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Motivation: Monte Carlo Integration

Rendering = integration
Reflectance equation: Integrate over incident illumination
Rendering equation: Integral equation

Many sophisticated shading effects involve integrals
Antialiasing
Soft shadows
Indirect illumination
Caustics

Monte Carlo

Algorithms based on statistical sampling and
random numbers

Coined in the beginning of 1940s. Originally used
for neutron transport, nuclear simulations
Von Neumann, Ulam, Metropolis, ...

Canonical example: 1D integral done numerically
Choose a set of random points to evaluate function, and
then average (expectation or statistical average)

Outline

Will cover many preliminaries today briefly
Monte Carlo Integration
Path Tracing
Volumetric Rendering
Deep Learning: CNNs and MLPs
(consider vision course for multi-view geometry)

To Do: Papers to present, etc

Example: Soft Shadows
E(x)= ILi(x,w)cosedw

H
Challenges
u Visibility and blockers
m Varying light distribution
= Complex source geometry

Source: Agrawala. Ramamoorthi, Heirich, Moll, 2000

Monte Carlo Algorithms

Advantages
Robust for complex integrals in computer graphics
(irregular domains, shadow discontinuities and so on)
Efficient for high dimensional integrals (common in
graphics: time, light source directions, and so on)
Quite simple to implement
Work for general scenes, surfaces
Easy to reason about (but care taken re statistical bias)

Disadvantages
Noisy
Slow (many samples needed for convergence)
Not used if alternative analytic approaches exist (but
those are rare)




Or we can average

jf(x)dx = E(f(x))

(]

E(f(x))

Slide courtesy of
Peter Shirley

Other Domains

Slide courtesy of
Peter Shirley

Importance Sampling

Put more samples where f(x) is bigger

E(f(x))

Estimating the average

jf(x)dx:%Zf(x,.)

i=1

Monte Carlo methods (random choose
samples)

E(f(x))

Advantages:

* Robust for discontinuities

« Converges reasonably for large
dimensions

« Can handle complex geometry, integrals
« Relatively simple to implement, reason
about

Slide courtesy of
Peter Shirley

Multidimensional Domains

Same ideas apply for integration over ...
Pixel areas
Surfaces 1
Projected areas f(x)dx=—Y f(x.
Directions Eye UGJLY () N,g‘ (x)
Camera apertures .
Time
Paths

Surface

Importance Sampling

This is still unbiased

E[Y,]=[Y(x)p(x)dx

<

_fx)
_ip(X)

E(f9) plx)ax

= [f(x)dx

for all N




Importance Sampling
Zero variance if p(x) ~ f(x)

p(x)= cf(x)
‘ vt 1
i % " op(x) ¢

E(ff
i Var(Y)=0

Less variance with better
importance sampling

Direct Lighting - Area Sampling

E(x) = [L(x.0)cos0dew = L, (') (x, x’)%dy
Q A X—X

’

Ray direction  @'=x—x

Sample X’ uniformly by 4
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Stratified Sampling

Less overall variance if less variance
in subdomains

1 M
Var[FN]:W;NIVar[Fi]

Exf(x)

Direct Lighting - Directional Sampling

E(x)= IL(x, w)cosBdw
Q

Ray intersection x (X, ®)

Sample @ uniformly by Q
Y, = L(x"(x,0,),~®,) cos O 27

C€S348B Lecture 6 Pat Hanrahan, Spring 2004

Stratified Sampling

Estimate subdomains separately

Exftx)

More Information

Veach PhD thesis chapter (linked to from website)

Course Notes (links from website)
Mathematical Models for Computer Graphics, Stanford, Fall 1997
State of the Art in Monte Carlo Methods for Realistic Image Synthesis,
Course 29, SIGGRAPH 2001




Motivation: Monte Carlo Path Tracing

Core method to solve rendering equation

Widely used production+realtime (with denoising)
General solution to rendering, global illumination
Suitable for a variety of general scenes

Based on Monte Carlo methods

Enumerate all paths of light transport

Simplest Monte Carlo Path Tracer

For each pixel, cast n samples and average
Choose a ray with p=camera, d=(6,¢) within pixel
Pixel color += (1/n) * TracePath(p, d)

