Image-Based Rendering
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Motivation

IBR is not just view synthesis (4D)
Broader trend of sampled data (data-driven)

Data for lighting, BRDFs, motion, textures etc.
Modern Generative Al is essentially advanced data-

driven texture synthesis

Precomputed Light Transport or Radiance
Transfer extends this even to synthetic scenes

All of these remain active areas of research

Environment Maps

Miller and Hoffman, 1984

Reflection Maps

Blinn and Newell, 1976

Environment Maps

Interface, Chou and Williams (ca. 1985)




Reflection Maps in the Movies

From history, pauldebevec.com/ReflectionMapping

First movie, Flight of the Navigator 1986
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Rendering with Natural Light Fiat Lux (Debevec 99)

Rendering with Natural Light, Debevec 98

Data-Driven BRDFs Motion Capture: “Signature” of Actor
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A Data-Driven Reflectance Model. Matusik et al. 03 (MERL 100 BRDF Database)




Facial MoCap

Markov Chain
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What if we know today and yesterday’ s weather?

Mark V. Shaney (Bell Labs)

Results (using alt.singles corpus):
“As I've commented before, really relating

to someone involves standing next to
impossible. ”
“One morning I shot an elephant in my
arms and kissed him.”
‘I spent an interesting evening recently with
a grain of salt”

Weather Forecast for Dummies

Let’ s predict weather:
Given today’ s weather only, we want to know tomorrow’ s
Suppose weather can only be {Sunny, Cloudy, Raining}

The “Weather Channel” algorithm:
Over a long period of time, record:
How often S followed by R
How often S followed by S
Etc.

Compute percentages for each state:
P(RIS), P(S|S), etc.

Predict the state with highest probability!

It’s a Markov Chain

Text Synthesis

[Shannon,’ 48] proposed a way to generate
English-looking text using N-grams:
Assume a generalized Markov model
Use a large text to compute prob. distributions of
each letter given N-1 previous letters
Starting from a seed repeatedly sample this
Markov chain to generate new letters
Also works for whole words

WE NEED TO EAT CAKE

Texture

Texture depicts spatially repeating patterns

Many natural phenomena are textures

radishes yogurt




Texture Synthesis

* Goal of Texture Synthesis: create new samples of
a given texture

* Many applications: virtual environments, hole-
filling, texturing surfaces

Motivation

IBR is not just view synthesis (4D)
Broader trend of sampled data (data-driven)

Data for lighting, BRDFs, motion, textures etc.
Modern Generative Al is essentially advanced data-
driven texture synthesis

Precomputed Light Transport or Radiance
Transfer extends this even to synthetic scenes

All of these remain active areas of research

My General Philosophy

This general line of work is a large data management
and signal-processing problem

Precompute high-dimensional complex data
Store efficiently (find right mathematical represent.)

Render in real-time
Worry about systems issues like caching
Good signal-processing: use only small amount of
data but guarantee high fidelity

Many insights into structure of lighting, BRDFs, ...
Not just blind interpolation; signal processing

Today: Text to Image

(From Steve Seitz 5 minute videos, also check out
language model videos at)

Precomputed Rendering

Image-Based Rendering: Use measured data
(real photographs) and interpolate for realistic real-time

Why not apply to real-time rendering?
Precompute (offline) some information (images) of interest
Must assume something about scene is constant to do so
Thereafter real-time rendering. Often accelerate hardware

Easier and harder than conventional IBR
Easier because synthetic scenes give info re geometry,
reflectance (but CG rendering often longer than nature)
Harder because of more complex effects (lighting from all
directions for instance, not just changing view)

Representations and Signal-Processing crucial

Precomputation-Based Relighting

Analyze precomputed images of scene

Jensen 2000




Precomputation-Based Relighting

Analyze precomputed images of scene

oAl

Jensen 2000

Why is This Hard?

Plain graphics hardware supports only simple (point) lights,
BRDFs (Phong) without any shadows

Shadow maps can handle point lights (hard shadows)
Environment maps complex lighting, BRDFs but no shadows

IBR can often do changing view, fixed lighting

How to do complex shadows in complex lighting?
With dynamically changing illumination and view?

