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Image-Based Rendering

CSE 274, Lecture 2: Basics and Background
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Motivation: BRDFs, Ray Tracing, ...
§ Basics of Illumination, Reflection 

§ Formal radiometric analysis (not ad-hoc)

§ Ray Tracing

§ Reflection Equation and Rendering Equation

§ Monte Carlo Rendering next lecture

§ Appreciate formal analysis in a graduate course, 
even if not absolutely essential in practice

§ Please e-mail re papers you want to present (by Th)
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Radiometry

§ Physical measurement of electromagnetic energy

§ Measure spatial (and angular) properties of light 
§ Radiance, Irradiance
§ Reflection functions: Bi-Directional Reflectance 

Distribution Function or BRDF
§ Reflection Equation
§ Simple BRDF models
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Radiance

• Power per unit projected area perpendicular 
to the ray per unit solid angle in the direction 
of the ray 

• Symbol: L(x,ω) (W/m2 sr)

• Flux given by                                                                  
dΦ = L(x,ω) cos θ dω dA 
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Radiance properties
• Radiance constant as propagates along ray

– Derived from conservation of flux 
– Fundamental in Light Transport. 
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Radiance properties
• Sensor response proportional to  radiance  

(constant of proportionality is throughput)
– Far away surface: See more, but subtends 

smaller angle
– Wall equally bright across viewing distances

Consequences
– Radiance associated with rays in a ray tracer
– Other radiometric quants derived from radiance

13

Irradiance, Radiosity
• Irradiance E is radiant power per unit area
• Integrate incoming radiance over 

hemisphere
– Projected solid angle (cos θ dω)
– Uniform illumination:                                                          

Irradiance = π  [CW 24,25]
– Units: W/m2

• Radiant Exitance (radiosity) 
– Power per unit area leaving                                     

surface (like irradiance)
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Brdf Viewer plots 

Diffuse

bv written by Szymon Rusinkiewicz

Torrance-Sparrow
Anisotropic
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Torrance-Sparrow

  
f = F(θ i)G(ω i,ω r)D(θ h)

4cos(θ i)cos(θ r)

Fresnel term:
allows for wavelength 

dependency

Geometric Attenuation:
reduces the output based on the 

amount of shadowing or masking 
that occurs.

Distribution:
distribution function 

determines what 
percentage of 

microfacets are 
oriented to reflect in 
the viewer direction.

How much of the 
macroscopic surface 
is visible to the light 

source

How much of the 
macroscopic 

surface is visible 
to the viewer
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Motivation: BRDFs, Ray Tracing, ...
§ Basics of Illumination, Reflection 

§ Formal radiometric analysis (not ad-hoc)

§ Ray Tracing

§ Reflection Equation and Rendering Equation

§ Monte Carlo Rendering next lecture

§ Appreciate formal analysis in a graduate course, 
even if not absolutely essential in practice

§ Please e-mail re papers you want to present (by Th)
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Ray Tracing History
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From SIGGRAPH 18

Real Photo: Instructor and Turner Whitted at SIGGRAPH 18
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Ray Casting

Virtual Viewpoint

Virtual Screen Objects

Ray misses all objects: Pixel colored blackRay intersects object: shade using color, lights, materialsMultiple intersections: Use closest one (as does OpenGL)
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Outline in Code
Image Raytrace (Camera cam, Scene scene, int width, int height)
{
 Image image = new Image (width, height) ;
 for (int i = 0 ; i < height ; i++) 
  for (int j = 0 ; j < width ; j++) {
   Ray ray = RayThruPixel (cam, i, j) ;
   Intersection hit = Intersect (ray, scene) ;
   image[i][j] = FindColor (hit) ;
   }
 return image ;
}
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Ray/Object Intersections

§ Heart of Ray Tracer
§ One of the main initial research areas
§ Optimized routines for wide variety of primitives

§ Various types of info
§ Shadow rays: Intersection/No Intersection
§ Primary rays: Point of intersection, material, normals
§ Texture coordinates

§ Work out examples
§ Triangle, sphere, polygon, general implicit surface
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Ray-Sphere Intersection

