

1

Outline

- Will cover many preliminaries today briefly
 - Monte Carlo Integration
 - Path Tracing
 - Volumetric Rendering
 - Deep Learning: CNNs and MLPs
 - (consider vision course for multi-view geometry)
- To Do: Papers to present, etc

2

Motivation: Monte Carlo Integration

Rendering = integration

- Reflectance equation: Integrate over incident illumination
- Rendering equation: Integral equation

Many sophisticated shading effects involve integrals

- Antialiasing
- Soft shadows
- Indirect illumination
- Caustics

3

Example: Soft Shadows

$$E(x) = \int \frac{L_i(x, \omega) \cos \theta d\omega}{H^2}$$

Challenges

- Visibility and blockers
- Varying light distribution
- Complex source geometry

Source: Agrawala, Ramamoorthi, Heirich, Moll, 2000

4

Monte Carlo

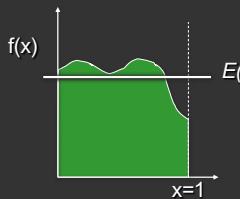
- Algorithms based on statistical sampling and random numbers
- Coined in the beginning of 1940s. Originally used for neutron transport, nuclear simulations
 - Von Neumann, Ulam, Metropolis, ...
- Canonical example: 1D integral done numerically
 - Choose a set of random points to evaluate function, and then average (expectation or statistical average)

5

Monte Carlo Algorithms

Advantages

- Robust for complex integrals in computer graphics (irregular domains, shadow discontinuities and so on)
- Efficient for high dimensional integrals (common in graphics: time, light source directions, and so on)
- Quite simple to implement
- Work for general scenes, surfaces
- Easy to reason about (but care taken re statistical bias)

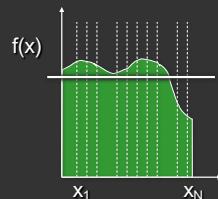

Disadvantages

- Noisy
- Slow (many samples needed for convergence)
- Not used if alternative analytic approaches exist (but those are rare)

6

Or we can average

$$\int_0^1 f(x) dx = E(f(x))$$



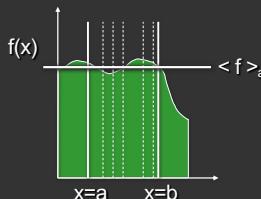
Slide courtesy of
Peter Shirley

7

Estimating the average

$$\int_0^1 f(x) dx = \frac{1}{N} \sum_{i=1}^N f(x_i)$$

Monte Carlo methods (random choose samples)
Advantages:

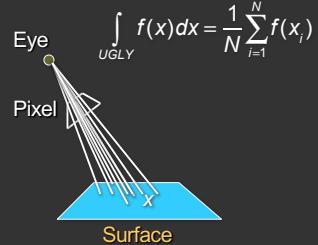

- Robust for discontinuities
- Converges reasonably for large dimensions
- Can handle complex geometry, integrals
- Relatively simple to implement, reason about

Slide courtesy of
Peter Shirley

8

Other Domains

$$\int_a^b f(x) dx = \frac{b-a}{N} \sum_{i=1}^N f(x_i)$$

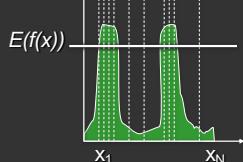

Slide courtesy of
Peter Shirley

9

Multidimensional Domains

Same ideas apply for integration over ...

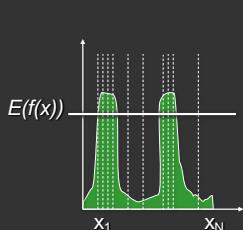
- Pixel areas
- Surfaces
- Projected areas
- Directions
- Camera apertures
- Time
- Paths


10

Importance Sampling

Put more samples where $f(x)$ is bigger

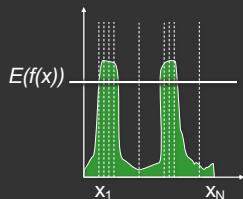
$$\int_{\Omega} f(x) dx = \frac{1}{N} \sum_{i=1}^N Y_i$$


$$Y_i = \frac{f(x_i)}{p(x_i)}$$

11

Importance Sampling

- This is still unbiased


$$\begin{aligned} E[Y_i] &= \int_{\Omega} Y_i(x) p(x) dx \\ &= \int_{\Omega} \frac{f(x)}{p(x)} p(x) dx \\ &= \int_{\Omega} f(x) dx \end{aligned}$$

