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Abstract

This paper discusses a new method for capturing the complete ap-
pearance of bothsynthetic and real world objects and scenes,repres-
enting this information, and then using this representation to render
images of the object from new camera positions. Unlike the shape
capture process traditionally used in computer vision and the render-
ing process traditionally used in computer graphics, our approach
does not rely on geometric representations. Instead we sample and
reconstruct a 4D function. which we call a Lumigraph. The Lu-
migraph is a subset o f the complete plenoptic fu nction that describes
the flow of light at all positions in all directions. With the Lu-
migraph. new images of the object can be generated very quick]y,in-
dependentof the geometric or illumination complexity of the scene
or object. The paper discusses a complete working system includ-
ing the capture of sainples. the construction of the Lumigraph, and
thesubsequent rendering of images from this new representation.

1 Introduction

The process of creating a virtual environment or object in computer
graphics begins with modeling the geometric and surface attributes
of the objects in the environment along with any lights. An image
of the environment is subsequently rendered from the vantage point
ofavirtualcamera. Greate ffort has been expendedto develop com-
puter aided design systems that allow the specification of complex
geometry and material attributes. Similarly. a great deal of work has
been undertakento producesystemsthat simulate the propagationot
light through virtual environments to create realistic images.

Despite these effoi-ts, it has remained difficult or impossible to

recicate much of the complex geometry and subtle lighting effects
found in the real worId. The modeling problem can potentially be
bypassed hy capturing the geometry and material properties of ob-
jects directly from the real world. This approach typically involves
some combination of cameras, structured light. range finders. and
mechanical sensing devices such as 3D digitizers. When sUCCess-
ful, the results can be fed into a rendering program to create images
of real objects and scenes. Unfortunately. these systeIns are still un-
able to completely capture small details in geometry and material
properties. Existing rendering methods also continue to be 1imited
in their capability to faithfully reproduce real worId illumination,
even i f given accurate geometric models.

Quicktime V R [6] was one ofthe first systems to suggest that the
traditional modeling/rendering process can beskipped. Instead. a
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series of captured environment maps allow a user to look around ·a

scene from fixed points in space. 0ne can also Mip through differ-
ent views of an object to create the illusion of a 3D model. Chen and
Williams [7]and Werner et al [30] have investigated smooth inter-
polation between images by modeling the motion of pixels (i.e.. the
optical flow'j as one moves from one camera position to another. In

Plenoptic Modeling [19], McMillan and Bishop discuss finding the
disparity of each pixel in stereo pairs of cylindrical images. Given
the disparity (roughly equivalent to depth information), they can
then move pixels to create images from new vantage points. Similar
work using stereo pairs of planar images is discussed in [14].

This paperextends the work begun with Quicktime VR and Plen-
optic Modelingby furtherdevelopingthe ideaoi capturingthe com-
plete flow of light in a region of the environment. Such a flow is de-
scribed by a plenopticfhnction[1]. The plenoptic function is a five
dimensional quantity describing the flow of light at every 3D spa-
tial position (r, q, z) lor every 2D direction (8,4). In this paper,
we discuss computational methods for capturing and representing
a plenoptic function, and for using such a representation to render
images of the environment from any arbitrary viewpoint.

Unlike Chen and Williarns' view interpolation [7] and McMil-
lan and Bishop's plenoptic modeling [19], our approach does not
rely explicitly on any optical flow information. Such information
is often difficult to obtain in practice, particularly in environments
with complex visibility relationships or specular surfaces. We do.
however. use approximate geometric information to improve the
quality of the reconstruction at lower sampling densities. Previous
flow based methods implicitly rely on di ffuse surface reflectance,al-
lowing them to use a pixel from a single image to represent the ap-
pearanceofasingle geometric location from a variety of viewpoints.
in contrast, our approach regularly samples the full plenoptic func-
tion and thus makes no assumptions about reflectance properties.

Ii we consider only the subset of light 1eaving a bounded ob-
ject (or equivalently entering a bounded empty region of space),
the fact that radiance along any ray remains constantl allows us to
reduce the domain of interest of the plenoptic function to four di-
mensions. This paper first discusses the representation of this 4D
function which we call a Lumigraph. We then discuss a system
for sampling the plenoptic function with an inexpensive hand-held
camera. and "developing" the captured light into a Lumigraph. Fi-
nally this paper describes how to use texture mapping hardware to
quickly reconstruct images from any viewpoint with a virtual cam-
era model. The Lumigraph representation is applicable to synthetic
objects as welL allowing us to encode the complete appearance of
a complex model and to rerender the object at speeds independent
of the model complexity. We provide results on synthetic and real
sequences and discuss work that is currently underway to make the
system more eflicient.

1 We are assuming the medium (i.e., the air) to be transparent.
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2 Representation

2.1 From 5D to 4D

The pienoptic function is a function of 5 variables representing po-
sition and direction 2. If we assume the air to be transparent then
the radiance along a ray through empty space remains constant. If
we furthermore limit our interest to the light 1eaving the convexhull

ofa bounded object. then we only need to represent the value o f the

plenoptic function along some surface that surrounds the object. A
cube was chosen for its computational simplicity (see Figure 1). At
any point in space. one can determine the radiance along any ray in
any direction, by tracing backwards along that ray through empty

space tothesurfuce ofthecube. Thus.theplenoptic function due to
the object can be reduced to 4 dimensions 8

The idea of restricting the plenoptic function to some surround-
ing surface has been used hefore. 1n full-parallax holographic ste-

1-eograms [3 1. the appearance of an object is captured by moving a
camera a long some surface (usually a plane) capturing a2D array of

photographs. This array is then transferred to a single ho!ographic

image, which can display the appearanceofthe 3D object. The work
reported in this paper takes many of its concepts from holographic
stereograms.