   

ray ≡

P =


P0 +


P1t

sphere ≡ (

P −

C) i (


P −

C)− r 2 = 0

C

P0
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Ray-Sphere Intersection

   

ray ≡

P =


P0 +


P1t

sphere ≡ (

P −

C) i (


P −

C)− r 2 = 0

Substitute

   

ray ≡

P =


P0 +


P1t

sphere ≡ (

P0 +


P1t −


C) i (


P0 +


P1t −


C)− r 2 = 0

Simplify

   t
2(

P1 i

P1)+ 2t


P1 i (


P0 −


C)+ (


P0 −


C) i (


P0 −


C)− r 2 = 0
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Ray-Sphere Intersection

   t
2(

P1 i

P1)+ 2t


P1 i (


P0 −


C)+ (


P0 −


C) i (


P0 −


C)− r 2 = 0

Solve quadratic equations for t

§ 2 real positive roots: pick smaller root

§ Both roots same: tangent to sphere

§ One positive, one negative root: ray                                    
origin inside sphere (pick + root)

§ Complex roots: no intersection (check                               
discriminant of equation first)
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Ray-Sphere Intersection

§ Intersection point:  

§ Normal (for sphere, this is same as coordinates 
in sphere frame of reference, useful other tasks) 

   ray ≡

P =


P0 +


P1t

  
normal =


P −

C


P −

C
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Ray-Triangle Intersection

§ One approach: Ray-Plane intersection, then 
check if inside triangle

§ Plane equation:  
A

B

C

  
n = (C − A)× (B − A)

(C − A)× (B − A)

   plane ≡

P i

n −

A i

n = 0
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Ray-Triangle Intersection

§ One approach: Ray-Plane intersection, then 
check if inside triangle

§ Plane equation:  

§ Combine with ray equation: 

A
B

C

  
n = (C − A)× (B − A)

(C − A)× (B − A)

   plane ≡

P i

n −

A i

n = 0

   

ray ≡

P =


P0 +


P1t

(

P0 +


P1t) i


n =

A i

n    

t =

A i

n −

P0 i

n

P1 i

n
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Ray inside Triangle
§ Once intersect with plane, still need to find if in 

triangle

§ Many possibilities for triangles, general polygons 
(point in polygon tests)

§ We find parametrically [barycentric coordinates].  Also 
useful for other applications (texture mapping)

A
B

C

P
α β

γ   

P = αA+ βB + γC
α ≥ 0,β ≥ 0,γ ≥ 0
α + β + γ = 1
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Ray inside Triangle

A
B

C

P
α β

γ

  

P = αA+ βB + γC
α ≥ 0,β ≥ 0,γ ≥ 0
α + β + γ = 1

  P − A = β(B − A)+ γ (C − A)

 

0 ≤ β ≤1 , 0 ≤ γ ≤1
β + γ ≤1
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Ray Scene Intersection
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Shadows

Virtual Viewpoint

Virtual Screen Objects

Light Source

Shadow ray to light is unblocked: object visibleShadow ray to light is blocked: object in shadow
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Shadows: Numerical Issues
•  Numerical inaccuracy may cause intersection to be 
    below surface  (effect exaggerated in figure)

•  Causing surface to incorrectly shadow itself
•  Move a little towards light before shooting shadow ray
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Mirror Reflections/Refractions

Virtual Viewpoint

Virtual Screen Objects
Generate reflected ray in mirror direction, 
Get reflections and refractions of objects
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Recursive Ray Tracing

For each pixel
§ Trace Primary Eye Ray, find intersection

§ Trace Secondary Shadow Ray(s) to all light(s)
§ Color  = Visible ? Illumination Model : 0 ;

§ Trace Reflected Ray
§ Color += reflectivity * Color of reflected ray

§ Need acceleration structure for performance
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Interactive Raytracing

§ Ray tracing historically slow

§ Now viable alternative for complex scenes 
§ Key is sublinear complexity with acceleration; 

need not process all triangles in scene

§ Allows many effects hard in hardware
§ Today graphics hardware and software (NVIDIA 

Optix 6, RTX chips 10G+ rays per second).Video
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Motivation: BRDFs, Ray Tracing, ...
§ Basics of Illumination, Reflection 

§ Formal radiometric analysis (not ad-hoc)

§ Ray Tracing

§ Reflection Equation and Rendering Equation

§ Monte Carlo Rendering next lecture

§ Appreciate formal analysis in a graduate course, 
even if not absolutely essential in practice

§ Please e-mail re papers you want to present (by Th)
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Reflection Equation

 ω i !!

!