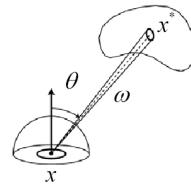
for all N

12

Importance Sampling

- Zero variance if $p(x) \sim f(x)$

$$p(x) = cf(x)$$


$$Y_i = \frac{f(x_i)}{p(x_i)} = \frac{1}{c}$$

$$\text{Var}(Y) = 0$$

Less variance with better importance sampling

Direct Lighting – Directional Sampling

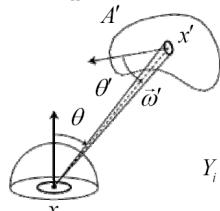
$$E(x) = \int_{\Omega} L(x, \omega) \cos \theta d\omega$$

Ray intersection $x^*(x, \omega)$

Sample ω uniformly by Ω

$$Y_i = L(x^*(x, \omega_i), -\omega_i) \cos \theta / 2\pi$$

CS348B Lecture 6


Pat Hanrahan, Spring 2004

13

14

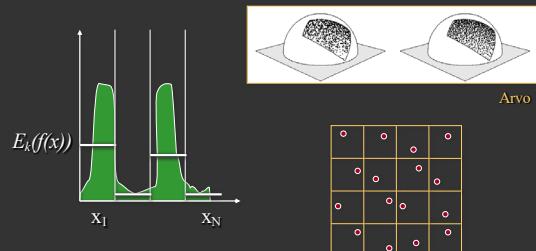
Direct Lighting – Area Sampling

$$E(x) = \int_{\Omega} L_i(x, \omega) \cos \theta d\omega = \int_{A'} L_o(x', \omega') V(x, x') \frac{\cos \theta \cos \theta'}{|x - x'|^2} dA'$$

Ray direction $\omega' = x - x'$

Sample x' uniformly by A'

$$Y_i = L_o(x'_i, \omega'_i) V(x, x'_i) \frac{\cos \theta \cos \theta'_i}{|x - x'_i|^2} A$$

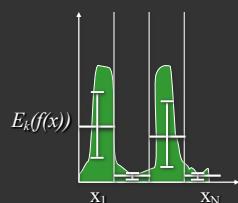

$$V(x, x') = \begin{cases} 0 & \text{visible} \\ 1 & \text{visible} \end{cases}$$

CS348B Lecture 6

Pat Hanrahan, Spring 2004

Stratified Sampling

- Estimate subdomains separately


Arvo

15

16

Stratified Sampling

- Less overall variance if less variance in subdomains

$$\text{Var}[F_N] = \frac{1}{N^2} \sum_{i=1}^M N_i \text{Var}[F_i]$$

More Information

- Veach PhD thesis chapter (linked to from website)
- Course Notes (links from website)
 - Mathematical Models for Computer Graphics, Stanford, Fall 1997
 - State of the Art in Monte Carlo Methods for Realistic Image Synthesis, Course 29, SIGGRAPH 2001

17

18

Motivation: Monte Carlo Path Tracing

- Core method to solve rendering equation
- Widely used production+realtime (with denoising)
- General solution to rendering, global illumination
- Suitable for a variety of general scenes
- Based on Monte Carlo methods
- Enumerate all paths of light transport

19

From UCB class many years ago

20

Simplest Monte Carlo Path Tracer

For each pixel, cast n samples and average

- Choose a ray with $p=\text{camera}$, $d=(\theta, \phi)$ within pixel
- Pixel color $+= (1/n) * \text{TracePath}(p, d)$

`TracePath(p, d)` returns (r, g, b) [and calls itself recursively]:

- Trace ray (p, d) to find nearest intersection p'
- Select with probability (say) 50%:
 - Emitted: $\text{return } 2 * (\text{Le}_{\text{red}}, \text{Le}_{\text{green}}, \text{Le}_{\text{blue}}) // 2 = 1/(50\%)$
 - Reflected: $\text{Weight = } 1/\text{probability}$
Remember: unbiased requires having $f(x) / p(x)$
 $\text{return } 2 * f(d \rightarrow d') * (n \cdot d') * \text{TracePath}(p', d')$