Global illumination rescarchers have used the "surface restric-

ted plenoptic function" to el ticiently simulate light-transfer between
regions of an environment containing complicated geometric ob-
jects. The plenoptic function is represented on the suriace of a cube
surrounding some region, that information is all that is needed to
simulate the light transfer from that region of space to all other re-

gions 1 171. In the context of illumination engineering. this idea has
been used to model and represent the illumination due to physical

luminaires. Ashdown [2] describes a gantry for moving a camera
along a sphere surrounding a luminaire of interest. The captured in-
formation can then be used to represent the light source in global
illumination simulations. Ashdown traces this idea of the surface-

restricted plenoptic function back to Levin [ 15]

A limited version of the work reported here has heen described

by Katayamaetal.[1 1 1. Intheirsystem, a camera is moved along a
track, capturing al D an-ay of iinages of some object. This inform-
ation is then used to generate new images ofthe object from other
points in space. Bec.luse they only capture the plenoptic function
aIong a line, they only obtain horizontal paraIlax. and distortion is

introduced assoonasthenew virtualcameraleaves theline. Finally.
in work concurrent to our own, Levoyand Hanrahan [16] represent

a 4D function thal allows for undistorted, full parallax views of the

object from anywhere in space.

2.2 Parameterization of the 4D Lumigraph

There are many potential ways to parameterize the four dimensions

of the Lumigraph. We adopt a parameterization similar to that used
in digital holographic stereograms [91 and also used by Levoy and

Hanrahan [ 16]. We begin with a cube to organize a Lumigraph
and. without loss ot-generality, 0nly consider fordiscussiona single
square fuce o f the cube (the full Lumigraph is constructed from six
such faces).

-2 We only consider a snapshot of the function, thus time is eliminated.
Without loss of generality, we also consider only a monochromatic func-
tion (in practice 3 discrete color channels).eliniinating the need to consider
wavelength. We fui·thennore ignore issues of dynamic range and thus limit
ourselves to scalar values !ying in some finite range.

' In an analogolls fashion one can reconstruct the complete plenoptic
function inside an empty convex region hy representing it only on thesur-
face boundingthe empty region. At any point inside the region. one can find

the light entering from any dircction by finding that direction's intersection
with the region boundary

t

Figure 1: The surface of a cube holds allthe radiance information
due to the enclosed object.
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Figure 2: Parameterization of the Lumigraph

We choose a simple parameterization of the cube face with or-
thogonal axes running parallel to the sides labeled s and t (see Fig-

ure 1). Direction is parameterized using a second plane parallel to
the st plane with axes labeled u and u (Figure 2). Any point in the
4D Lumigraph is thus identified by its four coordinates (s, t, u, u),
the coordinates of a ray piercing the first planeat(s, t) andintersect-
ing the second plane at (u, v) (see Ray(s, t, u, u) in Figure 2). We
place the origin at the center ofthe 1,1, plane, with the z axis normal
to the plane. The st p]ane is located at z = 1. The full Lumigraph
consists of six such pairs o f planes with normals along the r, -I, y,
-g,z,and-z directions.

It will be instructive at times to consider two 2D analogs to the

4D Lumigraph. Figure 2(b) shows a 2D slice of the 4D Lumigraph

that indicates the u and s axes. Figure 2(c) shows the same arrange-
ment in 2D ray coordinates in which rays are mapped to points (e.g..

ray(s, u) ) and points are mapped to lines.4
Figure 3 shows the re]ationship between this parameterization of

the Lumigraph and a pixel in some arbitrary image. Given a Lu-

4 More precisely, a line in ray space represents the set of rays through a

point in space.
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Figure 3: Relationship between Lumigraphand a pixe] in an arbit-
rary image

migraph. L. one can generate an arbitrary new image coloring each
pixel with the appropriate value L(s. t. u, v). Conversely given
some arbitrary image and the position and orientation of the cam-
era, each pixel can be considered a sample of the Lumigraph value

at (s, t, u, v) to be used to construct the Lumigraph.
There are many advantages of the two parallel plane parameter-

i/ation, Giventhegeometric description o f a ray, itiscomputation-
ally simple to compute its coordinates;one merely finds its intersec-
tion with two planes. Moreover. reconstruction from this paramet-
erization can be done rapidly using the texture mapping operations
built into hardware on modern workstations (see section 3.6.2). Fi-
nally. in this parameterization, as one moves an eyepoint along the
st plane in a straight line. the projection on the 1tV planeof points on
the geometric object track along parallel straight lines. This makes it
computationally efticient to compute the apparent motion of a geo-

metric point (i.e„ the 0/)ticalflow), and to apply depth correction to

the Lumigraph.

2.3 Discretization of the 4D Parameterization

So lar. the Lumigraph has been discussed as an unknown. con-
tinuous, four dimensional function within a hypercubical domain

in s,t, u, 1, and scalar range. To map such an object into a com-

putational framework requires a discrete representation. In other
words. we must choose some finite dimensional function space
within which the function resides. To doso. we choose a discrete

subdivision in each of the (s, 1, u, v) dimensions and associate a
coefficient :ind a basis function (reconstruction kemel) with each 4D

grid point.
Choosing M subdivisions in the s and t dimensions and X subdi-

visionS in u and u results in a grid of points on the st and u v planes
(Figure 4). An st grid point is indexed with (i,j) and is located
at (s:, tj). A uu grid point is indexed with (p, q) and is located at
(up, uq). A4Dgrid pointis indexed(i. j.p,q). Thedata value (in

fact an RGB triple) at this grid point is referred to as r, 3,pq

2.3.1 Choice of Basis

We associate with each grid point a basis function 8,,,p,q sO that

the continuous Lumigraph is reconstructed as the linear sum

Af A,I N N

L( s,t,u, t,) =ELlI .Ez,,p,qI3:,j,p,q(s,1, u, u)
1=0 J=0 p=0 q=0

where L is a finite dimensional Lumigraph that exists in the space
delined by the choice of basis.
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Figure 4: Discretization of the Lumigraph

For example, i f weselect constant basis functions (i.e., a 4D bor

with value 1 in the 4D region closest to the associated grid point

and zero elsewhere). then the Lumigraph is piecewise constant. and
takes on the value of the coefficient of the nearest grid point.

