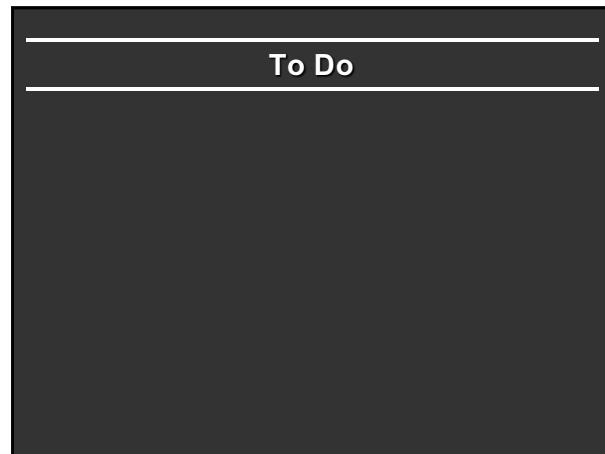
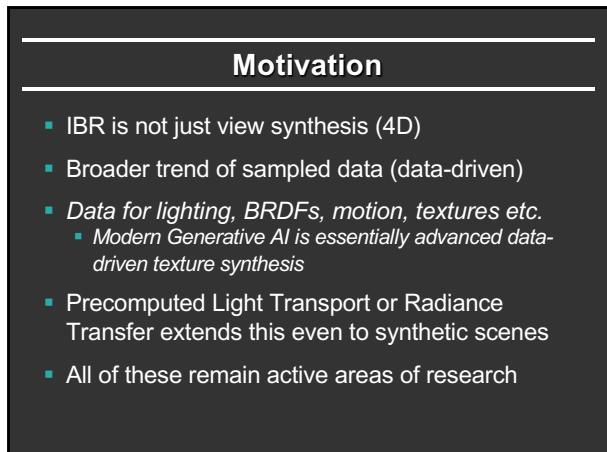