Relighting as a Matrix-Vector Multiply

Output Image
(Pixel Vector)

Input Lighting
(Cubemap Vector)

>recomputed
Transport{
Matrix

Assumptions

Static geometry

Precomputation

Real-Time Rendering (relight all-frequency effects)
Exploit linearity of light transport for this
Later, change viewpoint as well

Relighting as a Matrix-Vector Multiply

Matrix Columns (Images)




Precompute: Ray-Trace Image Cols Precompute 2: Rasterize Matrix Rows

Problem Definition Outline

Matrix is Enormous Motivation and Background

512 x 512 pixel images Compression methods
6 x 64 x 64 cubemap environments Low frequency linear spherical harmonic

. TP approximation
Full matrix-vector multiplication is intractable Fglgtorization and PCA

On the order of 10'° operations per frame Local factorization and clustered PCA

How to relight quickly? Non-linear wavelet approximation

Changing view as well as lighting

Precomputed Radiance Transfer Precomputation: Spherical Harmonics

Better light integration and WAL (125 & :
transport > @ N o
dynamic, area lights g N e Basis 16
self-shadowing | . % \
interreflections 5

For diffuse and Basis 17

—
glossy surfaces illuminate

rendering paper in last 20
years 1000+, widely used in
games, movie production:
Spherical Harmonic Lighting)

At real-time rates .
Sloan et al. 02 (most cited ¢ -, . /
‘ . ~ B?SIS 18 /

area lighting, area lighting,
no shadows shadows




Diffuse Transfer Results Arbitrary BRDF Results

f -

Anisotropic BRDFs Other BRDFs Spatially Varying

No Shadows/Inter Shadows Shadows+Inter

Precomputed Lighting (Avatar 2010) Relighting as a Matrix-Vector Multiply
| -

Idea of Compression Outline

The vector is projected onto low-frequency Motivation and Background

components (say 25). Size greatly reduced. CmrssEE s

Hence, only 25 matrix columns Low frequency linear spherical harmonic
approximation

But each pixel still treated separately (still have Factorization and PCA

300000 matrix rows for 512 x 512 image) Local factorization and clustered PCA

. . Non-linear wavelet approximation

Actually, for each pixel, dot product of matrix row (25

elems) and lighting vector (25 elems) in hardware Changing view as well as lighting
Clustered PCA

Good technique (common in games, movies) but Factored BRDFs

useful only for broad low-frequency lighting Triple Product Integrals




PCA or SVD factorization Idea of Compression

2 (SVID Represent matrix (rather than light vector) compactly

- ' px _ Can be (and is) combined with low frequency vector

arere Useful in broad contexts.
X BRDF factorization for real-time rendering (reduce 4D BRDF to
* Applying Rank b: 2D texture maps) McCool et al. 01 etc
Surface Light field factorization for real-time rendering (4D to 2D
: D x[ ] maps) Chen et al. 02, Nishino et al. 01
E s crr Factorization of Orientation Light field for complex lighting and
uld Db Bein BRDFs (4D to 2D) Latta et al. 02

. q i iT. : :
Absorbing §l vaues info - Not too useful for general precomput. relighting
D Transport matrix not low-dimensional!!
> L I
B U
pxb

bxn

Local or Clustered PCA Image-Based Rendering

Exploit local coherence (in say 16x16 pixel blocks)
Idea: light transport is locally low-dimensional. Why?
Even though globally complex .
See Mahajan et al. 07 for theoretical analysis Practical Case

Original idea: Each triangle separately
Example: Surface Light Fields 3D subspace works well Human Face
Vague analysis of size of triangles
Instead of triangle, 16x16 image blocks [Nayar et al. 04]

Clustered PCA [Sloan et al. 2003]

Combines two widely used compression techniques: Vector
Quantization or VQ and Principal Component Analysis
For complex geometry, no need for parameterization / topology

Zickler. Enriaue. Ramamoorthi. Belhumeur 05. 06

Outline Sparse Matrix-Vector Multiplication

Motivation and Background Choose data representations with mostly zeroes

Vector: Use non-linear wavelet approximation

Compression methods o g

Low frequency linear spherical harmonic
approximation

Factorization and PCA

Local factorization and clustered PCA
Non-linear wavelet approximation

Changing view as well as lighting




Haar Wavelet Basis

Non-linear Wavelet Light Approximation

Wavelet Transform

Error in Lighting: St Peter’ s Basilica

Sph. Harmonics

Error (%)

Non-linear Wavelets

2

Relative L?

