU and BlendedMVS datasets, reconstructed with our
algorithm and a decaying Laplacian. All results were generated with the same hyperparameters and a training time of ∼ 1 minute per scene.
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