Similarly, a quadralinear basis functionhas avalue of latthegrid
point and drops off to 0 at all neighboring grid points. The value

of L(s, t. u, v) is thus interpolated from the 16 grid points forming
the hypercuhe in which the point resides.

We have chosen to use the quadralinear basis for its computa-

tional simplicity and the Co continuity it imposes on L. However.
hecause this basis is not band 1imited by the Nyquist frequency,and
thus the corresponding finite dimensional function space is not shift
invariant [24], the grid structure wilI be slightly noticeable in our
resUlts.

2.3.2 Projection into the Chosen Basis

Gi ven a continuous Lumigraph, L, and a choice of basis for the finite

dimensional Lumigraph, L, we still need to deiine a pt·ojection of

L into L (i.e., we need to find the coefficients ,r thal result in an L

which is by some metric closest to /,). If we choose the L2 distance
metric. then the projection is delined by integrating L against the
duals of the basis functions [8], given by the inner products,

1':,.1,p,g = < L, Bl,J,p,g >

Inthe caseofthe box basis, 8 = /3. Theduals ofthequadralinear
basis functions are more complex, but these basis functions suffi-

ciently approximate theii- own duals for our purposes.

0ne can interpret this projection as point sampling L after it has

been low pass filtered with the kernel U. This interpretation is pur-
sued in the context of holographic stereograms by Halle [9]. 0ne
can also interpret this projection as the result of placing a physical

or synthetic "skewed" camera at grid point (s„ tj) with an aper-
ture corresponding to the bilinear basis and with a pixel centered at

0

0

0

S
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Figure 5: Choice of resolution on the uv plane

(up, vq) antialiased with a bilinear filter. This analogy is pursued in
[16].

In Figure 16 we show images generated from Lumigraphs. The
geometric scene consisted of a partial cube with the pink face in
front. yellow face in back, and the brown face on the 11oor. These

Luinigraphs were gencrated usmg two different quadrature meth-
ods to approximate equation 1, and using two different sets of basis

functions, constantand quadralinear. In (a) and (c) 0nly one sample
was used to compute each Lumigraph coefficient. In these examples

severe ghosting artifacts can be seen. In (b) and (d) numerical integ-

ration overthe support of /3 in st was computed for each coefficient.
lt iscIearthatbest results are obtained using quadralinear basis func-
tion. with a full quadrature method.

2.3.3 Resolution

An important decision is how to set the resolutions, M and N. that
best balance efficiency and the quality o f the images reconstructed
from the Lumigraph. The choices for M and N are influenced by
the fact that we expect the visible surfaces of the object to lie c]oser

to the ut, plane than the st plane. In this case. N, the resolution
of the tw plane, is closely related to the final image resolution and
thus a choice for N close to final image resolution works best (we
consider a range of resolutions from 128 to 512)

0ne can gain some intuition for the choice of M by observing the
2D subset of the Lumigraph from a single grid pointon the uv plane
(seell= 2inFigure5(a)). Ifthesurfaccoftheobjectlies exactly on

the 111' plane at a gridpoint, then all rays leaving that point represent
samples of the radiance function at a single position on the object's
surface. Evenwhenthe object's surface deviates from the uv plane
as in Figure 5(b). we can still expect the function across the st plane
to 1-emain smooth and thus a low resolution is sufficient. Thus a sig-
nificantly lower resolution for M than N can be expected to yield
good results. In our implementation we use va!ues of M ranging
from 16 to 64.

2.3.4 Use of Geometric Information

Assuming the radiance function ofthe objectis well behaved,know-

ledge about the geometry of the object gives us information about
the coherenceofthe associated Lumigraph function, andcanbeused
to help define the shape of our basis functions.

Consider the my (s, u) in a two-dimensional Lumigraph (Fig-
ure 6). The closest grid point to this ray is (s;+i.up). However.
gridpointS (st+ i , 1tp- 1 ) and (s„ up+ i ) are likely to contain values
closer to the true ValUe at (s. u) since these grid points represent
rays that intersect the object nearby the intersectionwith (s,u). This
suggests adapting the shape of the basis functions.

Suppose we know the depth value z at which ray (s, u) first inter-
sects a surface of- the object. Then for a givens,,one can compute a
con·esponding u' for a ray (si, ti') that intersects the same geomet-
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Figure 6: Depth correction of rays

Figure7: An(s,u,v) slice of a Lumigraph

ric location on the object as the original ray (s, u)5. Let the depth
z be 0 at the tw plane and 1 at the st plane. The intersections can
then be found by examining the similar triangles in Figure 6,

tE' = 11 + (S - SI)·-6 (2)

It is instructive to view the same situation as in Figure 6(a), plot-
ted in ray space (Figure 6(b)). In this figure, the triangle is the ray
(s, u). and the circles indicate the nearby gridpoints in the discrete
Lumigraph. The diagonal line passing through (s, u) indicates the
optical.flow (in this case, horizontal motion in 2D) of the intersection

point on the object as one moves back and forth in s. The intersec-
tion of this line with si and s:+i OccUrS at 11' and u" respectively

Figure 7 shows an (s, u) slice through a three-dimensional
(s, u, v) subspace of the Lumigraph for the ray-traced fruitbowl

used in Figure 19. Theflow of pixel motion is along straight lines in
this space, but more than one motion may be present if the scenein-
cludes transparency. The slope of the flow lines corresponds to the

depth of the point on the object tracing out the line, Notice how the
function is coherent along these flow lines [4]

We expect the Lumigraph to be smooth along the optical flow
lines, and thus it would be beneficial to have the basis functions ad-

apttheir shape correspondingly. The remapping of u and v values to
u' and ti performs this reshaping. The idea of shaping the support
of basis functions to closely match the structure of the function be-
ing approximated is usedextensively in finite elementmethods. For
example, in the Radiosity method for image synthesis, the mesh of
elements is adapted to fit knowledgeabout the illumination function.