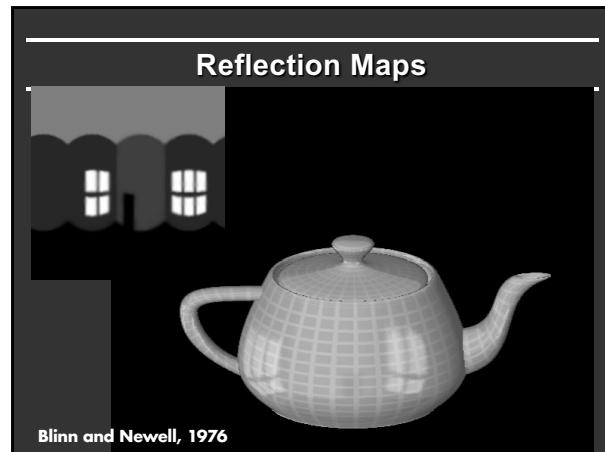
1



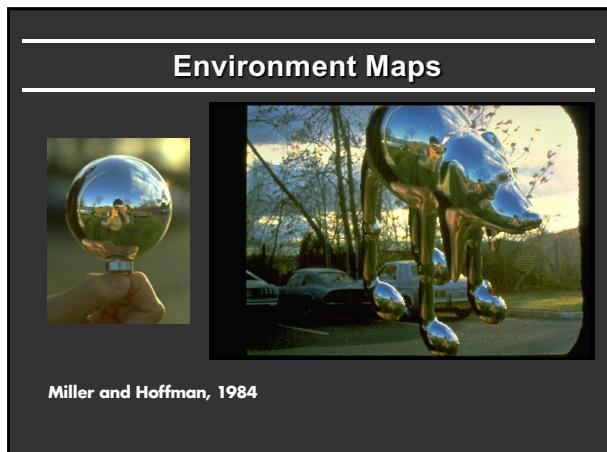
2



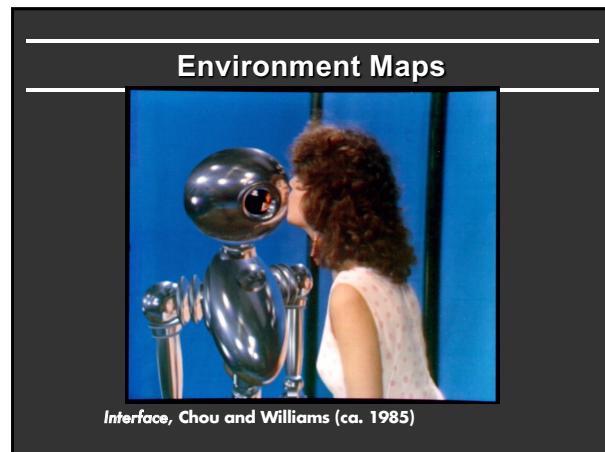
3



4



5



6

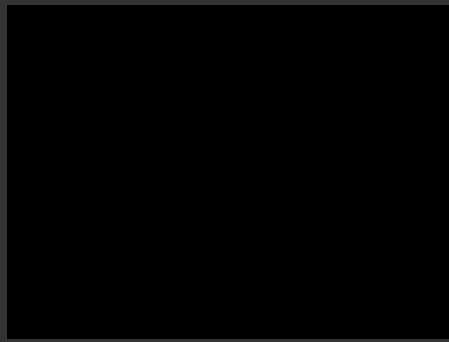
Reflection Maps in the Movies

- From history, pauldebevec.com/ReflectionMapping
- First movie, Flight of the Navigator 1986

7

8

Rendering with Natural Light



Rendering with Natural Light. Debevec 98

9

Fiat Lux (Debevec 99)

- <https://www.youtube.com/watch?v=vqJuzml0dlw>
- <https://www.pauldebevec.com/Probes/>

10

Data-Driven BRDFs

A Data-Driven Reflectance Model. Matusik et al. 03 (MERL 100 BRDF Database)

11

Motion Capture: “Signature” of Actor

12

Facial MoCap

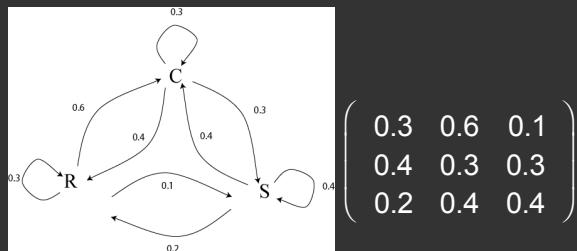
13

Weather Forecast for Dummies

- Let's predict weather:
 - Given today's weather only, we want to know tomorrow's
 - Suppose weather can only be {Sunny, Cloudy, Raining}
- The "Weather Channel" algorithm:
 - Over a long period of time, record:
 - How often S followed by R
 - How often S followed by S
 - Etc.
 - Compute percentages for each state:
 - $P(R|S)$, $P(S|S)$, etc.
 - Predict the state with highest probability!
 - It's a Markov Chain

14

Markov Chain



What if we know today and yesterday's weather?

15

Text Synthesis

- [Shannon, '48] proposed a way to generate English-looking text using N-grams:
 - Assume a generalized Markov model
 - Use a large text to compute prob. distributions of each letter given N-1 previous letters
 - Starting from a seed repeatedly sample this Markov chain to generate new letters
 - Also works for whole words

WE NEED TO EAT CAKE

16

Mark V. Shaney (Bell Labs)

- Results (using alt.singles corpus):
 - "As I've commented before, really relating to someone involves standing next to impossible."
 - "One morning I shot an elephant in my arms and kissed him."
 - "I spent an interesting evening recently with a grain of salt"

17

Texture

- Texture depicts spatially repeating patterns
- Many natural phenomena are textures

radishes

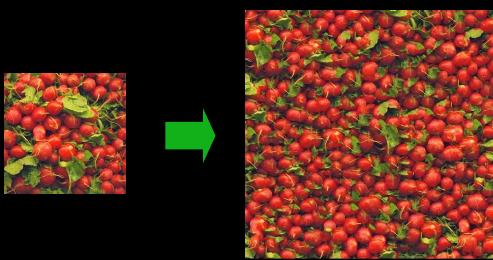
rocks

yogurt

18

Texture Synthesis

- Goal of Texture Synthesis: create new samples of a given texture
- Many applications: virtual environments, hole-filling, texturing surfaces



19

Today: Text to Image

- <https://www.youtube.com/watch?v=GYyP7Ova8KA&list=PLWfDJ5nla8UpwShx-lzLJqcp575fKpsSO&index=25>
- <https://www.youtube.com/watch?v=lyodblwb2lY&list=PLWfDJ5nla8UpwShx-lzLJqcp575fKpsSO&index=26>
- (From Steve Seitz 5 minute videos, also check out language model videos at)
<https://www.youtube.com/playlist?list=PLWfDJ5nla8UpwShx-lzLJqcp575fKpsSO>

