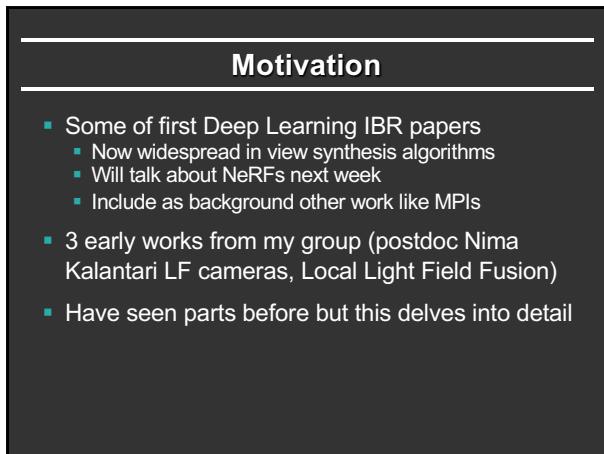
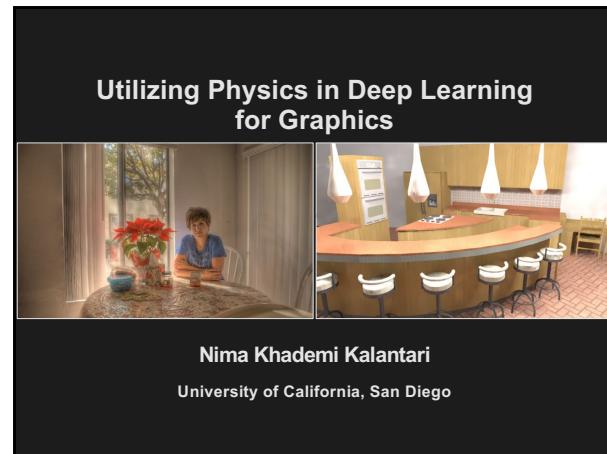


1

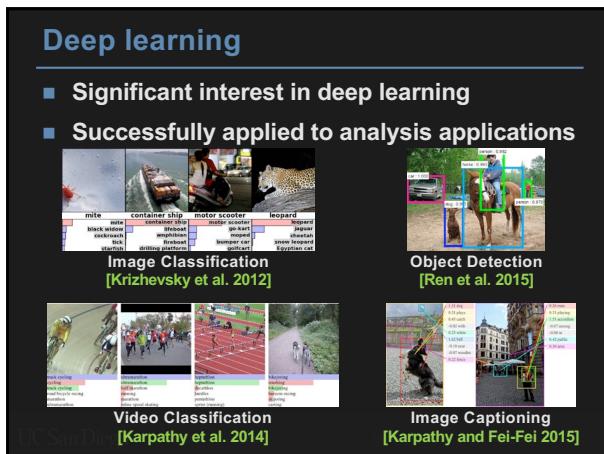
2



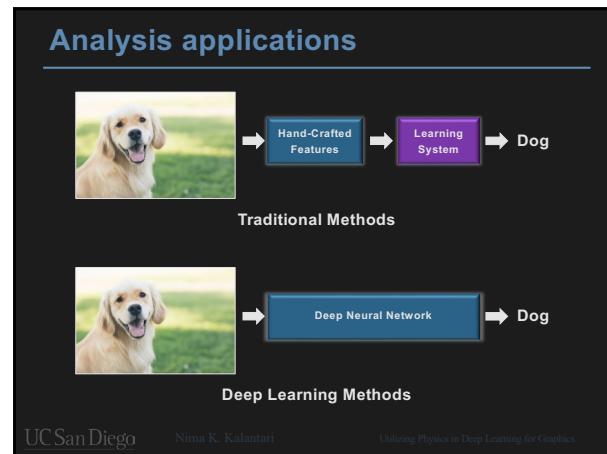
3



4



5



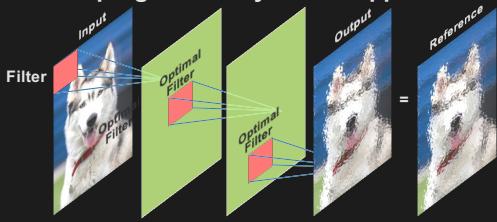
UC San Diego

Nima K. Kalantari

Utilizing Physics in Deep Learning for Graphics

Convolutional neural network (CNN)

