

Image-Based Rendering

CSE 274, Lecture 10: Beyond NeRFs

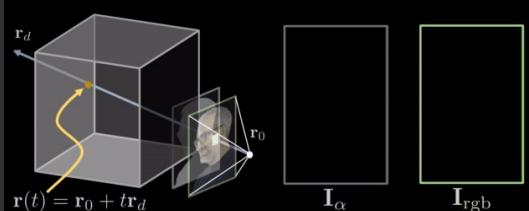
Ravi Ramamoorthi

<http://www.cs.ucsd.edu/~ravir>

1

To Do

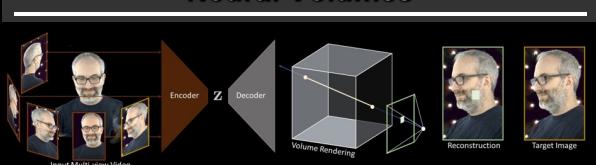
2


Motivation

- Neural Radiance Fields key for view synthesis
- Tons of follow-on work, best papers at almost every subsequent vision/graphics/learning conference
- We talk at a high level about a few key developments
 - Antialiasing (MIPNerf etc.)
 - Feature Grids: Triplanes (EG3D), TensoRF
 - InstantNGP
 - Gaussian Splatting
 - Single Image methods and GenAI
 - Stochastic Geometry Fields
- Only small subset, thousands of papers each year

3

Neural Volumes


- Neural volumes, differentiable ray marching
- Volume explicit voxel grid, using CNN
 - Considered MLPs like NeRF but w/o positional encoding

Lombardi et al. SIGGRAPH 2019
Seminal paper volume rendering, points to NeRFs, doesn't get due recognition always

4

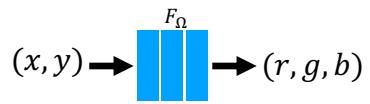
Neural Volumes

- Many Key Ideas
 - *Volumetric not surface representation (as regular grid)*
 - Neural network representation of volume
 - Directly optimize loss with respect to reconstruction
 - Differentiable Ray Marching
- Subsequent work retains notions above (note: gaussian splatting does not use a neural network)

5

Neural Radiance Fields (NeRF)

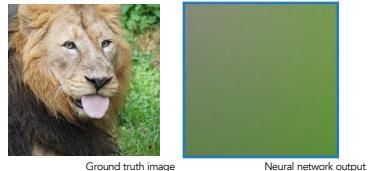
6


Mildenhall, Srinivasan, Tancik, Barron, Ramamoorthi, Ng 20

Toy problem: storing 2D image data

Usually we store an image as a 2D grid of RGB color values

Toy problem: storing 2D image data



What if we train a simple fully-connected network (MLP) to do this instead?

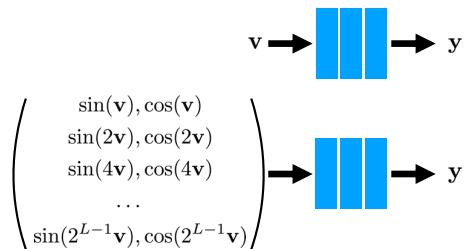
7

8

Naive approach fails!

Problem:

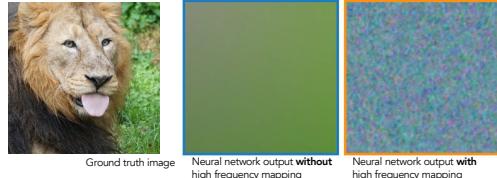
"Standard" coordinate-based MLPs cannot represent high frequency functions


9

10

Solution:

Pass input coordinates through a high frequency mapping first


Example mapping: "positional encoding"

11

12

Problem solved... but why?

13

Fourier Features Let Networks Learn High Frequency Functions in Low Dimensional Domains

Tancik et al., NeurIPS 2020

14

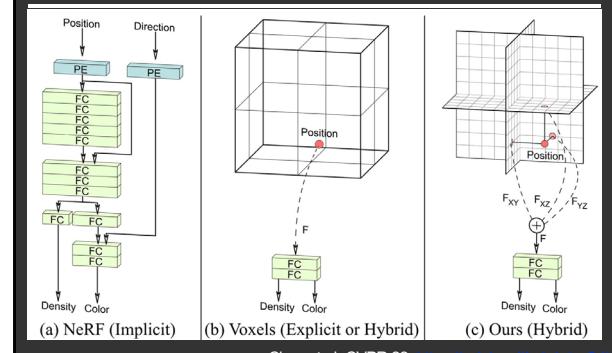
Use neural network to replace large N-d array