Approximation Terms
Ng, Ramamoorthi, Hanrahan 03

Non-linear Wavelet Approximation

Wavelets provide dual space / frequency locality
Large wavelets capture low frequency area lighting
Small wavelets capture high frequency compact features

Non-linear Approximation
Use a dynamic set of approximating functions (depends
on each frame s lighting)
By contrast, linear approx. uses fixed set of basis
functions (like 25 lowest frequency spherical harmonics)
We choose 10’ s - 100’ s from a basis of 24,576 wavelets

Non-linear Wavelet Light Approximation

Non-linear
Approximation

Retain 0.1% — 1% terms

Output Image Comparison

Top: Linear Spherical Harmonic Approximation
Bottom: Non-linear Wavelet Approximation

2,000 20,000




Video: Real Time Relighting

Changing Only The View

Clustered PCA
Use low-frequency light and view variation (Order 4
spherical harmonic = 25 for both; total = 25*25=625)
625 element vector for each vertex
Apply CPCA directly (Sloan et al. 2003)

Does not easily scale to high frequencies
Really cubic complexity (number of vertices, illumination
directions or harmonics, and view directions or harmonics)

Practical real-time method on GPU

Outline

Motivation and Background

Compression methods
Low frequency linear spherical harmonic
approximation
Factorization and PCA
Local factorization and clustered PCA
Non-linear wavelet approximation

Changing view as well as lighting

Problem Characterization

»

6D Precomputation Space
Distant Lighting  (2D)
View (2D)
Rigid Geometry  (2D)

With ~ 100 samples per dimension
~ 102 samples total!! : Intractable computation, rendering

Factored BRDFs

Sloan et al. 04, Wang et al. 04: All-frequency effects

Combines lots of things: BRDF factorization, CPCA,
nonlinear approx. with wavelets

Idea: Factor BRDF to depend on incident, outgoing
Incident part handled with view-independent relighting
Then linearly combine based on outgoing factor

Effectively, break problem into a few subproblems that can
be solved view-independently and added up
Can apply nonlinear wavelet approx. to each subproblem
And CPCA to the matrices for further compression
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Factorization Approach
6D Transport

~10"2 samples

4D Visibility 4D BRDF

~10° samples ~10° samples

Relit Images (3-5 sec/frame)
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Subsequent Work

My survey 2009 (lecture only covers 2002-2004)

Varied lighting/view. What about dynamic scenes, BRDFs
Much subsequent work [Zhou ef al. 05, Ben-Artzi et al. 06].
But still limited for dynamic scenes

Must work on GPU to be practical

Sampling on object geometry remains a challenge

Near-Field Lighting has had some work, remains a challenge
Applications to lighting design, direct to indirect transfer

New basis functions and theory

Newer methods do not require precompute, various GPU tricks

So far, low-frequency spherical harmonics used in games, all-
frequency techniques have had limited applicability

Triple Product Integral Relighting

Summary
Really a big data compression and signal-
processing problem

Apply many standard methods
PCA, wavelet, spherical harmonic, factor compression

And invent new ones
VQPCA, wavelet triple products

Guided by and gives insights into properties of

illumination, reflectance, visibility
How many terms enough? How much sparsity?

Analytic SH Gradients

Analytic Spherical Harmonic Gradients

for Real-Time Rendering with
Many Polygonal Area Lights

Lifan Wu', Guangyan Cai', Shuang Zhao?, Ravi Ramamoorthi'
" UC San Diego, 2 UC Irvine

NO AUDIO
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