- Efficient (can be implemented on GPUs)
- Model the process systematically
- Far less progress for synthesis applications



UC San Diego

Nima K. Kalantari

Utilizing Physics in Deep Learning for Graphics

7

Synthesis applications

- Complex and structured

UC San Diego

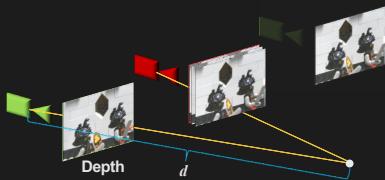
Nima K. Kalantari

Utilizing Physics in Deep Learning for Graphics

8

View Synthesis

- Learning system needs to learn different steps during training



UC San Diego

Nima K. Kalantari

Utilizing Physics in Deep Learning for Graphics

9

Synthesis applications

- Complex and structured
- Lack of large scale training data

UC San Diego

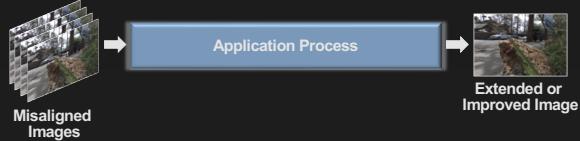
Nima K. Kalantari

Utilizing Physics in Deep Learning for Graphics

10

Proposed framework

- Incorporate physical insights into learning
- Observation: inputs are misaligned since they are from different views or times



UC San Diego

Nima K. Kalantari

Utilizing Physics in Deep Learning for Graphics

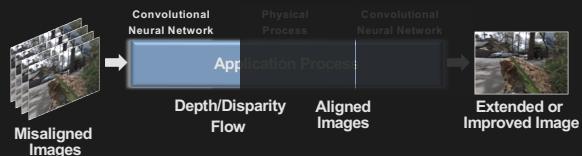
11

View synthesis

12

Proposed framework

- Incorporate physical insights into learning
- Observation: inputs are misaligned since they are from different views or times
- Divide the process into smaller sub-problems



UC San Diego

Nima K. Kalantari, et al. *Utilizing Physics in Deep Learning for Graphics*

13

View synthesis

14

Our result

UC San Diego

Kalantari et al.

15

Light fields

Refocusing

Viewpoint Change

16

Consumer light field cameras

UC San Diego

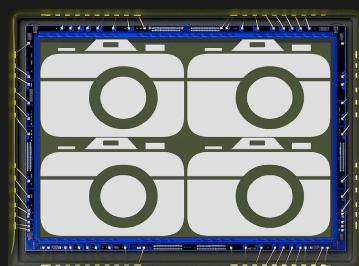
Nima K. Kalantari

Utilizing Physics in Deep Learning for Graphics

17

Consumer light field cameras

- Sensor with fixed resolution



UC San Diego

Nima K. Kalantari

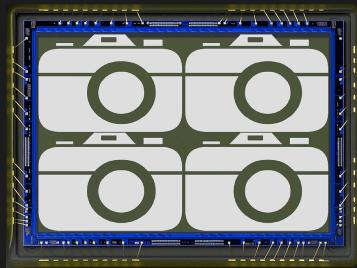
Utilizing Physics in Deep Learning for Graphics

18

Challenges

- Spatial / angular resolution trade-off

Low angular
High spatial



UC San Diego

Nima K. Kalantari

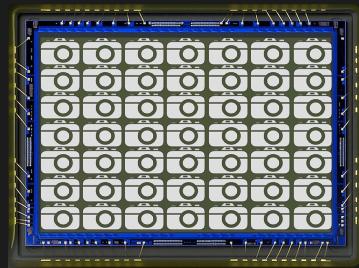
Utilizing Physics in Deep Learning for Graphics

19

Challenges

- Spatial / angular resolution trade-off

High angular
Low spatial



UC San Diego

Nima K. Kalantari

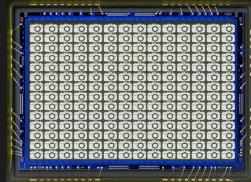
Utilizing Physics in Deep Learning for Graphics