20

Motivation

- IBR is not just view synthesis (4D)
- Broader trend of sampled data (data-driven)
- Data for lighting, BRDFs, motion, textures etc.
 - Modern Generative AI is essentially advanced data-driven texture synthesis
- *Precomputed Light Transport or Radiance Transfer extends this even to synthetic scenes*
- All of these remain active areas of research

21

Precomputed Rendering

- Image-Based Rendering: Use measured data (real photographs) and interpolate for realistic real-time
- Why not apply to real-time rendering?
 - Precompute (offline) some information (images) of interest
 - Must assume something about scene is constant to do so
 - Thereafter real-time rendering. Often accelerate hardware
- Easier and harder than conventional IBR
 - Easier because synthetic scenes give info re geometry, reflectance (but CG rendering often longer than nature)
 - Harder because of more complex effects (lighting from all directions for instance, not just changing view)
- Representations and Signal-Processing crucial

22

My General Philosophy

- This general line of work is a large data management and signal-processing problem
- Precompute high-dimensional complex data
- Store efficiently (find right mathematical represent.)
- Render in real-time
 - Worry about systems issues like caching
 - Good signal-processing: use only small amount of data but guarantee high fidelity
- Many insights into structure of lighting, BRDFs, ...
 - Not just blind interpolation; signal processing

23

Precomputation-Based Relighting

- Analyze precomputed images of scene

Jensen 2000

24

Precomputation-Based Relighting

- Analyze precomputed images of scene

25

Assumptions

- Static geometry
- Precomputation
- Real-Time Rendering (relight all-frequency effects)
 - Exploit linearity of light transport for this
 - Later, change viewpoint as well

26

Why is This Hard?

- Plain graphics hardware supports only simple (point) lights, BRDFs (Phong) without any shadows
- Shadow maps can handle point lights (hard shadows)
- Environment maps complex lighting, BRDFs but no shadows
- IBR can often do changing view, fixed lighting
- How to do complex shadows in complex lighting?
- With dynamically changing illumination and view?

27

Relighting as a Matrix-Vector Multiply

$$\begin{bmatrix} P_1 \\ P_2 \\ P_3 \\ \vdots \\ P_N \end{bmatrix} = \begin{bmatrix} T_{11} & T_{12} & \cdots & T_{1M} \\ T_{21} & T_{22} & \cdots & T_{2M} \\ T_{31} & T_{32} & \cdots & T_{3M} \\ \vdots & \vdots & \ddots & \vdots \\ T_{N1} & T_{N2} & \cdots & T_{NM} \end{bmatrix} \begin{bmatrix} L_1 \\ L_2 \\ \vdots \\ L_M \end{bmatrix}$$

28

Relighting as a Matrix-Vector Multiply

$$\begin{bmatrix} P_1 \\ P_2 \\ P_3 \\ \vdots \\ P_N \end{bmatrix} = \begin{bmatrix} T_{11} & T_{12} & \cdots & T_{1M} \\ T_{21} & T_{22} & \cdots & T_{2M} \\ T_{31} & T_{32} & \cdots & T_{3M} \\ \vdots & \vdots & \ddots & \vdots \\ T_{N1} & T_{N2} & \cdots & T_{NM} \end{bmatrix} \begin{bmatrix} L_1 \\ L_2 \\ \vdots \\ L_M \end{bmatrix}$$

Output Image (Pixel Vector)

Input Lighting (Cubemap Vector)

Precomputed Transport Matrix

29

Matrix Columns (Images)

$$\begin{bmatrix} T_{11} & T_{12} & \cdots & T_{1M} \\ T_{21} & T_{22} & \cdots & T_{2M} \\ T_{31} & T_{32} & \cdots & T_{3M} \\ \vdots & \vdots & \ddots & \vdots \\ T_{N1} & T_{N2} & \cdots & T_{NM} \end{bmatrix}$$

30

Precompute: Ray-Trace Image Cols

$$\begin{bmatrix} T_{11} & T_{12} & \cdots & T_{1M} \\ T_{21} & T_{22} & \cdots & T_{2M} \\ T_{31} & T_{32} & \cdots & T_{3M} \\ \vdots & \vdots & \ddots & \vdots \\ T_{N1} & T_{N2} & \cdots & T_{NM} \end{bmatrix} \quad \begin{array}{c} \text{ray-trace image} \\ \text{cols} \end{array}$$