°Assuming there has been no change in visibility.

S

U
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Figure 8: (a) Support of an uncorrected basis function. (b) Support
of a depth corrected basis function. (c) Support of both basis func-
tions in ray space.

The new basis function B'z,1,P,q(.g, l.,u, v) is defined by first
finding u' and 4 using equation 2 and then evaluating B, that is

B9,3,p,q(s,t,u, v) = B,,j,p,g(s,t, u',v')

Although the shape of the new deptIi corrected b'asis is complic-

ated. L(s, t. u, v) is still a linearsumof coefficients and the weights
of the contributing basis functions still sum to unity. However, the
basis is no 1onger representable as a tensor product of simple boxes
orhats asbe fore. Figure8 showsthesupportof anuncorrected(light
gray) and a depth corrected (dark gray) basis function in 2D geomet-

ric space and in 2D ray space. Notice how the support of the depth
corrected basis intersects the surface of the object across a narrower

area compared to the uncorrected basis.
We use depth corrected quadralinear basis functions in our sys-

tem. The value of L(s, t, u, v) in the corrected quadralinearbasisis
computed using the following calculation:

QuadralinearDepthCorrect(s,t,u,v,z)
Result = 0

hst= st- so /* grid spacing */

hUt = U1 - U0

for each of the four (s„ tj) surrounding (s, t)

11' =u+(s- siI* 2/(1 -2)
v' =u+(t- tj)* z/(1 -z)

temp = 0

for each ofthe four (up, uq) surrounding (u', v')
iterpWeight uu =

(huu- i Up -U' 1) * (huv- 1 ug - v' 1)/hL
temp + = interpWeightuv * L(s;,tj,up,uq)

interpWeight st =

(hst- 1 se- s D * (hst- I tj-t I)/hit
Result + = interpWeight st * temp

return Result

Figure 1 7 shows images generated from a Lumigraph using un-
corrected and depth corrected basis functions. The depth correction
was done using a 162 polygon model to approximate the original

70.000 polygons. The approximation was generated using a mesh

simplification program [10]. These images show how depth correc-
tion reduces the artifacts present in the images.

3 The Lumigraph System

This section discusses many of the practical implementation issues
related to creating a Lumigraph and generating images from it. Fig-
ure 9 shows a block diagram of the system. The process begins with

capturing images with a hand-held camera. From known markers

..6

object

(b)

.0
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Figure 9: The Lumigraph system

in the image, the camera's position and orientation (its pose) is es-
timated. This provides enough information to create an approxim-
ate geometric object for use in the depth correction of (u, v) values.
More importantly, each pixel in each image acts as a sample of the
plenoptic function and is used to estimate the coefficients of the dis-
crete Lumigraph (i.e., to developthe Lumigraph). Alternatively, the

Lumigraph of a synthetic object can be generated directly by integ-
rating a set of rays cast in a rendering system. We only briefly touch
on compression issues, Finally, given an arbitrary virtual camera,
new images of the object are quickly rendered.

3.1 Capture for Synthetic Scenes

Creating a Lumigraph of a synthetic scene is straightforward. A
single sample per Lumigraph coefficient can be captured for each
gridpoint(i,j)by placing the centerof a virtual pin hole camera at
(st, 4) looking down the z axis, and defining the imaging frustum
using the uv square as the film location. Rendering an image us-
ing this skewed perspective camera produces the Lumigraph coe ffi-

cients. The pixel values in this image. indexed (p, q), are used as the
Lumingraph coefficients r:,3,p,q. To perform the integration against

the kernel B, multiple rays per coefficient can be averaged by jit-
tering the camera and pixel locations, weighting each image using

U. For ray traced renderings, we have used the ray tracing program
provided with the Generative Modeling package[25].

3.2 Capture for Real Scenes

Computing the Lumigraph for a real object requires the acquisition

of object images from a large number of viewpoints. 0ne way in
which this can be accomplished is to use a special motion control
platform to place the real camera at positions and orientations coin-
cident with the (st,tj) gridpoints [16]. While this is a reasonable

solution, we are interested in acquiring the images with a regular
hand-he1dcamera. This results in asimplerandcheapersystem, and
may extend the range of applicability to larger scenes and objects.

To achievethis goal, we must first calibrate the camera to determ-

ine the mapping between directions and image coordinates. Next.
we must identify special calibration markers in each image and

compute the camera's pose from these markers. To enable depth-
corrected interpolation of the Lumigraph. we also wish to recover
a rough geometric model of the object. To do this, we convert each

input image into asilhouetteusingablue-screen technique. and then
build a volumetric model from these binary images.

3.2.1 Camera Calibration and Pose Estimation

Camera calibration and pose estimation can be thought of as tWo

parts of a single process: determining a mapping between screen
pixels and rays in the world. The parameters associated with this
process naturally divide into two sets: extrinsic parameters, which
detine the camera's pose (a rigid rotation and translation). and in-

trinsic parameters, which define a mapping of 3D camera coordin-
ates onto the screen. This latter mapping not only includes a per-

spective (pinhole) projection from the 3D coordinates to undistorted
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Figure 10: The capture stage

image coordinates. but also a radial distortion transformation and a

final translation and scaling intoscreen coordinates [29, 31].
We use a camera with a fixed lens, thus the intrinsic parameters

remain constant throughout the process and need to be estimated
0nly once, before the data acquisition begins. Extrinsic parameters,
however, change constantly and need to be recomputed for each new
video frame. Fortunately. given the intrinsic paranieters, this can be
done efficiently and accurately with many fewer calibration points.
To compute the intrinsic and extrinsic parameters, we employ an al-
gorithm originally developed by Ts.ii [29 1 and extendedby Wil!son
[31 1.