20

Challenges

- Spatial / angular resolution trade-off
- 40 MP sensor resolution
- 14×14 angular resolution
- 0.2 MP spatial resolution

Lytro Illum



UC San Diego

Nima K. Kalantari

Utilizing Physics in Deep Learning for Graphics

21

Challenges

- Spatial / angular resolution trade-off
- Image resolution / frame rate trade-off
 - Fixed recording bandwidth

UC San Diego

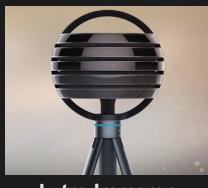
Nima K. Kalantari

Utilizing Physics in Deep Learning for Graphics

22

Light field images and videos

- Applications in virtual and augmented reality
- Low cost cameras



Lytro Immerge

Samsung 360 Round 3

UC San Diego

Nima K. Kalantari

Utilizing Physics in Deep Learning for Graphics

23

Light field super-resolution

- Angular (SIGGRAPH Asia 2016)
- Temporal (SIGGRAPH 2017)

UC San Diego

Nima K. Kalantari

Utilizing Physics in Deep Learning for Graphics

24

Proposed method

- Use the general two stage framework

UC San Diego

Nima K. Kalantari

Utilizing Physics in Deep Learning for Graphics

25

Disparity estimator

- **Goal:** estimate the disparity at every pixel of the novel view

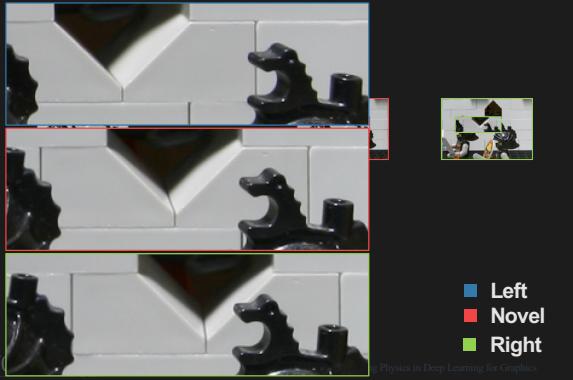
UC San Diego

Nima K. Kalantari

Utilizing Physics in Deep Learning for Graphics

26

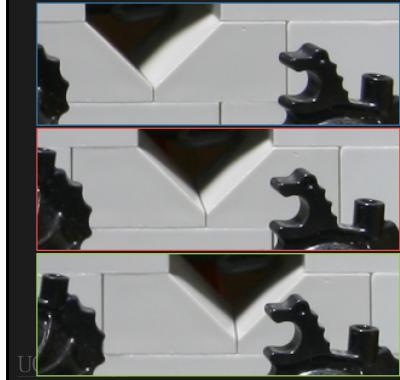
Disparity estimator



Utilizing Physics in Deep Learning for Graphics

27

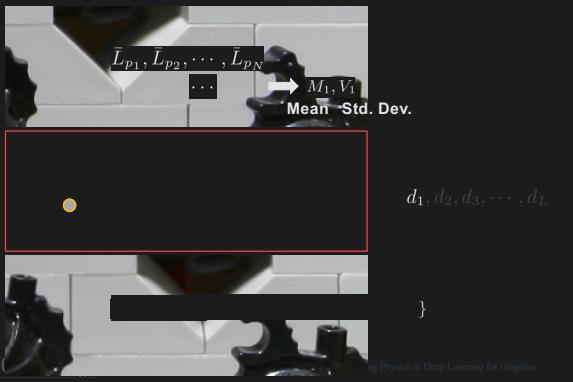
Disparity estimator



Utilizing Physics in Deep Learning for Graphics

28

Disparity estimator



Utilizing Physics in Deep Learning for Graphics

29

Disparity estimator

$d_1, d_2, d_3, \dots, d_L$

$$K = \{M_1, V_1\}$$

UC San Diego Nima K. Kalantari

Utilizing Physics in Deep Learning for Graphics

30

Disparity estimator

$d_1, d_2, d_3 \dots, d_L$

$$K = \{M_1, V_1, M_2, V_2\}$$

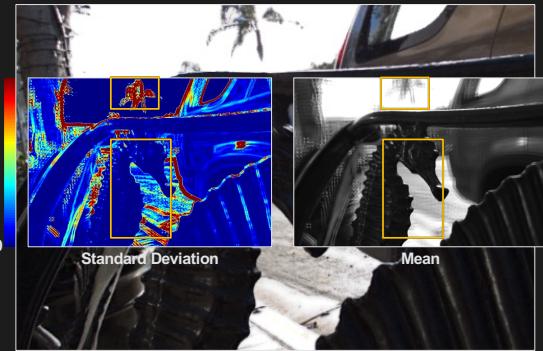
Utilizing Physics in Deep Learning for Graphics