31

Precompute 2: Rasterize Matrix Rows

$$\begin{bmatrix} T_{11} & T_{12} & \cdots & T_{1M} \\ T_{21} & T_{22} & \cdots & T_{2M} \\ T_{31} & T_{32} & \cdots & T_{3M} \\ \vdots & \vdots & \ddots & \vdots \\ T_{N1} & T_{N2} & \cdots & T_{NM} \end{bmatrix} \quad \begin{array}{c} \text{rasterize} \\ \text{matrix} \\ \text{rows} \end{array}$$

32

Problem Definition

Matrix is Enormous

- 512 x 512 pixel images
- 6 x 64 x 64 cubemap environments

Full matrix-vector multiplication is intractable

- On the order of 10^{10} operations *per frame*

How to relight quickly?

33

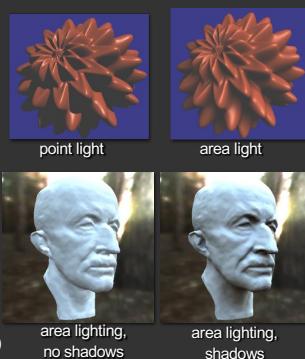
Outline

- Motivation and Background
- *Compression methods*
 - *Low frequency linear spherical harmonic approximation*
 - Factorization and PCA
 - Local factorization and clustered PCA
 - Non-linear wavelet approximation
- Changing view as well as lighting

34

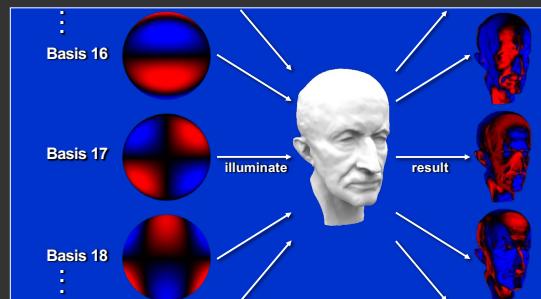
Precomputed Radiance Transfer

- Better light integration and transport
 - dynamic, area lights
 - self-shadowing
 - interreflections
- For diffuse and glossy surfaces
- At real-time rates
- Sloan et al. 02 (most cited rendering paper in last 20 years 1000+, widely used in games, movie production: Spherical Harmonic Lighting)



