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Image-Based Rendering

CSE 274, Lecture 3: Preliminaries

Ravi Ramamoorthi
http://www.cs.ucsd.edu/~ravir
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Outline

§ Will cover many preliminaries today briefly
§ Monte Carlo Integration
§ Path Tracing
§ Volumetric Rendering
§ Deep Learning: CNNs and MLPs
§ (consider vision course for multi-view geometry)

§ To Do: Papers to present, etc
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Motivation: Monte Carlo Integration

Rendering = integration
§ Reflectance equation: Integrate over incident illumination
§ Rendering equation: Integral equation

Many sophisticated shading effects involve integrals
§ Antialiasing
§ Soft shadows
§ Indirect illumination
§ Caustics
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Example: Soft Shadows
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Monte Carlo

§ Algorithms based on statistical sampling and 
random numbers

§ Coined in the beginning of 1940s.  Originally used 
for neutron transport, nuclear simulations
§ Von Neumann, Ulam, Metropolis, …

§ Canonical example: 1D integral done numerically
§ Choose a set of random points to evaluate function, and 

then average (expectation or statistical average)
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Monte Carlo Algorithms

Advantages
§ Robust for complex integrals in computer graphics 

(irregular domains, shadow discontinuities and so on)
§ Efficient for high dimensional integrals (common in 

graphics: time, light source directions, and so on)
§ Quite simple to implement
§ Work for general scenes, surfaces
§ Easy to reason about (but care taken re statistical bias)

Disadvantages
§ Noisy
§ Slow (many samples needed for convergence) 
§ Not used if alternative analytic approaches exist (but 

those are rare)
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Or we can average
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Slide courtesy of 
Peter Shirley
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Estimating the average
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Slide courtesy of 
Peter Shirley

Monte Carlo methods (random choose 
samples)

Advantages: 
• Robust for discontinuities
• Converges reasonably for large 
dimensions
• Can handle complex geometry, integrals
• Relatively simple to implement, reason 
about
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Other Domains
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Multidimensional Domains

Same ideas apply for integration over …
§ Pixel areas
§ Surfaces
§ Projected areas
§ Directions
§ Camera apertures
§ Time
§ Paths
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Importance Sampling

Put more samples where f(x) is bigger
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Importance Sampling

§ This is still unbiased

x1 xN

E(f(x))
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for all N
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Importance Sampling

§ Zero variance if p(x) ~ f(x)

x1 xN

E(f(x))

Less variance with better
importance sampling

  

p(x) = cf (x)

Yi =
f (xi )
p(xi )

= 1
c

Var(Y ) = 0
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Stratified Sampling

§ Estimate subdomains separately

x1 xN

Ek(f(x))

Arvo
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Stratified Sampling

§ Less overall variance if less variance 
in subdomains
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More Information

§ Veach PhD thesis chapter (linked to from website)

§ Course Notes (links from website)
§ Mathematical Models for Computer Graphics, Stanford, Fall 1997
§ State of the Art in Monte Carlo Methods for Realistic Image Synthesis, 

Course 29, SIGGRAPH 2001
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Motivation: Monte Carlo Path Tracing
§ Core method to solve rendering equation 

§ Widely used production+realtime (with denoising)

§ General solution to rendering, global illumination

§ Suitable for a variety of general scenes

§ Based on Monte Carlo methods

§ Enumerate all paths of light transport
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From UCB class many years ago
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Simplest Monte Carlo Path Tracer
For each pixel, cast n samples and average

§ Choose a ray with p=camera, d=(θ,ϕ ) within pixel
§ Pixel color += (1/n) * TracePath(p, d)

TracePath(p, d) returns (r,g,b) [and calls itself recursively]:
§ Trace ray (p, d) to find nearest intersection p’ 
§ Select with probability (say) 50%:

§ Emitted:
 return 2 * (Lered, Legreen, Leblue) // 2 = 1/(50%)

§ Reflected:
 generate ray in random direction d’
 return 2 * fr(d èd’) * (n�d’) * TracePath(p’, d’)

Weight = 1/probability
Remember: unbiased 
requires having f(x) / p(x)
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Simplest Monte Carlo Path Tracer
For each pixel, cast n samples and average

§ Choose a ray with p=camera, d=(θ,ϕ) within pixel
§ Pixel color += (1/n) * TracePath(p, d)

TracePath(p, d) returns (r,g,b) [and calls itself recursively]:
§ Trace ray (p, d) to find nearest intersection p’ 
§ Select with probability (say) 50%:

§ Emitted:
 return 2 * (Lered, Legreen, Leblue) // 2 = 1/(50%)

§ Reflected:
 generate ray in random direction d’
 return 2 * fr(d èd’) * (n�d’) * TracePath(p’, d’)

Path terminated when 
Emission evaluated
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D. Mitchell 95, Consequences of stratified sampling in graphics
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Comparison of simple patterns

Ground Truth Uniform Random Stratified

Latin Hypercube Quasi Monte Carlo

16 samples for area light, 4 samples per pixel, total 64 samples

Figures courtesy Tianyu Liu
If interested, see my recent paper “A Theory of Monte Carlo Visibility Sampling”
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Mies House:  Swimming Pool
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Optional Path Tracing Assignment
§ If you have not taken CSE 168 or done path tracer

§ Follow CSE 168 on edX or edX edge (ask me for 
access if needed), build path tracer

§ Includes guide for raytracing if not already done

§ For your benefit only, optional do not turn in (since 
many people wanted it for knowledge)

§ You can use it in final project, but don’t need to, 
and may be better off using off-the-shelf renderer

§ If you do use it in final project, document it

§ Again, it is optional and not directly graded
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Volumetric Scattering
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Volumetric Rendering
§ Participating Media (light participates via scattering)

§ Volumetric phenomena like clouds, smoke, fire
§ Subsurface scattering, translucency (wax, human skin)
§ Medium is often known as a participating medium
§ For IBR/NeRF, only absorption, emission no scattering

§ Surface Rendering: Radiance Constant along Ray
§ Only true in absence of participating media
§ No longer true for volumetric scattering
§ Often replace ray tracing with ray marching in medium

§ Volumetric Properties
§ BRDF replaced by phase function
§ Must consider absorption and scattering in medium
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Full Volumetric Rendering Formulation

Slide credit: Novak et al 2018, Monte Carlo methods for physically based volume rendering
http://commons.wikimedia.org

Absorption

http://coclouds.com

Scattering

http://wikipedia.org

Emission
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Volumetric Interactions

§ 4 different processes affect radiance of a beam
§ Absorption
§ Out-Scattering (not used in IBR/NeRF)
§ Emission
§ In-Scattering (not used in IBR/NeRF)
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Absorption
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Absorption
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Transmittance
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Transmittance and Opacity
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Out-Scattering
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Extinction
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Ray Marching for Transmittance
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Emission
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In-Scattering

40

Direct Illumination in a Volume
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Direct Illumination in a Volume
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Transmittance for Shadow Rays
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Nima K. Kalantari         Utilizing Physics in Deep Learning for Graphics

Deep learning
n Significant interest in deep learning
n Successfully applied to analysis applications

Image Classification
[Krizhevsky et al. 2012]

Object Detection
[Ren et al. 2015]

Video Classification
[Karpathy et al. 2014]

Image Captioning
[Karpathy and Fei-Fei 2015]
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Nima K. Kalantari         Utilizing Physics in Deep Learning for Graphics

Analysis applications

Hand-Crafted
Features

Learning
System Dog

Traditional Methods

Deep Neural Network Dog

Deep Learning Methods
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Nima K. Kalantari         Utilizing Physics in Deep Learning for Graphics

Convolutional neural network (CNN)
n Efficient (can be implemented on GPUs)
n Model the process systematically
n Far less progress for synthesis applications

Filter
=

Offline TrainingTesting
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MLPs Toy problem: storing 2D image data

(𝑥𝑥, 𝑦𝑦) (𝑟𝑟, 𝑔𝑔, 𝑏𝑏)

Usually we store an image as a 
2D grid of RGB color values
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Use neural network to replace large N-d array

(𝑥𝑥, 𝑦𝑦, 𝑧𝑧, 𝜃𝜃,𝜙𝜙) (𝑟𝑟, 𝑔𝑔, 𝑏𝑏, 𝜎𝜎)

𝐹𝐹!

𝑥𝑥

𝑦𝑦

𝑧𝑧 (𝑟𝑟, 𝑔𝑔, 𝑏𝑏, 𝜎𝜎)

versus
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Example mapping: “positional encoding”
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Preserve High-Frequency Features

Ground truth image Neural network output without
high frequency mapping

Neural network output 
with high frequency 
mapping

Fourier Features Let Networks Learn High Frequency Functions in Low Dimensional Domains.  Tancik et al. Neurips 20
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