UC San Diego

Nima K. Kalantari

31

Disparity estimator



UC San Diego

Nima K. Kalantari

Utilizing Physics in Deep Learning for Graphics

32

Proposed method

$$L_q = f(L_{p_1}, \dots, L_{p_N}, q)$$

- Use the general two stage framework

UC San Diego

Nima K. Kalantari

Utilizing Physics in Deep Learning for Graphics

33

Appearance estimator

- Goal:** estimate the final color from the warped images
- Challenges**
 - Warped images contain invalid info around occlusion boundaries
 - Estimated disparity is not always accurate

UC San Diego

Nima K. Kalantari

Utilizing Physics in Deep Learning for Graphics

34

Appearance estimator features

- Warped images
- Disparity
- Position of novel view

UC San Diego

Nima K. Kalantari

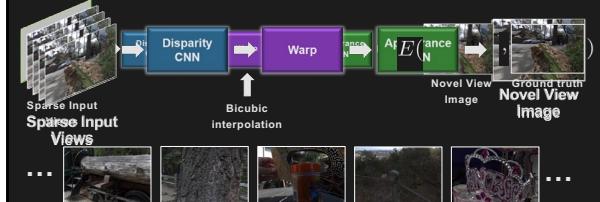
Utilizing Physics in Deep Learning for Graphics

35

Training

$$L_q = f(L_{p_1}, \dots, L_{p_N}, q)$$

- Use the general two stage framework
- Ground truth disparity maps are not required



UC San Diego

Nima K. Kalantari

Utilizing Physics in Deep Learning for Graphics

36

Dataset

- Captured data with a Lytro Illum camera
- Angular resolution of 8×8
- Training data consists of 100 light fields

UC San Diego

Nima K. Kalantari

Utilizing Physics in Deep Learning for Graphics

37

FLOWER (previous approach)

UC San Diego

Wang et al. [2015]

38

FLOWER (ours)

UC San Diego

Ours

39

FLOWER (ground truth)

UC San Diego

Ground Truth

40

FLOWER

Tao et al.	Wang et al.	Jeon et al.	Ours	GT
29.52 0.941	24.39 0.910	28.21 0.934	33.31 0.969	PSNR (dB) SSIM

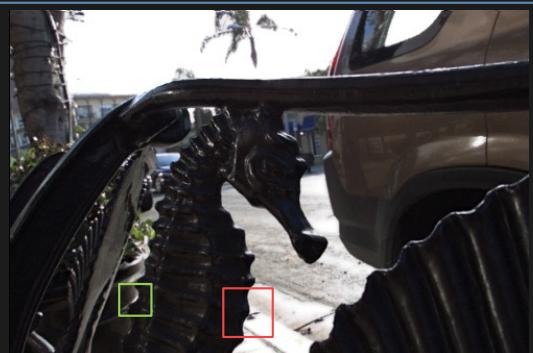
UC San Diego

Nima K. Kalantari

Utilizing Physics in Deep Learning for Graphics

41

SEAHORSE (ours)