A specially designedstageprovides the sourceo f calibration data
(see Figure 10). The stage has tWo WallS fixed together at a right
angle and a base that can be detached from the walls and rotated in
90 degree increments. An object placed on such a movable base
can be viewed from all directions in the upper hemisphere. The
stage background is painted cyan for later blue-screen processing.
Thirty markers. each of which consists of several concentric rings
in a darker shade of cyan, are distributed along the sides and base.
This number is sufficiently high to allow for a very precise intrinsic
camera calibration, During the extrinsic camera calibration, 0nly 8
or more markers need be visible to reliably compute a pose.

Locating markers in each image is accomplished by first convert-
ing the image into a binary (i.e., black or white) image. A double

thresholding operatordivides all image pixels into three groupssep-
arated by intensity thresholds Ti and Tb. Pixels with an intensity
below Ti are considered black, pixels with an intensity above L
are considered white. Pixels with an intensity between Ti and L
are considered black only if they have a black neighbor, otherwise
they are considered white. The binary thresholded image is then
scarched for connected conipone1its [23]. Sets of connected com-

ponents with similar centers of gravity are the likely candidates for
the markers. Finally. the ratio of radii in each marker is used t()

uniquely identify the marker. To help the user correctly sample the
viewing space. a real-time visual jeedback displays the current and
past locations of the camera in the view space (Figure 11). Marker

tracking. pose estimation, feedback display, and frame recording
takes approximately 1/2 second per frame on an SGI Indy

3.3 3D Shape Approximation

The recovery of 3D shape information from natural imagery has
long been a focus o f coinputer vision research. Many of these tech-
niques assuine a particularly simple shape model, for example. a

polyhedral scene where ali edgesare visible. 0ther techniques. such
as stereo matching. produce sparse or incomplete depth estimates.
To produce complete, closed 3D models, several approaches have
been tried. 0ne family oftechniques builds 3D volumetric models

Figure 11: The user interface for the image capture stage displays

the current and previous camera positions on a viewing sphere. The
goal of the user is to "paint" the sphere.

Figure 12: Segmented image plus volume construction

directly from silhouettes of the object heing viewed [21]. Another
approach is to fit a de formable 3D model to sparse stereo data. Des-
pite over 20 years o f research. the reliable extraction o f accurate 3D
geometric information from imagery (without the use o f active illu-
mination and positioning hardware) remains elusive.

Fortunately, a rough estiinate of the shape ofthe object is enough
to greatly aid in the capture and reconstruction of images from a Lu-
migraph. We employ the octree construction algorithm described
in [26] for this process. Each input image is first segmented into a
binary objecUbackground image using a blue-screen technique [12]
(Figure 12). An octree representation of a cube that completely en-
closes the object is initialized. Thenforeachsegmented image. each
voxel at a coarse 1evel ofthe octree is projected onto the image plane
and tested against the silhouette oftheobject. Ifavoxel falls outside
of the silhouette. it is removed from the tree, If it falls on the bound-

ary, it is marked for subdivision into eight smaller cubes. After a
smal! numberof images are processed, all marked cubes subdivide.
The algorithm proceeds for a preset number of subdivisions, typic-
ally 4. The resulting 3D model consistsof acollectionof voxe1sde-
scribing a volume which is knownto contain the object6 (Figure 12).
The external polygons are collected and the resulting polyhedron is
then sinoothedusing Taubin'spolyhedral smoothingalgorithm [27].

3.4 Rebinning

As described in Equation l. the coefficient associated with the basis
function Bgp,g is detined as the integral of the continuous Lu-
migraph function multiplied by some kernel function U. This can
be written as

ri,j,p,q =  L(s,t,u, u) B,4,p,q(s,t,u,u)dsdtdu du (3)
In practice this integral must be evaluated using a linite number of
samples of the function L. Each pixel in the input video stream
coming from the hand-held camera represents a single sample

6Technically.the volumeis asupersetof the vimalhullof the obiect [13]
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L(sk,tk,uk,vO, of the Lumigraph function. As a result, the
sample points in the domain cannot be pre-specified or controlled.
In addition. there is no guarantee that the incoming samples are
evenly spaced.

Constructing a Lumigraph from these samples is similar to the
problem of multidimensional scattered data approximation. In the
Lumigraph setting. the problem is difficult for many reasons. Be-

cause the samples are not evenly spaced, one cannot apply stand-
ard Fourier-based sampling theory. Because the number of sample
points may belarge(= 108) and becauseweareworking in a 4 di-
mensional space, it is too expensive to solve systems of equations
(as is done when solving thin-plate problems [28. 18]) or to build

spatia] data structures (such as Delauny triangulations).

in addition to the numberof sample points, the distribution Ofthe
dam samples have two qualities that make the problem particularly
difficult, First, the sampling density can be quite sparse, with large
gaps in many regions. Second,the sampling density is typically very
non-uniform.

