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Image-Based Rendering

CSE 274, Lecture 7: IBR as Sampled Data

Ravi Ramamoorthi
http://www.cs.ucsd.edu/~ravir
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To Do
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Motivation

§ IBR is not just view synthesis (4D)

§ Broader trend of sampled data (data-driven)

§ Data for lighting, BRDFs, motion, textures etc. 
§ Modern Generative AI is essentially advanced data-

driven texture synthesis

§ Precomputed Light Transport or Radiance 
Transfer extends this even to synthetic scenes

§ All of these remain active areas of research
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Reflection Maps

Blinn and Newell, 1976
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Environment Maps

Miller and Hoffman, 1984
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Environment Maps

IInntteerrffaaccee, Chou and Williams (ca. 1985)
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Reflection Maps in the Movies

§ From history, pauldebevec.com/ReflectionMapping

§ First movie, Flight of the Navigator 1986
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Rendering with Natural Light

Rendering with Natural Light, Debevec 98
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Rendering with Natural Light

Rendering with Natural Light, Debevec 98
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Fiat Lux (Debevec 99)

§ https://www.youtube.com/watch?v=vgJuzml0dIw

§ https://www.pauldebevec.com/Probes/
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Data-Driven BRDFs

A Data-Driven Reflectance Model.  Matusik et al.  03 (MERL 100 BRDF Database)
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Motion Capture: ““Signature”” of Actor
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Facial MoCap

13

Weather Forecast for  Dummies 

§ Let’s predict weather:
§ Given today’s weather only, we want to know tomorrow’s
§ Suppose weather can only be {Sunny, Cloudy, Raining}

§ The “Weather Channel” algorithm:
§ Over a long period of time, record:

§ How often S followed by R
§ How often S followed by S
§ Etc. 

§ Compute percentages for each state: 
§ P(R|S), P(S|S), etc.

§ Predict the state with highest probability!
§ It’s a Markov Chain
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Markov Chain

What if we know today and yesterday’s weather?

15

Text Synthesis
§ [Shannon,’48] proposed a way to generate 

English-looking text using N-grams:
§ Assume a generalized Markov model
§ Use a large text to compute prob. distributions of 

each letter given N-1 previous letters 
§ Starting from a seed repeatedly sample this 

Markov chain to generate new letters 
§ Also works for whole words

WE  NEED TO EAT CAKE

16

Mark V. Shaney (Bell Labs)

§ Results (using alt.singles corpus):
§  “As I've commented before, really relating 

to someone involves standing next to 
impossible.”

§ “One morning I shot an elephant in my 
arms and kissed him.”

§ “I spent an interesting evening recently with 
a grain of salt”
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Texture

• Texture depicts spatially repeating patterns
• Many natural phenomena are textures

radishes rocks yogurt
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Texture Synthesis
• Goal of Texture Synthesis: create new samples of 

a given texture
• Many applications: virtual environments, hole-

filling, texturing surfaces 

19

Today: Text to Image

§ https://www.youtube.com/watch?v=GYyP7Ova8K
A&list=PLWfDJ5nla8UpwShx-
lzLJqcp575fKpsSO&index=25

§ https://www.youtube.com/watch?v=lyodbLwb2lY&l
ist=PLWfDJ5nla8UpwShx-
lzLJqcp575fKpsSO&index=26

§ (From Steve Seitz 5 minute videos, also check out 
language model videos at) 
https://www.youtube.com/playlist?list=PLWfDJ5nla
8UpwShx-lzLJqcp575fKpsSO
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Motivation

§ IBR is not just view synthesis (4D)

§ Broader trend of sampled data (data-driven)

§ Data for lighting, BRDFs, motion, textures etc. 
§ Modern Generative AI is essentially advanced data-

driven texture synthesis

§ Precomputed Light Transport or Radiance 
Transfer extends this even to synthetic scenes

§ All of these remain active areas of research
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Precomputed Rendering

§ Image-Based Rendering:  Use measured data                       
(real photographs) and interpolate for realistic real-time

§ Why not apply to real-time rendering?
§ Precompute (offline) some information (images) of interest
§ Must assume something about scene is constant to do so
§ Thereafter real-time rendering.  Often accelerate  hardware

§ Easier and harder than conventional IBR
§ Easier because synthetic scenes give info re geometry, 

reflectance (but CG rendering often longer than nature)
§ Harder because of more complex effects (lighting from all 

directions for instance, not just changing view)
§ Representations and Signal-Processing crucial
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My General Philosophy

§ This general line of work is a large data management 
and signal-processing problem

§ Precompute high-dimensional complex data

§ Store efficiently (find right mathematical represent.)