   Lr (x,ω r ) = Le(x,ω r )+ Li (x,ω i )f (x,ω i ,ω r )(ω i i n)
Reflected Light
(Output Image)

Emission Incident 
Light (from
light source)

BRDF Cosine of 
Incident angle
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Reflection Equation

 ω i !!

!

   Lr (x,ω r ) = Le(x,ω r )+∑ Li (x,ω i )f (x,ω i ,ω r )(ω i i n)
Reflected Light
(Output Image)

Emission Incident 
Light (from
light source)

BRDF Cosine of 
Incident angle

Sum over all light sources
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Reflection Equation

 ω i !!

!

! " # ! " # ! " # ! " " # $%&! ! " ! # # # ! ##$ % $ % $ % &' %! ! ! !! ! "
#

= + $
Reflected Light
(Output Image)

Emission Incident 
Light (from
light source)

BRDF Cosine of 
Incident angle

Replace sum with integral

!"!
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Environment Maps
§ Light as a function of direction, from entire environment

§ Captured by photographing a chrome steel or mirror sphere

§ Accurate only for one point, but distant lighting same at other 
scene locations (typically use only one env. map)

Blinn and Newell 1976, Miller and Hoffman, 1984
Later, Greene 86, Cabral et al. 87
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Irradiance Environment Maps

Incident Radiance
(Illumination Environment Map)

Irradiance Environment Map

R N
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Illumination Models
Local Illumination

§ Light directly from light sources to surface
§ No shadows (cast shadows are a global effect)

Global Illumination: multiple bounces (indirect light)
§ Hard and soft shadows
§ Reflections/refractions (already seen in ray tracing)
§ Diffuse and glossy interreflections (radiosity, caustics) 

Some images courtesy Henrik Wann Jensen
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The Challenge

§ Computing reflectance equation requires 
knowing the incoming radiance from surfaces

§ But determining incoming radiance requires 
knowing the reflected radiance from surfaces

! " # ! " # ! " # ! " " # $%&! ! " ! # # # ! ##$ % $ % $ % & % '! ! ! ! ! " !
#

= + $
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Rendering Equation

 ω i !!

!

  
Lr (x,ω r ) = Le(x,ω r )+

Ω
∫ Lr ( ′x ,−ω i )f (x,ω i ,ω r ) cosθ idω i

Reflected Light
(Output Image)

Emission Reflected
Light

BRDF Cosine of 
Incident angle

!"!

Surfaces (interreflection)

!"
 ′x

UNKNOWN UNKNOWNKNOWN KNOWN KNOWN
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Outline

§ Reflectance Equation 

§ Global Illumination

§ Rendering Equation

§ As a general Integral Equation and Operator

§ Approximations (Ray Tracing, Radiosity)

§ Surface Parameterization (Standard Form)
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Rendering Equation (Kajiya 86)
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Rendering Equation as Integral Equation

Reflected Light
(Output Image)

Emission Reflected
Light

BRDF Cosine of 
Incident angle

UNKNOWN UNKNOWNKNOWN KNOWN KNOWN

  
l(u) = e(u)+ l(v)∫ K(u,v)dv

Is a Fredholm Integral Equation of second kind 
[extensively studied numerically] with canonical form

  
Lr (x,ω r ) = Le(x,ω r )+

Ω
∫ Lr ( ′x ,−ω i ) f (x,ω i ,ω r ) cosθ idω i

Kernel of equation
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Linear Operator Theory
§ Linear operators act on functions like matrices act 

on vectors or discrete representations 

§ Basic linearity relations hold

§ Examples include integration and differentiation

( )! " ! "! " # $ "= !
M is a linear operator.
f and h are functions of u

( ) ( ) ( )! "# $% " ! # $ ! %+ = +! ! !

a and b are scalars
f and g are functions 

( )

( )

! " ! # " ! "

! " ! "

! " # $ # % " % &%

"D " # #
#

=

!
=
!

"!