15

Mip-NeRF

- https://www.youtube.com/watch?v=EpH175PY1_A0&t=11s
- Subsequent work: MipNeRF360 (CVPR 22); Tri-MipRF, ZipNeRF (ICCV 23); Rip-NeRF (SIG 24)

Barron et al. ICCV 2021

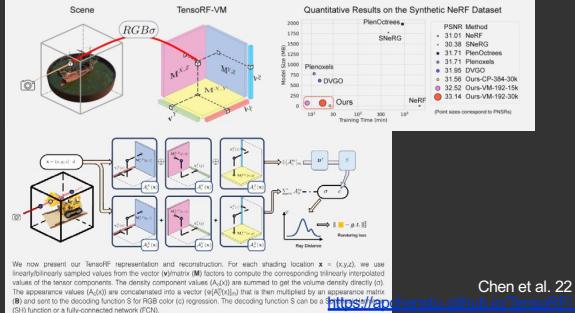

16

Feature Fields

- Neural Volumes and NeRFs are two extremes
 - Purely explicit voxel grid vs compact neural (large) MLP
- Hybrid representations: Feature Grids
 - Coarse voxel grid of abstract features
 - Smaller (often just 2-layer) MLP to decode features to standard volume density and color as in NeRF
 - No positional encoding needed any more, only features
- Memory-Time tradeoff: more memory for faster computation time and training
- Explosion in types of feature grids (and some revisiting PRT and early light transport)
- Gaussian splatting uses gaussians, no MI P at all

17

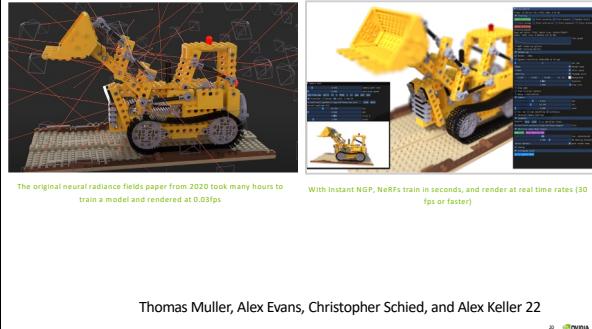
TriPlanes EG3D



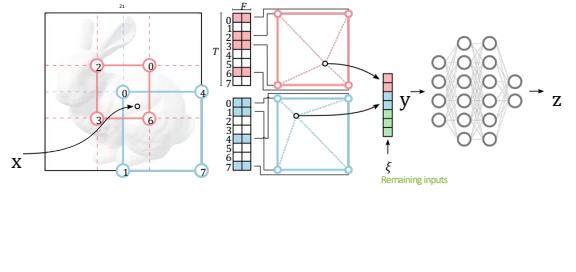
Chan et al. CVPR 22. <https://nvlabs.github.io/eg3d/>

18

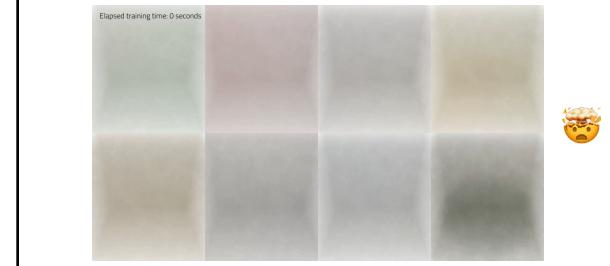
Tensorial Radiance Fields


- Tensor factorization of feature grid into lower-dimensional 2D components (Triplanes is also a 2D factorization)

19


2022: NVIDIA Instant NGP – Real Time NeRFs

TIME Magazine Named NVIDIA Instant NeRF a Best Invention of 2022


20

Multiresolution Hash Encoding

21

Reducing compute-per-sample: learned hash grids (Instant NGP)