21

Simplest Monte Carlo Path Tracer

For each pixel, cast n samples and average

- Choose a ray with $p=\text{camera}$, $d=(\theta, \phi)$ within pixel
- Pixel color $+= (1/n) * \text{TracePath}(p, d)$

`TracePath(p, d)` returns (r, g, b) [and calls itself recursively]:

- Trace ray (p, d) to find nearest intersection p'
- Select with probability (say) 50%:
 - Emitted: $\text{return } 2 * (\text{Le}_{\text{red}}, \text{Le}_{\text{green}}, \text{Le}_{\text{blue}}) // 2 = 1/(50\%)$
 - Reflected: $\text{Path terminated when Emission evaluated}$
 $\text{generate ray in random direction } d'$
 $\text{return } 2 * f(d \rightarrow d') * (n \cdot d') * \text{TracePath}(p', d')$

22

Path Tracing: Include Direct Lighting

```
Step 1. Choose a camera ray r given the
(x,y,u,v,t) sample
weight = 1;
L = 0

Step 2. Find ray-surface intersection
Step 3.
  L += weight * Lr(light sources)
  weight *= reflectance(r)
  Choose new ray r' ~ BRDF pdf(r)

  Go to Step 2.
```

CS348B Lecture 14

Pat Hanrahan, Spring 2009

23

Stratified Sampling

Stratified sampling like jittered sampling

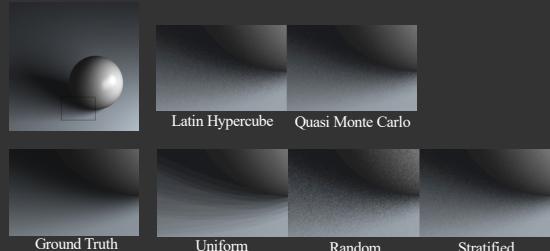
Allocate samples per region

$$N = \sum_{i=1}^m N_i \quad F_N = \frac{1}{N} \sum_{i=1}^m N_i F_i$$

New variance

$$V[F_N] = \frac{1}{N^2} \sum_{i=1}^m N_i V[F_i]$$

Thus, if the variance in regions is less than the overall variance, there will be a reduction in resulting variance


For example: An edge through a pixel

$$V[F_N] = \frac{1}{N^2} \sum_{i=1}^m V[F_i] = \frac{V[F_i]}{N^{1.5}}$$

Pat Hanrahan, Spring 2002

24

Comparison of simple patterns

16 samples for area light, 4 samples per pixel, total 64 samples

If interested, see my recent paper "A Theory of Monte Carlo Visibility Sampling"
Figures courtesy Tianyu Liu

25

Mies House: Swimming Pool

26

Optional Path Tracing Assignment

- If you have not taken CSE 168 or done path tracer
- Follow CSE 168 on edX or edX edge (ask me for access if needed), build path tracer
- Includes guide for raytracing if not already done
- For your benefit only, optional do not turn in (since many people wanted it for knowledge)
- You can use it in final project, but don't need to, and may be better off using off-the-shelf renderer
- If you do use it in final project, document it
- Again, it is optional and not directly graded

27

Volumetric Scattering


28

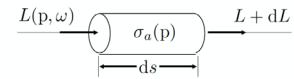
Volumetric Rendering

- Participating Media (light participates via scattering)
 - Volumetric phenomena like clouds, smoke, fire
 - Subsurface scattering, translucency (wax, human skin)
 - Medium is often known as a participating medium
 - **For IBR/NeRF, only absorption, emission no scattering**
- Surface Rendering: Radiance Constant along Ray
 - Only true in absence of participating media
 - **No longer true for volumetric scattering**
 - Often replace ray tracing with ray marching in medium
- Volumetric Properties
 - BRDF replaced by phase function
 - Must consider absorption and scattering in medium

29

Full Volumetric Rendering Formulation

Slide credit: Novak et al 2018, Monte Carlo methods for physically based volume rendering