§ Render in real-time
§ Worry about systems issues like caching
§ Good signal-processing: use only small amount of 

data but guarantee high fidelity
§ Many insights into structure of lighting, BRDFs, …

§ Not just blind interpolation; signal processing
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Precomputation-Based Relighting

§ Analyze precomputed images of scene

     

Jensen 2000
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Precomputation-Based Relighting

§ Analyze precomputed images of scene

     

Jensen 2000
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Assumptions

§ Static geometry 

§ Precomputation 

§ Real-Time Rendering (relight all-frequency effects)
§ Exploit linearity of light transport for this
§ Later, change viewpoint as well
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Why is This Hard?

§ Plain graphics hardware supports only simple (point) lights, 
BRDFs (Phong) without any shadows

§ Shadow maps can handle point lights (hard shadows)

§ Environment maps complex lighting, BRDFs but no shadows

§ IBR can often do changing view, fixed lighting

§ How to do complex shadows in complex lighting?
§ With dynamically changing illumination and view?
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Relighting as a Matrix-Vector Multiply
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Input Lighting
   (Cubemap Vector)

Output Image
(Pixel Vector)

Precomputed 
Transport

Matrix

Relighting as a Matrix-Vector Multiply
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Matrix Columns (Images)
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Precompute: Ray-Trace Image Cols
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Precompute 2: Rasterize Matrix Rows
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Problem Definition

Matrix is Enormous 
§ 512 x 512 pixel images
§ 6 x 64 x 64 cubemap environments

Full matrix-vector multiplication is intractable
§ On the order of 1010 operations per frame

How to relight quickly?
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Outline

§ Motivation and Background

§ Compression methods
§ Low frequency linear spherical harmonic 

approximation
§ Factorization and PCA
§ Local factorization and clustered PCA
§ Non-linear wavelet approximation

§ Changing view as well as lighting
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Precomputed Radiance Transfer

§ Better light integration and 
transport 
§ dynamic, area lights 
§ self-shadowing 
§ interreflections 

§ For diffuse and 
glossy surfaces

§ At real-time rates
§ Sloan et al. 02 (most cited 

rendering paper in last 20 
years 1000+, widely used in 
games, movie production: 
Spherical Harmonic Lighting)

point light area light

area lighting,
no shadows

area lighting,
shadows
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Basis 16

Basis 17

Basis 18

illuminate result

...

...

Precomputation: Spherical Harmonics

36



7

Diffuse Transfer Results

No Shadows/Inter                           Shadows                             Shadows+Inter
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Arbitrary BRDF Results

Other BRDFs Spatially VaryingAnisotropic BRDFs
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Precomputed Lighting (Avatar 2010)
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Relighting as a Matrix-Vector Multiply
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Idea of Compression

§ The vector is projected onto low-frequency 
components (say 25).  Size greatly reduced.

§ Hence, only 25 matrix columns

§ But each pixel still treated separately (still have 
300000 matrix rows for 512 x 512 image)

§ Actually, for each pixel, dot product of matrix row (25 
elems) and lighting vector (25 elems) in hardware

§ Good technique (common in games, movies) but 
useful only for broad low-frequency lighting 
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Outline

§ Motivation and Background

§ Compression methods
§ Low frequency linear spherical harmonic 

approximation
§ Factorization and PCA
§ Local factorization and clustered PCA
§ Non-linear wavelet approximation

§ Changing view as well as lighting
§ Clustered PCA
§ Factored BRDFs
§ Triple Product Integrals
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n x n

= x x
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CjT

p x n

b x b b x n

= x x
Ej

p x b
Sj

• Applying Rank b:
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• Absorbing Sj values into CiT:

PCA or SVD factorization
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Idea of Compression

§ Represent matrix (rather than light vector) compactly

§ Can be (and is) combined with low frequency vector

§ Useful in broad contexts. 
§ BRDF factorization for real-time rendering (reduce 4D BRDF to 

2D texture maps)  McCool et al. 01 etc
§ Surface Light field factorization for real-time rendering (4D to 2D 

maps) Chen et al. 02, Nishino et al. 01
§ Factorization of Orientation Light field for complex lighting and 

BRDFs (4D to 2D) Latta et al. 02

§ Not too useful for general precomput. relighting
§ Transport matrix not low-dimensional!! 
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Local or Clustered PCA

§ Exploit local coherence (in say 16x16 pixel blocks)
§ Idea: light transport is locally low-dimensional.  Why?
§ Even though globally complex
§ See Mahajan et al. 07 for theoretical analysis