The first of these problems has been addressed in a two ditnen-
sional scattered data approximation algorithm described by Burt [51
In his aigorithm. a hierarchical set of lower resolution data sets is
created using an image pyramid. Each of these lower resolutions
represents a 'blurred" verSiOn ofthe inputdata: at lowerresolutions.

thegaps inthedat.1 becomesmaller. Thislowresolutiondataisthen
used to fil] in the gaps at higher resolutions,

The second of these problems, the non-uniformity of the
sampling density. has been addressed by Mitchell [20] 1le

solves the problem of obtaining the value of a pixel that has heen

super-sampled with a non-uniform density. In this problem. when
averaging the sainple values. one does not want the result to
be overly in11uenced by the regions sampled most densely, His

algorithm avoids this by compuling average values in a number of
smaller regions. The final value of the pixei is then computed hy
averaging logether the values of these strata. This average is not
weighted by the number of s.Imples falling in each of the strata.
Thus. the non-uniformity of the samples does not bias the answer.

For our problem. we 1mve developed a new hierarchical al-

gorithm that combines concepts from both of these algorithms. Like

Burt. our method uses a pyramid algorithm to fill in gaps. and like
Mitchell. we ensurethat the non-uniformity of thedata does not bias
the "blutiing" step

For ease of notation. the algorithm is described in lD. and will

use only one index i. A hierarchical set of basis functions is used.

with the highestresolution labe]ed 0 and with lowerresolutions hav-
ing higherindices. Associated witheach CoeffiCientLE; atresolution
r is a weight w;. These weights determine how the coefficients at
different resolution levels are eventually combined. Theuseof these

weights is the distinguishing feature ofour algorithm.

The algorithm proceeds in three phases. In the first phase.calIed
sp/at. the sample data is used to approximate the integra] of Equa-

tion 3. obtaining coeilicients .r9 and weights w7. In regions where
there is little or no nearby sainpIe datii. the weights are small or zero.
In the second phase, called pull. coefficients are computed for basis
functions at a hierarchical set of lower resolution grids by combin-

ing the coefficient values from the higher resolution grids. In the

]ower resolution grids. the gaps (regions where the weights are low)
become smaller(see figure 13). In the third phase. called plts/1. in-
formation from the cach lower res()lution grid is combined with the

next higher resollition grid. 1illing i n thegaps while not unduly blur-

ring the higher resolutioninformation aIready computed.

3.4.1 Splatting

In the splatting phase. coefficients are computed by perIormiig
Monte-Carlo integration using the following weighted average es-
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Figure 1 3: 2D pull-push. At lower resolutions the gaps are smaller.

Unuor:
0 = Ek 82 (sk) (4)r? = 20 11 4(.90 L(sk)

where sk denotes the domain location 01- sample k, I f uf is 0, then
tite .7is undefined. H the U, have compact support, then each
sample influences on]y a constant number of coefficients. There-
R)re. this step runs in time linear in the number of samples.

If the sample points sk are chosen from a uniform distribution.
this estimator converges to the correct value of the integral in Equa-
tion (3), and for n sample points has a variance of approximately

1- f,(82(s) L(s) - i:, bAs))2 ds. This variance is similar to that

obtained using importance sampling, which is often inuch smaller
than the crude Monte CarIo estimator. For a full analysis of this es-
timator. see [22].

3.4.2 Pull

In the pW/ phase, lower resolution approximations of the function

are derived using a set of wider kemels. These wider kernels are

defined by linearly summing together the higher resolution kernels

®+1 = Ek hA:-2, BL) using some discrete sequence h. Forlin-
ear -hat" functions.h[-1..1]is {},1, i}

The ]owerresolution coefficients are computed by combining the

higher resolution coeilicients using h. 0ne way todothis would be
to COmpute

Wr+1 = Il 4-2: 4
(5)= 2=4r

It is easy to see that this formula, which corresponds to the method
used by Burt. computes the same resTilt as would the original estim-
ator (Equation (4)) applied to the wider kernels. 0nce again, this
estimator works if the sampling density is uniform. Unfortunately,
when looking on a gross scale, it is imprudent to assume that the data

issampled uniformly. Forexample.theusermay havehe1dthecam-
era in some particular region for a long time. This non-uniformity

can greatly hias the estimator.

Our solution to this problem is to apply Mitchell's reasoning to
this context, replacing Equation (5) with:

14+ 1 = k1lk-'2: li1ili('w£,1)
- 1- U;zFr k hk-2: t11iIl(le,1).E£

The vaIue 1 repres ents full saturation7. and the min operator is used
to placean upper bound on the degree tIiat one coe fficient in a highly

7Using the value 1 introduces no loss of generality if the normalization
0fh is not fixed.
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sampled region, can influence the total sum 8
The pull stage runs in time linear in the number o f basis function

suinmed over all of the resolutions. Because each lower resolution

has half the density of basis functions, this stage runs in time linear
in the number of basis functions at resolution 0.

3.4.3 Push

During the pushstage, the lowerresolution approximation is used to
fill in the regions in the higher resolution that have low weight 9. Ifa
higher resolution coetticient has a high associated confidence (i.e..
has weight greater than one), we fully disregard the lower resolu-
tion information there. I f the higher resolution coefficient does not
have sufficient weight, we blend in the information from the lower
resolution.

To blend this information, the low resolution approximation of

the function must be expressedin the higher resolution basis. This is
doneby upsampling and convolving with asequence/z, that satisfies

U;+1 =Il/4-2iHI.
We first compute temporary values

t11)t = Ek /z,_2k Inin(·(t,+1.1)
,r+11 .r  7 k h z -2 k Mirl ( 4+ 1 , 1 ) 1 k

These temporary values are now ready to be blended with the values
r and w values already at level r.

1:T = t.;T (11 - t£1;) + 1ll;' 2;7

This is analogous to the blending performed in image compositing.

3.4.4 Use of Geometric Information

This three phase algorithm must be adapted slightly when using the

depth corrected basis 1unctions B'. During the splat phase, each
sample ray L( sk, tk, uk' Vk) must have its u and v values reinapped

asexplained in Section2.3.4. Also.duringthe pushand pull phases,
instead of simply combining coefficients using basis functions with
neighboring indices. depth corrected indices are used.