30

Volumetric Interactions

- 4 different processes affect radiance of a beam
 - Absorption
 - Out-Scattering (not used in IBR/NeRF)
 - Emission
 - In-Scattering (not used in IBR/NeRF)

31

Absorption

$$dL(p, \omega) = -\sigma_a(p) L(p, \omega) ds$$

Absorption cross section: $\sigma_a(p)$

- Probability of being absorbed per unit length
- Units: 1/distance

32

Absorption

33

Transmittance

$$dL(p, \omega) = -\sigma_a(p) L(p, \omega) ds$$

$$\frac{dL(p, \omega)}{L(p, \omega)} = -\sigma_a(p) ds$$

$$\log L(p + s\omega, \omega) = - \int_0^s \sigma_a(p + s'\omega, \omega) ds' = -\tau(s)$$

$$\textbf{Optical distance (depth): } \tau(s) = \int_0^s \sigma_a(p') ds' \\ p' = p + s'\omega$$

$$\textbf{Homogeneous medium-constant } \sigma_a: \tau(s) = \sigma_a s$$

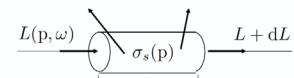
34

Transmittance and Opacity

$$dL(p, \omega) = -\sigma_a(p) L(p, \omega) ds$$

$$\frac{dL(p, \omega)}{L(p, \omega)} = -\sigma_a(p) ds$$

$$\log L(p + s\omega, \omega) = - \int_0^s \sigma_a(p + s'\omega, \omega) ds' = -\tau(s)$$

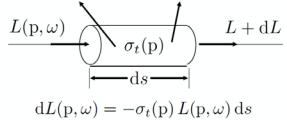

$$L(p + s\omega, \omega) = e^{-\tau(s)} L(p, \omega) = T(s) L(p, \omega)$$

Transmittance: $T(s) = e^{-\tau(s)}$

Opacity: $\alpha(s) = 1 - T(s)$

35

Out-Scattering


$$dL(p, \omega) = -\sigma_s(p) L(p, \omega) ds$$

Scattering cross-section: σ_s

- Probability of being scattered per unit length

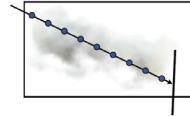
36

Extinction

$$dL(p, \omega) = -\sigma_t(p) L(p, \omega) ds$$

Total cross section: $\sigma_t = \sigma_a + \sigma_s$

$$\text{Albedo: } W = \frac{\sigma_s}{\sigma_t} = \frac{\sigma_s}{\sigma_a + \sigma_s}$$

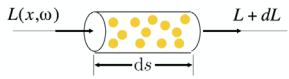

Optical distance from absorption and scattering:

$$\tau(s) = \int_0^s \sigma_t(p') ds'$$

37

Ray Marching for Transmittance

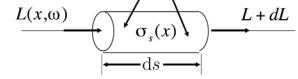
$$\begin{aligned} \tau(s) &= \int_0^s \sigma_t(x + s' \omega) ds' \\ T(s) &= e^{-\tau(s)} \end{aligned}$$


Monte Carlo not necessary for 1D—can use a Riemann sum:

$$\tau(s) \approx \frac{s}{N} \sum_i^N \sigma_t(x_i)$$

$$x_i = x + \frac{i + 0.5}{N} \omega$$

38


Emission

$$dL(p, \omega) = \sigma_a(p) L_e(p, \omega) ds$$

39

In-Scattering

$$S(p, \omega) = \sigma_s(p) \int_{S^2} p(\omega' \rightarrow \omega) L(p, \omega') d\omega'$$

Phase function: $p(\omega' \rightarrow \omega)$

Reciprocity: $p(\omega' \rightarrow \omega) = p(\omega \rightarrow \omega')$

Energy conservation: $\int_{S^2} p(\omega' \rightarrow \omega) d\omega' = 1$

40

Direct Illumination in a Volume

$$S_d(p', \omega) = \sigma_s(p') \int_{S^2} p(\omega' \rightarrow \omega) L_d(p', \omega') d\omega'$$

Can treat like direct illumination at a surface

- Sample from phase function's distribution
- Sample from light source distributions
- Weight using multiple importance sampling

