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Paper and code available at:  fyusion.com/LLFF
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Input Images
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Output Virtual Experience
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Novel View Synthesis Problem Setup 
Inputs: Sampled Images of a Scene

Scene 
Representation

Outputs: Rendered Novel Views
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From Levoy and Hanrahan. Light Field Rendering.  SIGGRAPH 96
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Very dense sampling yields robust solutions

Stanford Multi-Camera Array. Wilburn et al. SIGGRAPH 2005
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Very dense sampling yields robust solutions

Google “Welcome to Light Fields”. Overbeck et al. SIGGRAPH Asia 2018
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How do we achieve robust high-quality performance 
with sparser casual input view sampling? 
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Promote each sampled view to a local light field
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Promote each sampled view to a local light field
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Blend nearby local light fields to render novel views
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Multiplane Image (MPI) as local light field representation

Lacroute and Levoy. SIGGRAPH 1994. Golland and Szeliski. IJCV 1999. Zhou et al. SIGGRAPH 2018
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MPI local light field representation well suited for deep learning pipeline 

1. Samples stored on regular grid
‣ Can use convolutional networks

2. 3D representation of light field
‣ Consistent across views

3. Rendering is differentiable

‣ Supervise by held-out views

Zhou et al. SIGGRAPH 2018
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Promote each sampled view to a local light field
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Use neighboring views as inputs to predict MPI for each view
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Use neighboring views as inputs to predict MPI for each view

20

Use neighboring views as inputs to predict MPI for each view
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99% of our training data is synthetically rendered

Our main synthetic dataset takes under a day to generate
We first train on synthetic data and then fine-tune on a small real dataset (25 scenes)

Do not need real world “big data” 
to train ML view synthesis system!
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Real finetuning data
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How densely do we need to sample input views to reconstruct the light field?
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How densely do we need to sample input views to reconstruct the light field?
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How densely do we need to sample input views to reconstruct the light field?
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How densely do we need to sample input views to reconstruct the light field?
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Visualizing a light field: each scene point lies on line based on depth 

View Dim ension 

Camera Viewfinder
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Visualizing a light field: each scene point lies on line based on depth 

View Dim ension 

Camera Sensor
Top-Down Scene View
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Visualizing a light field: each scene point lies on line based on depth 

View Dim ension 
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Visualizing a light field: each scene point lies on line based on depth 

View Dim ension 

Camera Sensor
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Top-Down Scene View
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Visualizing a light field’s spectrum: scene content lies on line based on depth

Light Field Fourier Support
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Plenoptic Sampling. Chai et al. SIGGRAPH 2000
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Top-Down Scene View

Light Field
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What happens when there are closer occluding objects?

Light Field Fourier Support

V
ie

w
 D

im
en

si
o

n 
Fr

eq
ue

nc
y 

P ixel Dim ension Frequency 

View Dim ension 

33

Top-Down Scene View
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What happens when there are closer occluding objects?

Light Field Fourier Support
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Top-Down Scene View

Step 1: Occluder multiplies background light field by visibility mask

Light Field Fourier Support
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Light Field
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Top-Down Scene View

Visibility Mask

Light Field Fourier Support
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Step 1: Occluder multiplies background light field by visibility mask
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Top-Down Scene View Light Field Fourier Support
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Step 1: Occluder multiplies background light field by visibility mask

Light Field
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Top-Down Scene View

Light Field
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Multiplication by visibility mask → Fourier convolution along line

Light Field Fourier Support
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Occluder’s Light Field Fourier Support

BEN MILDENHALL & PRATUL SRIN IVASAN, LOCAL LIGHT FIELD FUSION
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Top-Down Scene View

Light Field
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Occluder multiplies light field by visibility mask → Fourier convolution along line

Light Field Fourier Support
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Top-Down Scene View

Light Field
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Occluder multiplies light field by visibility mask → Fourier convolution along line

Light Field Fourier Support
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Top-Down Scene View

Light Field
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Step 2: occluder adds its own light field
Light Field Fourier Support
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Fourier support is bounded by closest content occluding farthest content

Top-Down Scene View
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Light Field Fourier Support
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Slope of closest occluder

Furthest content’s support

Generalized Plenoptic Sampling. Zhang and Chen. Tech Report 2001
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Nyquist rate view sampling means packing parallelograms as closely as possible

Fourier Replicas from Sampling Light Field
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to Avoid Aliasing
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Nyquist rate means 1 pixel max disparity between adjacent views

Capturing a scene with closest content 0.5 m away for viewing 
on current VR headsets requires an image every millimeter!
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What if we have ideal MPI layers for each view?
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What if we have ideal MPI layers for each view?
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Camera Sensor

What if we have ideal MPI layers for each view?
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Camera Sensor

What if we have ideal MPI layers for each view?
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Camera Sensor

What if we have ideal MPI layers for each view?
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D layers → light field from each layer has 𝐷𝐷×smaller Fourier support

Light Field Fourier Support
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Slope of closest occluder

Furthest content’s support
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Light Field Fourier Support
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D layers → light field from each layer has 𝐷𝐷×smaller Fourier support
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Light Field Fourier Support
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D layers → light field from each layer has 𝐷𝐷×smaller Fourier support
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Siggraph’2000, July 27, 2000

Light Field Reconstruction

Chai et al. 00
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Siggraph’2000, July 27, 2000

Minimum Sampling Curve

Joint Image 
and

 Geometry Space

Minimum Sampling 
Curve

Number of Depth Layers
1 2 3 6 12 Accurate 

Depth

Number of Images

2x2

8x8

4x4

16x16

32x32
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Experiment: View synthesis quality vs. Maximum disparity between input views
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Experiment: View synthesis quality vs. Maximum disparity between input views

Zhang et al. CVPR 2018
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Need to match Nyquist rate performance
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We match theoretic bound at 𝐷𝐷 = 8
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We match theoretic bound at 𝐷𝐷 = 16
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We match theoretic bound at 𝐷𝐷 = 32
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We match theoretic bound at 𝐷𝐷 = 64
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Bound no longer holds at 𝐷𝐷 = 128
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}
Prescriptive guideline:
Sample scene with 64 pixels

4000x reduction in views
vs. Nyquist rate!

63 64

65