3.4.5 2D Results

The validity of the algorithm was tested by first applying it to a

2D image, Figure 1 8 (a) shows a set of scattered samples from the
well known mandrill image. The samples were chosen by picking
256 random line segments and sampling the mandrill very densely

along these lines 10. Image (b) shows the resulting image afterthe
pul//push algorithm has been applied. Image (c) and (d) show the
sameprocess butwithonly 100 sample lines, The success of our al-
gorithm on both 2D image functions :ind 4D Lumigraph functions
[eads us to believe that it may have many other uses.

3.5 Compression

A straightforward sampling of the Lumigraph requires a large
amount of storage. For the examples shown in section 4, we use,

for a single face. a 32 x 32 sampling in (s, t) space and 256 x 256

8This is actually less extreme that Mitchell's original algorithm. In this
context. his algorithm would set all non-zero weights to l.

0 Variance measures could he used instead of weight as a measureof con-
fidence in this phase.

10 We chose this type o f sampling patter n because it mimics in many ways
the structure of the Lumigraph samples taken from a hand-held camera. In

that case each input video image is a densesanipling of the 4D Lumigraph

along a 2D pI ane.

(u,u) images. To store the six f-aces o f our viewing cube with 24-
bits per pixel requires 322 .2562 -6·3= 1.125GBofstorage

Fortunately, there is a large amount of coherence between
Cs,t, u, 11) samples. One could apply a transform code to the 4D ar-
ray. such as a wave]et transform or block DCT Given geometric in-
formation. we can expect to do even better by considering the 4D ar-

ray as a 2D array of images. We can then prediPtnew (ii, v) images
from adjacent images, (i.e., images at adjacent (s, t) locations). In-

traframe compression issues are identical to compressing single im-
ages (a simple JPEG compression yields about a 20:1 savings). In-
terframe compression can take advantage of increased information
overothercompressionmethods suchasMPEG.Since weknow that

the object is static and know the camera motion between adjacent
images, we can predict the motion of pixels. In addition, we can

1everage the fact that we have a 2D array of images rather than a
single linear video stream.

Although we have not completed a full analysis o f compression
issues. our preliminary experiments suggest that a 200:1 compres-

sion ratio should be achievable with almost no degradation. This
reduces the storage requirements to under6MB. 0bviously, further

improvements can be expected using a more sophisticated predic-

tion and encoding scheme.

3.6 Reconstruction of Images

Given a desired camera (position, orientation, resolution), the re-
construction phase colors each pixel of the output image with the
color that this camera would create i f it were pointed at the real ob-
jecL

3.6.1 Ray Tracing

Given a Lumigraph, one may generate a new image from an arbit-
rary camera pixel by pixel,raybyray. Foreachray,the correspond-
ing ( S, t, 11, r) coordinates are computed. the nearby grid points are

located. and their values are properly interpolated using the chosen
basis functions (see Figure 3).

1n order to use the depth corrected basis functions given an ap-

proximate object, we transform the (u. v) coordinates to the depth
Corrected (t,'. 1,') before interpolation. This depth correction ofthe
0, v )values canbe carried out with the aid of graphics hardware.
The polygonal approximation of the object is drawn from the point
0iview and with the same resolution as the desired image. Each ver-

tex is assigned a red, green, bh,e value corresponding toits (i·, g, z)
coordinate resulting in a "depth" image. The corrected depth value
is Bundby examining the blue value in the corresponding pixel of
the depth image for the Ez-faces ofthe Lumigraph cube (or the red
or green values for other faces). This information is used to find u;
and v' with Equation 2.

3.6.2 Texture mapping

The expense of tracing a ray for cach pixel can be avoided by recon-
structing images using texture mapping operations. The st plane it-
self is tiled with texture mapped polygons with the textures defined
by slices of the Lumigraph: tex:,j (up, uq) == rz,j,p,q. In other
words. we have one texture associated with each st gridpoint.

Constant Basis

Consider the case of constant basis functions. Suppose we wish
to render an image from the desired camera shown in Figure 14. The
set of rays passing through the shaded square on the st plane have
(s, t) coordinates closesttothegrid point (i,j). Supposethattheuv
plane is filled with tex:,p Then. when using constant basis func-
tions. the shaded region in the desired camera's tilm plane should
be filled with the corresponding pixels in the shaded region of the
up plane. This computation can he accomplished by placing a vir-
tual camera at the desired location, drawing a square polygon on the
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Figure 14: Texture mapping a portion of the st plane

st plane. and texture mapping it using the four texture coordinates

(1,, t' )O,(14 vIl, (u, u)2, and (u, v)p, to index into tex2,j
Repeating this process for each grid point on the st plane and

viewing the result from the desired camera results in a complete re-
construction of the desired image. Thus. if one has an MxM
resolution for the st plane. one needs to draw at most M2 texture
mapped squares. requiring on average. 0nly one ray intersection for
each square since the vertices are shared. Since many of the M2
squares on the st plane are invisible from the desired camera, typic-
ally only a small fraction o f these squares need to be rendered. The
rendering cost is independentof the resolution of the final image.

Intuitively, youcanthink ofthe st plane asapieceof holographic
film. As your eye moves back and forth you see different things at
the same point in st since each point holds a complete image.

Quadralinear Basis

The reconstruction of images from a quadralinear basis Lu-
migraph can also be performed using a combination of texture map-

ping and alpha blending. In the quadralinear basis, the support of

the basis function at i, j covers a larger square on the st plane than
does the box basis (see Figure 1 5(a)). Although the regions do not
overlap in the constant basis. they do in the quadralinear basis. For

a given pixel in the desired image. values from 164D grid points
contribute to the final value.