§ Original idea: Each triangle separately
§ Example: Surface Light Fields 3D subspace works well
§ Vague analysis of size of triangles
§ Instead of triangle, 16x16 image blocks [Nayar et al. 04]

§ Clustered PCA [Sloan et al. 2003]
§ Combines two widely used compression techniques: Vector 

Quantization or VQ and Principal Component Analysis
§ For complex geometry, no need for parameterization / topology
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Image-Based Rendering

Zickler, Enrique, Ramamoorthi, Belhumeur 05, 06
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Outline

§ Motivation and Background

§ Compression methods
§ Low frequency linear spherical harmonic 

approximation
§ Factorization and PCA
§ Local factorization and clustered PCA
§ Non-linear wavelet approximation

§ Changing view as well as lighting
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Sparse Matrix-Vector Multiplication
Choose data representations with mostly zeroes

 Vector: Use non-linear wavelet approximation 
  on lighting 

 Matrix:  Wavelet-encode transport rows
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Haar Wavelet Basis
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Non-linear Wavelet Approximation

Wavelets provide dual space / frequency locality
§ Large wavelets capture low frequency area lighting
§ Small wavelets capture high frequency  compact features

Non-linear Approximation
§ Use a dynamic set of approximating functions (depends 

on each frame’s lighting)
§ By contrast, linear approx. uses fixed set of basis 

functions (like 25 lowest frequency spherical harmonics)
§ We choose 10’s - 100’s from a basis of 24,576 wavelets
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Non-linear Wavelet Light Approximation

Wavelet Transform
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Non-linear
Approximation

Retain 0.1% – 1% terms 

Non-linear Wavelet Light Approximation
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Error in Lighting: St Peter’’s Basilica

Approximation Terms
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Sph. Harmonics

Non-linear Wavelets

Ng, Ramamoorthi, Hanrahan 03
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Output Image Comparison
Top: Linear Spherical Harmonic Approximation
Bottom: Non-linear Wavelet Approximation

25 200 2,000 20,000
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Video: Real Time Relighting
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Outline

§ Motivation and Background

§ Compression methods
§ Low frequency linear spherical harmonic 

approximation
§ Factorization and PCA
§ Local factorization and clustered PCA
§ Non-linear wavelet approximation

§ Changing view as well as lighting
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Changing Only The View
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Problem Characterization

6D Precomputation Space

§ Distant Lighting  (2D)

§ View       (2D)

§ Rigid Geometry  (2D)

With ~ 100 samples per dimension
~ 1012 samples total!! : Intractable computation, rendering
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Clustered PCA

§ Use low-frequency light and view variation (Order 4 
spherical harmonic = 25 for both; total = 25*25=625)

§ 625 element vector for each vertex

§ Apply CPCA directly (Sloan et al. 2003)

§ Does not easily scale to high frequencies
§ Really cubic complexity (number of vertices, illumination 

directions or harmonics, and view directions or harmonics)

§ Practical real-time method on GPU
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Factored BRDFs

§ Sloan et al. 04, Wang et al. 04: All-frequency effects 

§ Combines lots of things: BRDF factorization, CPCA, 
nonlinear approx. with wavelets

§ Idea: Factor BRDF to depend on incident, outgoing
§ Incident part handled with view-independent relighting
§ Then linearly combine based on outgoing factor

§ Effectively, break problem into a few subproblems that can 
be solved view-independently and added up
§ Can apply nonlinear wavelet approx. to each subproblem
§ And CPCA to the matrices for further compression

60
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Factorization Approach
6D Transport

~ 1012 samples

~ 108 samples ~ 108 samples

4D Visibility 4D BRDF

*

=
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Triple Product Integral Relighting
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Relit Images (3-5 sec/frame)
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Summary

§ Really a big data compression and signal-
processing problem

§ Apply many standard methods
§ PCA, wavelet, spherical harmonic, factor compression

§ And invent new ones
§ VQPCA, wavelet triple products

§ Guided by and gives insights into properties of 
illumination, reflectance, visibility
§ How many terms enough?  How much sparsity?
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Subsequent Work
§ My survey 2009 (lecture only covers 2002-2004)
§ Varied lighting/view.  What about dynamic scenes, BRDFs

§ Much subsequent work [Zhou et al. 05, Ben-Artzi et al. 06].  
But still limited for dynamic scenes

§ Must work on GPU to be practical
§ Sampling on object geometry remains a challenge
§ Near-Field Lighting has had some work, remains a challenge
§ Applications to lighting design, direct to indirect transfer
§ New basis functions and theory
§ Newer methods do not require precompute, various GPU tricks
§ So far, low-frequency spherical harmonics used in games, all-

frequency techniques have had limited applicability
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Analytic SH Gradients
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