22

3D Gaussian Splatting for Radiance Fields

23

NeRFs for Digital Twins

NeRFs for Landscapes

Instant NeRF (@jonstephens85 on Twitter); slide courtesy Thomas Muller

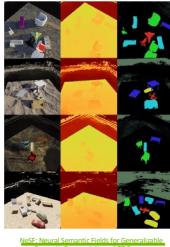
25

NeRFs for Furry Volumes

Instant NeRF (@vibrantnebula on Twitter); slide courtesy Thomas Muller

26

NeRFs applied to almost every vision/graphics++ problem

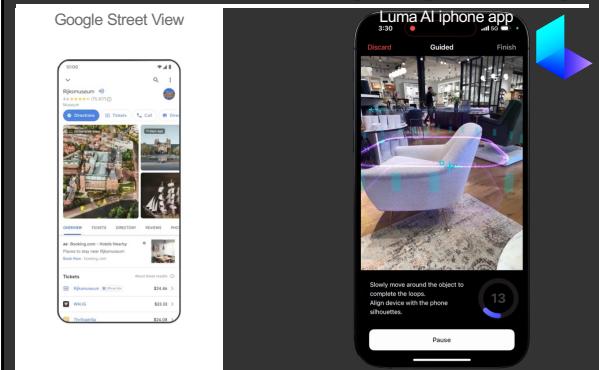

Over 1400 research papers related to NeRFs in 2022 alone

Decomposing NeRFs for Editing via Feature and Extension.
Kobayashi et al. NeurIPS 2022

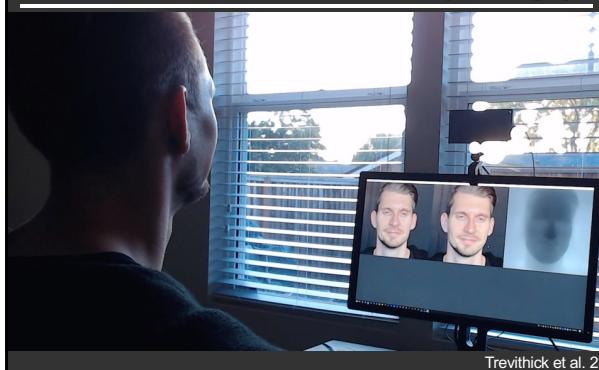
NeRF++ Neural Radiance Fields with Reflections.
Guo et al. CVPR 2022

NeSF: Neural Semantic Fields for Generalizable
Semantic Reconstruction of 3D Scenes.
Vora, Radwan, et al. TMLR 2022

27


NeRFs + Language Models

Text-based editing with large language models (Haque et al.)


28

NeRFs in Production (Google, Luma)

29

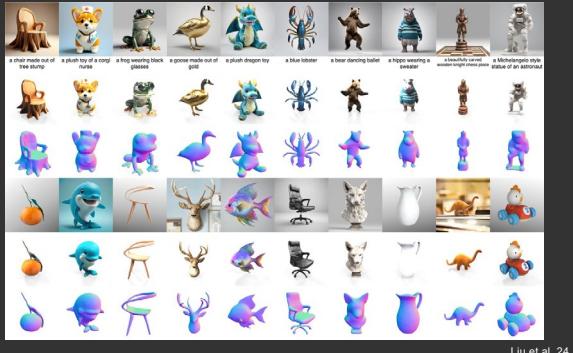
Real-Time Radiance Fields (1 image)

Trevithick et al. 23

30

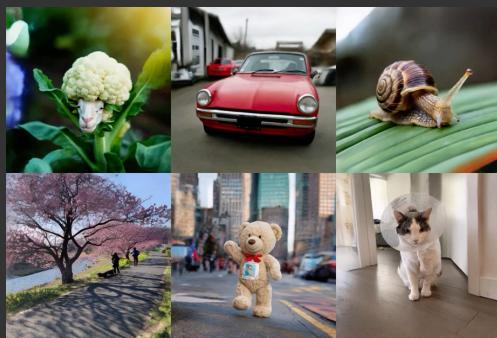
Lifting Text-Based Avatars to 3D

31


3D Videoconferencing

SIGGRAPH 23 Emerging Technologies

32


Modern Text-Conditioned Diffusion (One-2-3-45++)

Liu et al. 24

33

CAT3D: Create Anything in 3D

Gao et al. 24. See also <https://www.worldlabs.ai/blog>.

34

Stochastic Geometry: Objects as Volumes

- Volumetric rendering is great, but what if you want an actual 3D representation?
- Possible with stochastic view of geometry, unifies objects with hard surfaces and volumes (Miller et al. CVPR 24)
- <https://www.youtube.com/watch?v=ZKUcowfFDPk>

35