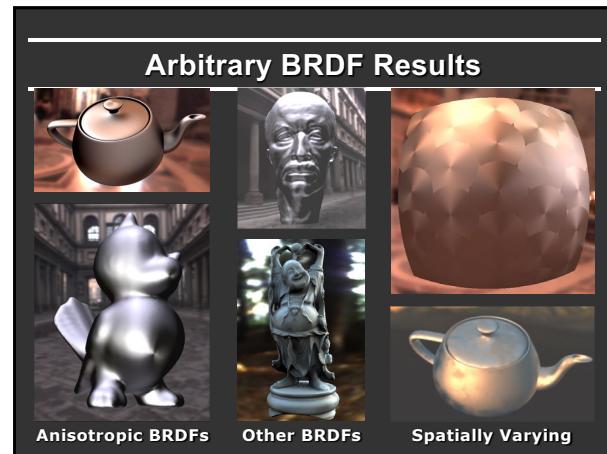
35

Precomputation: Spherical Harmonics



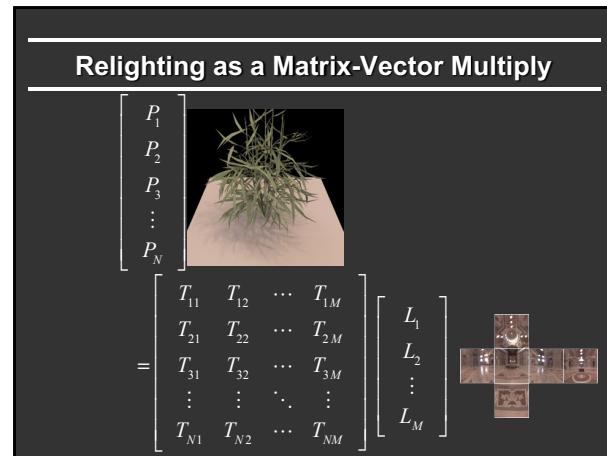
36

37

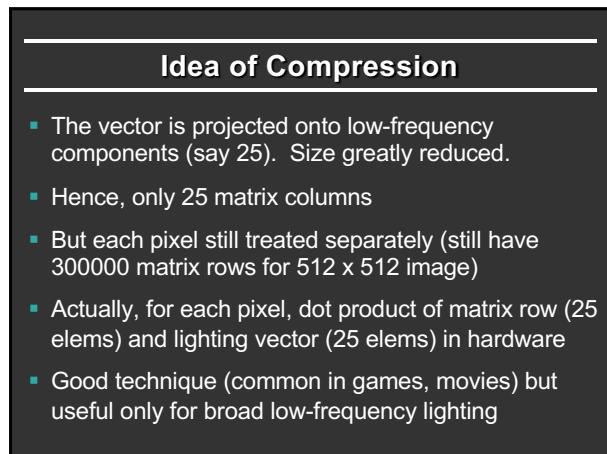


38

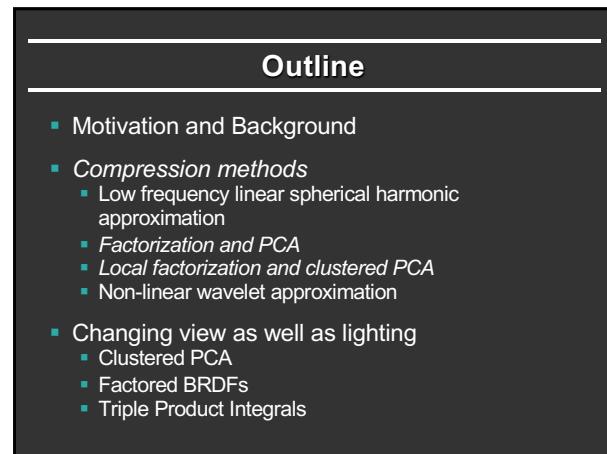
39



40



41



42

PCA or SVD factorization

- SVD:

$$\mathbf{P}_{p \times n} = \mathbf{E}_{p \times p}^T \times \mathbf{S}_{p \times n} \times \mathbf{C}_{n \times n}^T$$

↑
diagonal matrix
(singular values)

- Applying Rank b :

$$\mathbf{P}_{p \times n} = \mathbf{E}_{p \times b}^T \times \mathbf{S}_{b \times b}^T \times \mathbf{C}_{b \times n}^T$$

- Absorbing \mathbf{S}^T values into \mathbf{C}^T :

$$\mathbf{P}_{p \times n} = \mathbf{E}_{p \times b}^T \times \mathbf{U}_{b \times n}$$

43

Idea of Compression

- Represent matrix (rather than light vector) compactly
- Can be (and is) combined with low frequency vector
- Useful in broad contexts.
 - BRDF factorization for real-time rendering (reduce 4D BRDF to 2D texture maps) McCool et al. 01 etc
 - Surface Light field factorization for real-time rendering (4D to 2D maps) Chen et al. 02, Nishino et al. 01
 - Factorization of Orientation Light field for complex lighting and BRDFs (4D to 2D) Latta et al. 02
- **Not too useful for general precomput. relighting**
 - Transport matrix not low-dimensional!!

44

Local or Clustered PCA

- Exploit local coherence (in say 16x16 pixel blocks)
 - Idea: light transport is locally low-dimensional. Why?
 - Even though globally complex
 - See Mahajan et al. 07 for theoretical analysis
- Original idea: Each triangle separately
 - Example: Surface Light Fields 3D subspace works well
 - Vague analysis of size of triangles
 - Instead of triangle, 16x16 image blocks [Nayar et al. 04]
- Clustered PCA [Sloan et al. 2003]
 - Combines two widely used compression techniques: Vector Quantization or VQ and Principal Component Analysis
 - For complex geometry, no need for parameterization / topology

45

Image-Based Rendering

Practical Case

Human Face

Zickler, Enrique, Ramamoorthi, Belhumeur 05, 06

46

Outline

- Motivation and Background
- *Compression methods*
 - Low frequency linear spherical harmonic approximation
 - Factorization and PCA
 - Local factorization and clustered PCA
 - *Non-linear wavelet approximation*
- Changing view as well as lighting

