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Novel View Synthesis Problem Setup

Inputs: Sampled Images of a Scene Outputs: Rendered Novel Views

Representation

4D Light Field

&
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Very dense sampling yields robust solutions

Light Fields

Gershun’s and Moon’s idea of a light field: ¢

Radiance as a function of a ray or line: L(x, y,z, 6, ¢)

« In “free space” (no occluders) 5D reduces to 4D
1 of the convex hull of an object
of an environment

* Images are 2D slices *
« Insert acquired imagery
« Extract image from a given viewpoint
From Levoy and Hanrahan. Light Field Rendering. SIGGRAPH 96

Very dense sampling yields robust solutions
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Stanford Multi-Camera Array. Wilburn et al. SIGGRAPH 2005

How do we achieve robust high-quality performance
with sparser casual input view sampling?




Promote each sampled V|ew toa local light field

Blend nearby local light fields to render novel views

MPI local light field representation well suited for deep learning pipeline

1. Samples stored on regular grid
> Can use convolutional networks
2. 3D representation of light field

> Consistent across views

3. Rendering is differentiable

» Supervise by held-out views

Promote each sampled view to a local light field

Multiplane Image (MPI) as local light field representation

Zhou et al. SIGGRAPH 2018

Promote each sampled V|ew to a local I|ght field




Use neighboring views as inputs to predict MPI for each view Use neighboring views as inputs to predict MPI for each view

Use neighboring views as inputs to predict MPI for each view 99% of our training data is synthetically rendered

Our main synthetic dataset takes under a day to generate
We first train on synthetic data and then fine-tune on a small real dataset (25 scenes)

How densely do we need to sample input views to reconstruct the light field?

Real finetuning data




How densely do we need to sample input views to reconstruct the light field? How densely do we need to sample input views to reconstruct the light field?

How densely do we need to sample input views to reconstruct the light field? Visualizing a light field: each scene point lies on line based on depth

Camera Viewfinder
Top-Down Scene View

Light Field

View Dimension

Pixel Dimension

Visualizing a light field: each scene point lies on line based on depth Visualizing a light field: each scene point lies on line based on depth

Camera Sensor Camera Sensor
Top-Down Scene View Top-Down Scene View

Light Field Light Field

View Dimension




Visualizing a light field: each scene point lies on line based on depth Visualizing a light field's spectrum: scene content lies on line based on depth

Camera Sensor
Top-Down Scene View Top-Down Scene View Light Field Fourier Support
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View Dimension

Light Field Light Field
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Pixel Dimension
Pixel Dimension Pixel Dimension Frequency

What happens when there are closer occluding objects What happens when there are closer occluding object

Top-Down Scene View Light Field Fourier Support Top-Down Scene View Light Field Fourier Support
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View Dimension

Light Field Light Field
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View Dimension

Step 1: Occluder multiplies background light field by visibility mask Step 1: Occluder multiplies background light field by visibility mask

Top-Down Scene View Light Field Fourier Support n Scene View Light Field Fourier Support

Light Field Visibility Mask
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on P Frequency Pixel Dimension Pixel Dimension Frequency

View Dimension Frequency
View Dimension Frequency.




Step 1: Occluder multiplies background light field by visibility mask Multiplication by visibility mask — Fourier convolution along line

Top-Down Scene View Light Field Fourier Support Top-Down Scene View Light Field Fourier Support

Occluder's Light Field Fourier Support
— —p — —

View Dimension View Dimension

Light Field Light Field
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Pixel Dimension Pixel Dimension Frequency Pixel Dimension Pixel Dimension Frequency

View Dimension Frequency

Ben MuoenaLs & PratuL Sumivas

Occluder multiplies light field by visibility mask — Fourier convolution along line Occluder multiplies light field by visibility mask — Fourier convolution along line

Top-Down Scene View Light Field Fourier Support Top-Down Scene View Light Field Fourier Support

View Dimension View Dimension

Light Field Light Field
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Dimension Frequency
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Step 2: OCCIudel’ adds ItS own ||ght f|e|d Fourier support is bounded by closest content occluding farthest content

Top-Down Scene View Light Field Fourier Support Top-Down Scene View Light Field Fourier Support
Furthest content’s support
View Dimension

View Dim

Light Field Light Field

N o

Pixel Dimension e Frequency Pixel Dimension Pixel Dimension Frequency

v Dimension Frequency

View Dimension Fre.

ptic Sampling. Zhang and Chen. Tech Report 2001




Nyquist rate view sampling means packing parallelograms as closely as possible Nyquist rate means 1 pixel max disparity between adjacent views

Fourier Replicas from Sampling Light Field

Required View

S ling Fi . . . .
l o Avord ;ii:;?;y Capturing a scene with closest content 0.5 m away for viewing

on current VR headsets requires an image every millimeter!

n Frequency

What if we have ideal MPI layers for each view? What if we have ideal MPI layers for each view?

What if we have ideal MPI layers for each view? What if we have ideal MPI layers for each view?

Camera Sensor Camera Sensor




What if we have ideal MPI |ayers for each view? D layers — light field from each layer has Dxsmaller Fourier support

Light Field Fourier Support
Camera Sensor

Furthest content’s support

Slope of closest occluder

D layers — light field from each layer has Dxsmaller Fourier support D layers — light field from each layer has Dxsmaller Fourier support

Light Field Fourier Support Light Field Fourier Support

Light Field Reconstruction Minimum Sampling Curve

Number of Images Joint Image
and
Geometry Space

Minimum Sampling
Curve

123 G 12 Accurate

Depth
. Number of Depth Layers :
Chai et al. 00




Experiment: View synthesis quality vs. Maximum disparity between input views
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Need to match Nyquist rate performance
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Experiment: View synthesis quality vs. Maximum disparity between input views
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--- Nyquist
Ours (8 planes)
Ours (16 planes)
Ours (32 planes)

4 8 16 32 64 128 256
Maximum disparity (pixels)

10



We match theoretic bound at D = 64 Bound no longer holds at D = 128

0.5 0.5
--- Nyquist -—— Nyquist
04 Ours (8 planes) 04 Ours (8 planes)
Ours (16 planes) Ours (16 planes)
Ours (32 planes) Ours (32 planes)
0.3 Ours (64 planes) 03 Ours (64 planes)
) Ours (128 planes)

0.2 0.2
0.1 0.1

0.0 0.0
4 8 16 32 64 128 256 8 16 32 64 128 256

Maximum disparity (pixels) Maximum disparity (pixels)

Prescriptive guideline:
} Sample scene with 64 pixels
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