TracePath(p, d) returns (r,g,b) [and calls itself recursively]:
Trace ray (p, d) to find nearest interge
Select with probability (say) Weight = 1/probability

X Remember: unbiased
Emitted: requires having f(x) / p(x)

return 2 * (Lered, Legreen, Lebise) // 2 = 1/(50%)
Reflected:

generate-ray in random direction d

return 2 * f(d >d’) * (ned’) * TracePath(p’, d”)

Path Tracing: Include Direct Lighting

Step 1. Choose a camera ray r given the
(x,y,u,v,t) sample
weight = 1;
L=0
Step 2. Find ray-surface intersection
Step 3.
L += weight * Lr(light sources)
weight *= reflectance(r)
Choose new ray r’ ~ BRDF pdf(r)

Go to Step 2.
CS348B Lecture 14 Pat Hanrahan, Spring 2009
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From UCB class many years ago

Simplest Monte Carlo Path Tracer

For each pixel, cast n samples and average
Choose a ray with p=camera, d=(6,$) within pixel
Pixel color += (1/n) * TracePath(p, d)

TracePath(p, d) returns (r,g,b) [and calls itself recursively]:
Trace ray (p, d) to find nearest intersection p *
Select with probability (say) 50%:

Emitted:

return 2 * (Lered, L€green, Lebiue) // 2 = 1/(50%
Reflected: Path terminated when
3 3 q Pl Emission evaluated
generate ray in random direction d

return 2 * f(d d’) * (n*d’) * TracePath(p’, d”)

Stratified Sampling

Stratified sampling like jittered sampling

Allocate samples per region

L ]
° L 1 &
. N=3'N, F, = V;Nﬁ

i=l

New variance | @

VIF,] :VZN,V[F,]

i=l

Thus, if the variance in regions is less than
the overall variance, there will be a
reduction in resulting variance

For example: An edge through a pixel

v
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CS348B Lecture 9 Pat Hanrahan, Spring 2002

D. Mitchell 95, Consequences of stratified sampling in graphics




Comparison of simple patterns

Latin Hypercube ~ Quasi Monte Carlo

Ground Truth Uniform B Random Stratified

16 samples for area light, 4 samples per pixel, total 64 sz

If interested, see my recent paper “A Theory of Monte

Optional Path Tracing Assignment

If you have not taken CSE 168 or done path tracer

Follow CSE 168 on edX or edX edge (ask me for
access if needed), build path tracer

Includes guide for raytracing if not already done

For your benefit only, optional do not turn in (since
many people wanted it for knowledge)

You can use it in final project, but don’t need to,
and may be better off using off-the-shelf renderer

If you do use it in final project, document it

Aaain. it is ootional and not directlv araded

Volumetric Rendering

Participating Media (light participates via scattering)

Volumetric phenomena like clouds, smoke, fire
Subsurface scattering, translucency (wax, human skin)
Medium is often known as a participating medium

For IBR/NeRF, only absorption, emission no scattering

Surface Rendering: Radiance Constant along Ray
Only true in absence of participating media
No longer true for volumetric scattering
Often replace ray tracing with ray marching in medium

Volumetric Properties
BRDF replaced by phase function
Must consider absorption and scattering in medium

Mies House: Swimming Pool

Volumetric Scattering

Full Volumetric Rendering Formulation
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Volumetric Interactions

4 different processes affect radiance of a beam
Absorption

Out-Scattering (not used in IBR/NeRF)
Emission
In-Scattering (not used in IBR/NeRF)

Absorption

Transmittance and Opacity

dL(p,w) = —04(p) L(p,w) ds
dL(p,w)

T0.0) = —0,(p)ds

log L(p + sw,w) = — / o(p + dw,w)ds’ = —7(s)
0
L(p + sw,w) = e " I(p,w) = T(s) L(p,w)

Transmittance: 7'(s) = e ™(*)

Opacity: a(s) =1—1(s)

Absorption

L(p,w)

oa(p) )/

f—ds—

dL(p,w) = —04(p) L(p,w) ds

Absorption cross section: 0.(p)