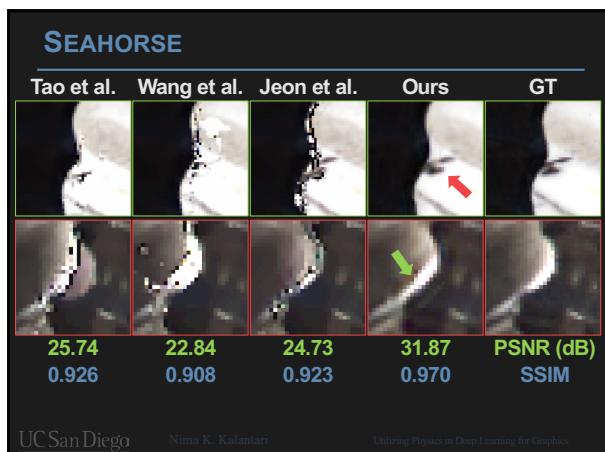


UC San Diego

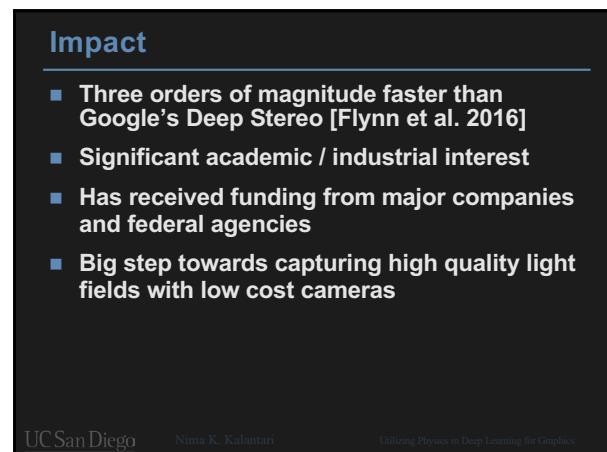
Nima K. Kalantari

Ours

42

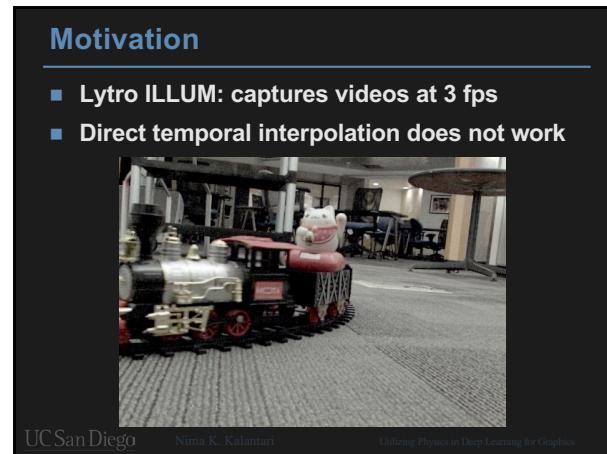


43

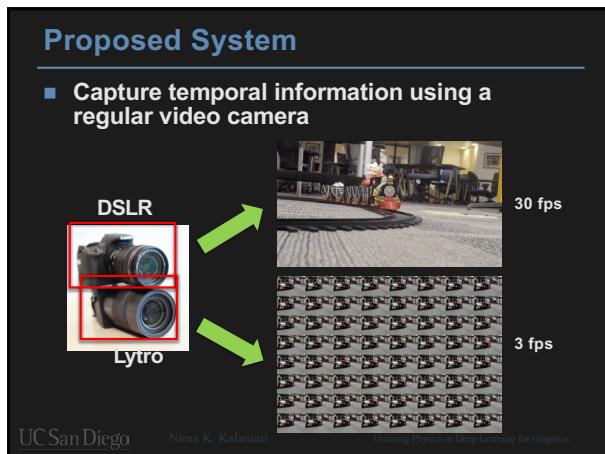


44

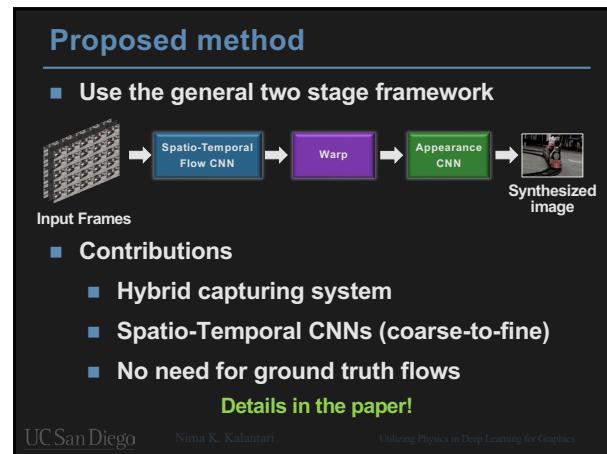
45



46



47



48