The quadralinear interpolation of these 16 values can be carried
out as a sequence of bilinear interpolations, first in uu and then in
st. A bilinear basis function is shown in Figure 15(b) centered at
grid point (i, j). A similar basis would lie over each grid point in
u vand every grid point in st.

Texture mapping hardwareon an SGI workstationcan automatic-
ally carry outthe bilinear interpolation ofthe texture in uv. Unfortu-
nately, there is no hardware support for the st bilinear interpolation.
We could approximate the bilinear pyramid with a linear pyramid by
drawing the four triangles shown on the floor of the basis function
in Figure 15(b). By assigninga values to each vertex (a = 1 at the

center. and a =0at the outer four vertices) and using alpha blend-
ing, the final image approximates the full quadralinearinterpolation
with a linear-bilinear one. Unfortunately, such a set of basis func-
tions do not sum to unity which causes serious artifacts.

A different pyramid of triangles can be built that does sum

to unity and thus avoids these arti facts. Figure 15(c) shows a
hexagonal region associated with grid point (i. j) and an associated
linear basis function. We draw the six triangles of the hexagon with
a = 1 at the center and a =0at the outside six vertices11. The

linear interpolation of a values together with the bilinear interpol-
ation of the texture map results in a linear-bilinear interpolation. In
practice we have found it to be indistinguishable from the full quad-

1 1 The alpha blending mode is set to perform a simple summation.
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Figure 15: Quadralinear vs. linear-bilinear

ralinear interpolation. This process requires at most 6 M2 texture
mapped, a-blended triangles to be drawn.

Depth Correction

As before. the (u, v) coordinates of the vertices of the texture
mapped triangles can be depth corrected. At interior pixels, the
depth correction is only approximate. This is not valid when there
are large depth changes within the bounds of the triangle. There-
fore, we adaptively subdivide the triangles into four smaller ones by
connecting the midpoints of the sides until they are (a) smaller than
a minimum screen size or (b) have a sufficiently small variation in
depth at the three comers and center. The a values at intermediate
vertices are the average of the vertices of the parent triangles.

4 Results

We have implemented the complete system described in this paper
and have created Lumigraphs of both synthetic and actual objects.
For synthetic objects, Lumigraphs can be created either from poly-
gon rendered or ray traced images. Computing all of the necessary
images is a lengthy process often taking weeks of processing time.

For real objects. the capture is perf-ormed with an inexpensive.
single chip Panasonicana!0gvideocamera. Thecapture phasetakes
less than one hour. The captured data is then "developed" into a Lu-
migraph. This off-line processing, which includes segmenting the
image from its background,creating an approximate volumetric rep-
resentation, and rebinning the samples, takes less than one day of

processing on an SGI Indy workstation.

0nce the Lumigraph has been created, arbitrary new images of

the object or scene can be generated. 0ne may generate these new
images on a ray by ray basis. which takes a few seconds per frame
at 450 x 450 resolution. If one has hardware texture mapping avail-
able, then one may use the acceleration algorithm described in Sec-
tion 3.6.2. This texture mapping algorithm is able to create multiple

frames per second from the Lumigraph on an SGI Reality Engine.
The rendering speed is almost independent of the desired resolution
of the output images. The computational bottleneck is moving the
data from main memory to the smaller texture cache.

Figure 19 shows images of a synthetic fruit bowl, an actual fruit
bowl, anda stuffed lion, generated from Lumigraphs. No geometric
information was used in the Lumigraph of the synthetic fruit bowl.
For the actual fruit bowl and the stuffed lion, we have used the ap-

proximate geometry that was computed using the silhouette inform-
ation. These images can be generated in a fraction of a second, inde-
pendent of scene complexity. The complexity of both the geometry
and the lighting effects present in these images wou]d be difficult to
achieve using traditional computer graphics techniques.
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5 Conclusion

In thi paper we have described a rendering framework based on
the plenoptic function emanating from a static object or scene. 0ur
method makes no assumptions about the re!lective properties of the
surfaces in the scene, Moreover. this representation does not require
us to derive any geometric knowledge about the scene such as depth.
1-1owever,this methoddoes allow ustoincludeany geometric know-

ledge we may compute, to improve the efficiency ofthe representa-
tion andimprovethequality oftheresults. We computethe approx

imate geometry using silhouctte information.
We have developed a system for capturing plenoptic data using a

hand-held camera, and converting this data into a Lumigraph using a
novel rebinning algorithm. Finally.wehave developed an algorithm
for generating new images from the Lumigraph quickly using the

power of texture Inapping hardware.
In the examples shown in this paper, we have not captured the

complete plenoptic functionsurrounding anobject. Wehavelimited

ourse]ves to only one face of a surrounding cube. There should be

no conceptual obstacles to extending this work to complete captures

using all six cube faces.
There is much future work to be done on this topic. It will be

important to develop powerful compression methods so that Lu-
migraphs can be elliciently stored and transInitted. We believe that

the large degree of coherence in the Lumigraph will make a high

rate of compression achievable. Future research also includes im-

proving the accuracy of our system to reduce the amount of arti-
1-acts intheimages created bytheLumigraph. With these extensions
we believe the Lumigraph will be an attractive aIternative to tradi-
tional methods for efficiently storing and rendering realistic 3D ob-

jects and scenes.
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(a) constant basis /single sample quadrature (a) constant/no depth correction (a)256 linesamples

( b) constant basis /full quadrature (b) quadralinear/no depth correction (b) reconstruction from (a)

.T t

A .7 3

r.

(c) quadralinear basis /single sample (c) constanUdepth corrected (c) 100 line samples

(d) quadralinear./full quadrature (d) quadralinear/depth corrected (d) reconstruction from (c)
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U*f

Figure 19: stereo pairs generated from Lumigraphs. (cross eyed style)
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