H Probability of being absorbed per unit length
m Units: 1/distance

Transmittance

dL(p,w) = —04(p) L(p,w) ds

dL(p,w) X
Thw) ~ aa(p)ds

log L(p + sw,w) = 7/ oo(p+ s'w,w)ds’ = —7(s)
0

Optical distance (depth): 7(s) = / ‘ o.(p')ds’
0

p=p+sw
Homogeneous medium-constant 5,2 7(s) = g,

Out-Scattering

L(p,w) o)
os(p

f—ds—

dL(p,w) = —0s(p) L(p,w)ds

Scattering cross-section: o,

u Probability of being scattered per unit length




Extinction

Ray Marching for Transmittance

L(p,«
) ot(p)

f—ds—|

dL(p,w) = —o,(p) L(p,w) ds

Total cross section: o, = 0, + 0
o o

Albedo: W = — =

(o Oq + 05

Optical distance from absorption and scattering:

Emission

/ o(z + s'w)ds’
o

T(s) =™

Monte Carlo not necessary for 1D—can use a
Riemann sum:

s N
(5) ™ & Z oo(@i)

i+0.5
;=2 + N w

In-Scattering

L(x,m T) L+dL

—ds—]

dL(p,w) = 04(p)Le(p, w) ds

Direct lllumination in a Volume

Salp's) = 0. () [ 6’ ) La(p' ) 4/
JSs2

Can treat like direct
illumination at a surface

m Sample from phase
function’s distribution

= Sample from light source
distributions

m Weight using multiple
importance sampling

L@_@ﬁuv LrdL
o,(x) )k

\~—ds —-\

S(p.w) =04(p) /gz pw’ = w) L(p,w’) dw’

Phase function: p(w' — w)
Reciprocity: p(w' = w) = p(w = ')

Energy conservation: / p(W = w)do' =1
J 52

Direct lllumination in a Volume

Sa(p,w) = o4(p') / plw’ = w) La(p',w') dw’
52

N
. 1 ¢ Pwi = w) La(p',wi)
Estimator: o,(p')— ) ——————1—"
®)y Z: plwi)

Computing direct lighting, L.
can be expensive
H Not just a shadow ray-
need to compute
transmittance




Transmittance for Shadow Rays

Besides Monte Carlo, precomputed
transmittance can be faster for point,
distant lights

Deep Shadow Maps
[Lokovic & Veach

Adaptive Volumetric

Shadow Maps
[Salvi et al. 2010]

3D grid
[Kajiya and von Herzen 1984]

Single-Scattering

Single-Scattering

Minneart: Color and Light pbrt: Spot-Lit Ball
In The Open Air In The Fog

€5348b Lecture 17 Pat Hanrahan / Matt Pharr, Spring 2019
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Significant interest in deep learning
Successfully applied to analysis applications

Image Classification
[Krizhevsky et al. 2012]

Image Captioning
[Karpathy and Fei-Fei 2015]

Video Classification
[Karpathy et al. 2014]
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Translucency

¢ Translucency is a volumetric lighting effect with additional effects at the
surface (usually rough dielectric type interaction)

* These can be modeled through standard volumetric lighting techniques, or

can be optimized through some further methods designed specifically for

sub-surface scattering

| - Hand-Crafted - Learning ‘ DOg

Features System

Traditional Methods

| ) Deep Neural Network m) Dog

Deep Learning Methods




Efficient (can be implemented on GPUs)
Model the process systematically

Far less progresSffdrsSyintisesis applications
,,(p"‘

ul
14 [}

Filter

4

Use neural network to replace large N-d array

(r,g,b,0)

(%,y,2,6,$) III (r.g.b,0)

Fq

MLPs Toy problem: storing 2D image data

(r,g,b)

Usually we store an image as a
2D grid of RGB color values
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Preserve High-Frequency Features

Fourier Features Let Networks Learn High Frequency Functions in Low Dimensional Domains. Tancik et al. Neurips 20

53

50
Example mapping: “positional encoding”
v_.III_. y
sin(v), cos(v)
sin(2v), cos(2v)
sin(4v), cos(4v) _,III_, y
sin(2L1v), cos(2L 1)
52