47

Sparse Matrix-Vector Multiplication

Choose data representations with mostly zeroes

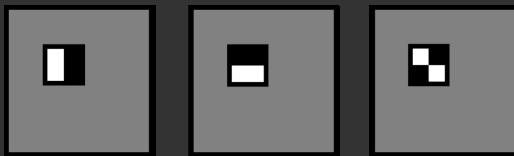
Vector: Use *non-linear wavelet approximation* on lighting

Matrix: Wavelet-encode transport rows

$$\begin{bmatrix} T_{11} & T_{12} & \cdots & T_{1M} \\ T_{21} & T_{22} & \cdots & T_{2M} \\ T_{31} & T_{32} & \cdots & T_{3M} \\ \vdots & \vdots & \ddots & \vdots \\ T_{N1} & T_{N2} & \cdots & T_{NM} \end{bmatrix} \begin{bmatrix} L_1 \\ L_2 \\ \vdots \\ L_M \end{bmatrix} \quad \begin{matrix} \text{Matrix} \\ \text{Vector} \end{matrix}$$

48

Haar Wavelet Basis



49

Non-linear Wavelet Approximation

Wavelets provide dual space / frequency locality

- Large wavelets capture low frequency area lighting
- Small wavelets capture high frequency compact features

Non-linear Approximation

- Use a **dynamic** set of approximating functions (*depends on each frame's lighting*)
- By contrast, linear approx. uses **fixed** set of basis functions (like 25 lowest frequency spherical harmonics)
- We choose 10's - 100's from a basis of 24,576 wavelets

50

Non-linear Wavelet Light Approximation

Wavelet Transform

51

Non-linear Wavelet Light Approximation

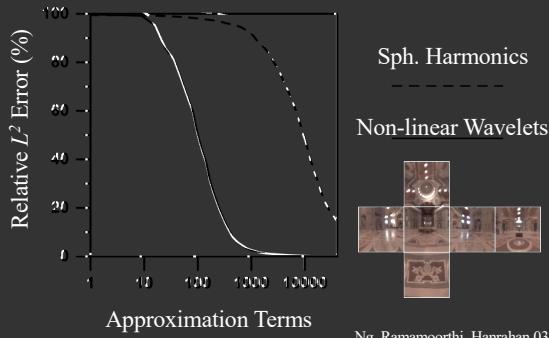
$$\begin{bmatrix} 0 \\ L_2 \\ 0 \\ 0 \\ 0 \\ L_6 \\ \vdots \\ 0 \end{bmatrix}$$

Non-linear Approximation

Retain 0.1% – 1% terms

52

Error in Lighting: St Peter's Basilica



53

Output Image Comparison

Top: Linear Spherical Harmonic Approximation
 Bottom: Non-linear Wavelet Approximation

54

Video: Real Time Relighting

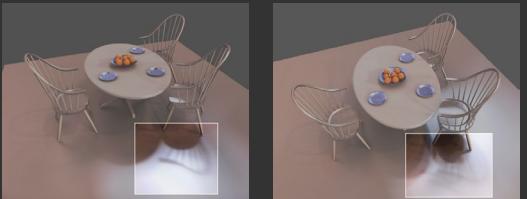
55

Outline

- Motivation and Background
- Compression methods
 - Low frequency linear spherical harmonic approximation
 - Factorization and PCA
 - Local factorization and clustered PCA
 - Non-linear wavelet approximation
- *Changing view as well as lighting*

56

Changing Only The View



57

Problem Characterization

6D Precomputation Space

- Distant Lighting (2D)
- View (2D)
- Rigid Geometry (2D)

With ~ 100 samples per dimension
 $\sim 10^{12}$ samples total!! : Intractable computation, rendering