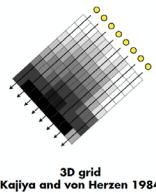
41

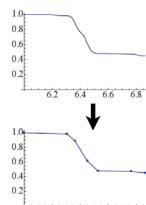
Direct Illumination in a Volume

$$S_d(p', \omega) = \sigma_s(p') \int_{S^2} p(\omega' \rightarrow \omega) L_d(p', \omega') d\omega'$$

$$\text{Estimator: } \sigma_s(p') \frac{1}{N} \sum_i^N \frac{p(\omega_i \rightarrow \omega) L_d(p', \omega_i)}{p(\omega_i)}$$

Computing direct lighting, L_d can be expensive


- Not just a shadow ray—need to compute transmittance


42

Transmittance for Shadow Rays

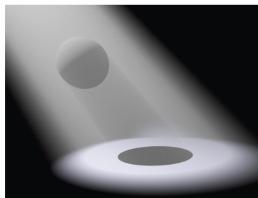
Besides Monte Carlo, precomputed transmittance can be faster for point, distant lights

3D grid
[Kajiya and von Herzen 1984]

Deep Shadow Maps
[Lokovic & Veach 2000]
Adaptive Volumetric Shadow Maps
[Salvi et al. 2010]

43

Single-Scattering



44

Single-Scattering

Minnaert: Color and Light
In The Open Air

pbrt: Spot-Lit Ball
In The Fog

CS348b Lecture 17

Pat Hanrahan / Matt Pharr, Spring 2019

45

Translucency

- Translucency is a volumetric lighting effect with additional effects at the surface (usually rough dielectric type interaction)
- These can be modeled through standard volumetric lighting techniques, or can be optimized through some further methods designed specifically for sub-surface scattering

46

Deep learning

- Significant interest in deep learning
- Successfully applied to analysis applications

Image Classification
[Krizhevsky et al. 2012]

Object Detection
[Ren et al. 2015]

Video Classification
[Karpathy et al. 2014]

Image Captioning
[Karpathy and Fei-Fei 2015]

UC San Diego

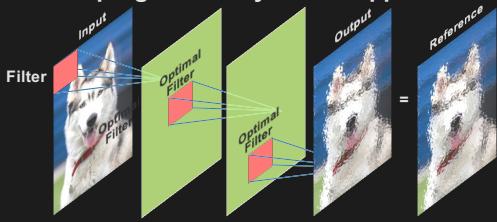
47

Analysis applications

Traditional Methods

Deep Learning Methods

UC San Diego


Nima K. Kalantari

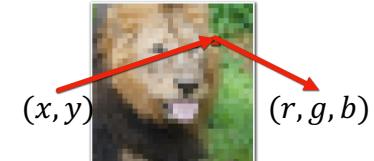
Utilizing Physics in Deep Learning for Graphics

48

Convolutional neural network (CNN)

- Efficient (can be implemented on GPUs)
- Model the process systematically
- Far less progress for synthesis applications

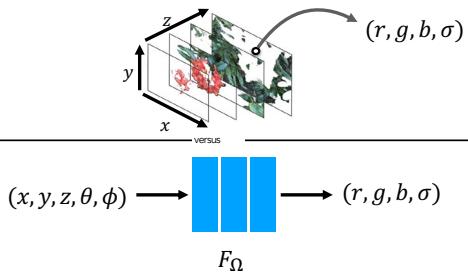
UC San Diego

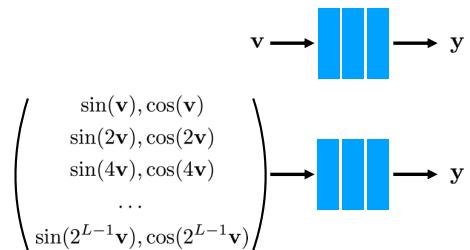

Nima K. Kalantari

UC San Diego

Utilizing Physics in Deep Learning for Graphics

49


MLPs Toy problem: storing 2D image data


Usually we store an image as a 2D grid of RGB color values

50

Use neural network to replace large N-d array

Example mapping: "positional encoding"

52

Preserve High-Frequency Features

Fourier Features Let Networks Learn High Frequency Functions in Low Dimensional Domains. Tancik et al. Neurips 20

53