!
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Linear Operator Equation

! " ! "! " ! # "! " # " $ " %&! & &= + !
Kernel of equation
Light Transport Operator

 L = E +KL
Can be discretized to a simple matrix equation
[or system of simultaneous linear equations] 
(L, E are vectors, K is the light transport matrix)
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Solving the Rendering Equation
§ Too hard for analytic solution, numerical methods

§ Approximations, that compute different terms, 
accuracies of the rendering equation

§ Two basic approaches are ray tracing, radiosity.  More 
formally, Monte Carlo and Finite Element.  Today 
Monte Carlo path tracing is core rendering method

§ Monte Carlo techniques sample light paths, form 
statistical estimate (example, path tracing)

§ Finite Element methods discretize to matrix equation
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Solving the Rendering Equation
§ General linear operator solution.  Within raytracing:
§ General class numerical Monte Carlo methods
§ Approximate set of all paths of light in scene

 L = E +KL
 IL −KL = E
  (I −K)L = E

  L = (I −K)−1E
Binomial Theorem

  L = (I +K +K 2 +K 3 + ...)E
  L = E +KE +K 2E +K 3E + ...

Term n corresponds to n bounces of light
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Ray Tracing

  L = E +KE +K 2E +K 3E + ...
Emission directly
From light sources

Direct Illumination
on surfaces

Global Illumination
(One bounce indirect)
[Mirrors, Refraction]

(Two bounce indirect) 
[Caustics etc]

58

Ray Tracing

  L = E +KE +K 2E +K 3E + ...
Emission directly
From light sources

Direct Illumination
on surfaces

Global Illumination
(One bounce indirect)
[Mirrors, Refraction]

(Two bounce indirect) 
[Caustics etc]

OpenGL Shading
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Outline

§ Reflectance Equation (review)

§ Global Illumination

§ Rendering Equation

§ As a general Integral Equation and Operator

§ Approximations (Ray Tracing, Radiosity)

§ Surface Parameterization (Standard Form)
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Rendering Equation

!! !!

!

! " # ! " " # $! " # ! " # %&! " # "" " # #" #$ % $ %$ % & % '! ! !! " !!
#

= + $ %&
Reflected Light
(Output Image)

Emission Reflected
Light

BRDF Cosine of 
Incident angle

!"!

Surfaces (interreflection)

!"
!!

UNKNOWN UNKNOWNKNOWN KNOWN KNOWN

! " "! "#!
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Change of Variables

    Integral over angles sometimes insufficient.  Write integral in 
terms of surface radiance only (change of variables)

! " # ! " # ! " # ! " " # $%&! ! " ! ! # # ! # #$ % $ % $ % &' %! ! ! ! ! !"
#

$= + %&

!

!!

!"!

!!

!!"

!!

!!

!"!
!

"#$
% %

!
"
#A#
% %

!"
#

=
#$
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Change of Variables

    Integral over angles sometimes insufficient.  Write integral in 
terms of surface radiance only (change of variables)

    

! " # ! " # ! " # ! " " # $%&! ! " ! ! # # ! # #$ % $ % $ % &' %! ! ! ! ! !"
#

$= + %&

!

"#$
% %

!
"
#A#
% %

!"
#

=
#$

!""# $%&%'"(
)

#*+#

,+& ,+&- . / - . / - . / - . . /
0 0

! "
# # A # # ! ! #

% %

& % & % & % ' %
%

(
%

)! !
" " " " "

#

#= + $
#$

#%

!

"#$ "#$% & ' % & '
( (

! "# $ $ # $ $
$ $
! !" "= =

"#
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Rendering Equation: Standard Form

    Integral over angles sometimes insufficient.  Write integral in 
terms of surface radiance only (change of variables)

    Domain integral awkward.  Introduce binary visibility fn V

! " # ! " # ! " # ! " " # $%&! ! " ! ! # # ! # #$ % $ % $ % &' %! ! ! ! ! !"
#

$= + %&

!

"#$
% %

!
"
#A#
% %

!"
#

=
#$

!""# $%&%'"(
)

#*+#

,+& ,+&- . / - . / - . / - . . /
0 0

! "
# # A # # ! ! #

% %

& % & % & % ' %
%

(
%

)! !
" " " " "

#

#= + $
#$

#%

!

"#$ "#$% & ' % & '
( (

! "# $ $ # $ $
$ $
! !" "= =

"#

!""#$%&'!()$#

* + , * + , * + , * + + , * + , * + ,! ! " ! !
#

A A !% # % # % # & # ' # ()# # G #! ! ! ! !
"

" " "= + # "$

Same as equation 2.52 Cohen Wallace. It swaps primed
And unprimed, omits angular args of BRDF, - sign.
Same as equation above 19.3 in Shirley, except he has 
no emission, slightly diff. notation
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