58

Clustered PCA

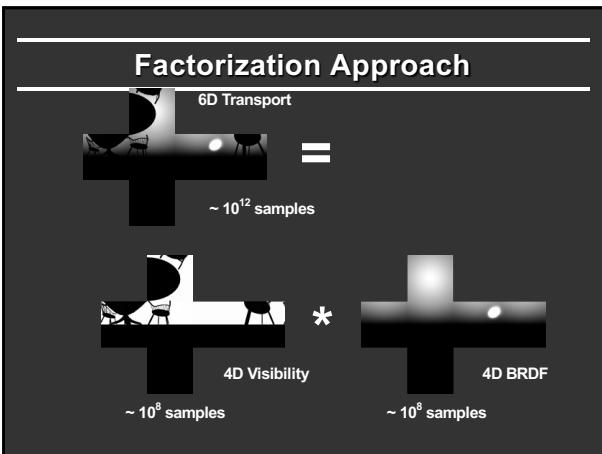
- Use low-frequency light and view variation (Order 4 spherical harmonic = 25 for both; total = $25*25=625$)
- 625 element vector for each vertex
- Apply CPCCA directly (Sloan et al. 2003)
- Does not easily scale to high frequencies
 - Really cubic complexity (number of vertices, illumination directions or harmonics, and view directions or harmonics)
- Practical real-time method on GPU

59

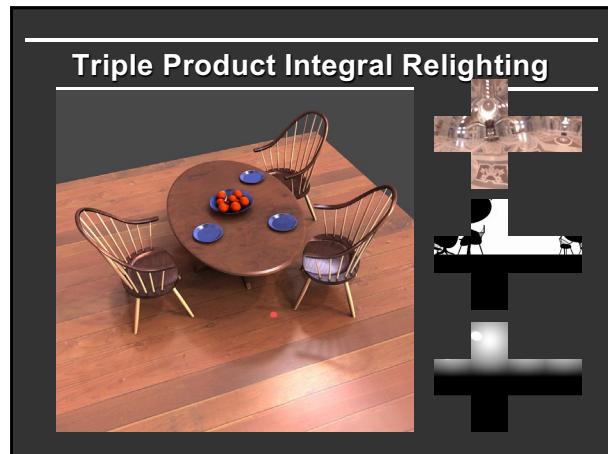
Factored BRDFs

- Sloan et al. 04, Wang et al. 04: All-frequency effects
- Combines lots of things: BRDF factorization, CPCCA, nonlinear approx. with wavelets
- Idea: Factor BRDF to depend on incident, outgoing
 - Incident part handled with view-independent relighting
 - Then linearly combine based on outgoing factor
- Effectively, break problem into a few subproblems that can be solved view-independently and added up
 - Can apply nonlinear wavelet approx. to each subproblem
 - And CPCCA to the matrices for further compression

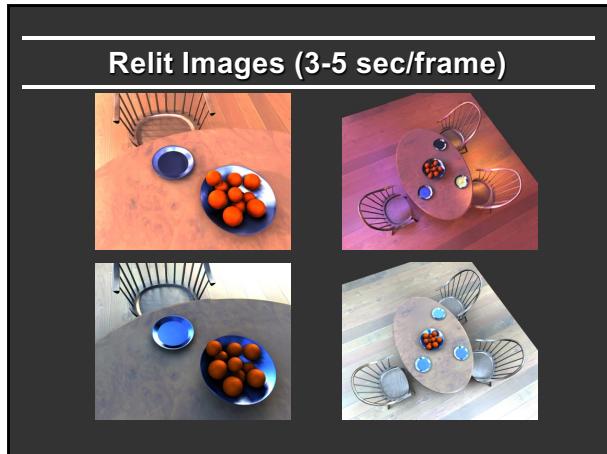
60



61



62



63

Summary

- Really a big data compression and signal-processing problem
- Apply many standard methods
 - PCA, wavelet, spherical harmonic, factor compression
- And invent new ones
 - VQPCA, wavelet triple products
- Guided by and gives insights into properties of illumination, reflectance, visibility
 - How many terms enough? How much sparsity?

64

Subsequent Work

- My survey 2009 (lecture only covers 2002-2004)
- Varied lighting/view. What about dynamic scenes, BRDFs
 - Much subsequent work [Zhou et al. 05, Ben-Artzi et al. 06]. But still limited for dynamic scenes
- Must work on GPU to be practical
- Sampling on object geometry remains a challenge
- Near-Field Lighting has had some work, remains a challenge
- Applications to lighting design, direct to indirect transfer
- New basis functions and theory
- Newer methods do not require precompute, various GPU tricks
- So far, low-frequency spherical harmonics used in games, all-frequency techniques have had limited applicability

65

Analytic SH Gradients

Analytic Spherical Harmonic Gradients for Real-Time Rendering with Many Polygonal Area Lights

Lifan Wu¹, Guangyan Cai¹, Shuang Zhao², Ravi Ramamoorthi¹
¹ UC San Diego, ² UC Irvine

NO AUDIO

66