Self-Supervised Post-Correction for Monte Carlo Denoising

Jonghee Back

Gwangju Institute of Science and Technology
South Korea
jongheeback@gm.gist.ac.kr

Toshiya Hachisuka
University of Waterloo
Canada
toshiya.hachisuka@uwaterloo.ca

o

9

Binh-Son Hua
VinAlI Research
Vietnam
binhson.hua@gmail.com

Bochang Moon
Gwangju Institute of Science and Technology
South Korea

moonbochang@gmail.com

i Ty i

5 il

DRAGON

(a) AFGSA (128 spp), relL2 0.028042

FGSA + Ours, rell2 0.007731 (c) Reference (64K spp)

Figure 1: Our post-correction result for a state-of-the-art image denoiser (AFGSA [Yu et al. 2021]). Our self-supervised opti-
mization uses only test images, and it visually and numerically improves the existing learning-based technique by restoring
the fine details. We used the relative L, (relL;) [Rousselle et al. 2011] as an error metric.

ABSTRACT

Using a network trained by a large dataset is becoming popular for
denoising Monte Carlo rendering. Such a denoising approach based
on supervised learning is currently considered the best approach
in terms of quality. Nevertheless, this approach may fail when
the image to be rendered (i.e., the test data) has very different
characteristics than the images included in the training dataset. A
pre-trained network may not properly denoise such an image since
it is unseen data from a supervised learning perspective. To address
this fundamental issue, we introduce a post-processing network
that improves the performance of supervised learning denoisers.
The key idea behind our approach is to train this post-processing
network with self-supervised learning. In contrast to supervised
learning, our self-supervised model does not need a reference image
in its training process. We can thus use a noisy test image and self-
correct the model on the fly to improve denoising performance.
Our main contribution is a self-supervised loss that can guide the
post-correction network to optimize its parameters without relying
on the reference. Our work is the first to apply this self-supervised
learning concept in denoising Monte Carlo rendered estimates.
We demonstrate that our post-correction framework can boost

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SIGGRAPH ’22 Conference Proceedings, August 7-11, 2022, Vancouver, BC, Canada

© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9337-9/22/08....$15.00
https://doi.org/10.1145/3528233.3530730

supervised denoising via our self-supervised optimization. Our
implementation is available at https://github.com/CGLab-GIST/self-
supervised-post-corr.

CCS CONCEPTS

« Computing methodologies — Ray tracing,.

KEYWORDS

self-supervised learning, self-supervised loss, Monte Carlo denois-
ing, self-supervised denoising

ACM Reference Format:

Jonghee Back, Binh-Son Hua, Toshiya Hachisuka, and Bochang Moon.
2022. Self-Supervised Post-Correction for Monte Carlo Denoising. In Spe-
cial Interest Group on Computer Graphics and Interactive Techniques Con-
ference Proceedings (SSGGRAPH °22 Conference Proceedings), August 7-11,
2022, Vancouver, BC, Canada. ACM, New York, NY, USA, 8 pages. https:
//doi.org/10.1145/3528233.3530730

1 INTRODUCTION

Monte Carlo (MC) image denoising is a general approach that can ef-
fectively reduce the variance of noisy pixel estimates [Zwicker et al.
2015]. A traditional denoiser takes path-traced images as input and
produces more accurate pixel estimates by replacing a noisy pixel
estimate with a weighted sum of neighboring pixels [Bitterli et al.
2016]. Sophisticated neural networks for image denoising [Bako
et al. 2017; Xu et al. 2019; Yu et al. 2021] have been actively studied
and demonstrated effective at denoising MC estimates.

A widely adopted approach for optimizing learning-based de-
noisers is to pretrain a neural network with a training dataset and
then use the trained network to infer pixel estimates at runtime.


https://doi.org/10.1145/3528233.3530730
https://github.com/CGLab-GIST/self-supervised-post-corr
https://github.com/CGLab-GIST/self-supervised-post-corr
https://doi.org/10.1145/3528233.3530730
https://doi.org/10.1145/3528233.3530730

SIGGRAPH *22 Conference Proceedings, August 7-11, 2022, Vancouver, BC, Canada

This approach is said to be made robust by carefully selecting train-
ing images that are similar to the test images. However, it is not
practical to assume that the training dataset covers all the possible
test images (i.e., a noisy input image at runtime) since rendered
images can vary significantly according to various scene configura-
tions such as geometries, materials, and illumination. As a result, it
is not uncommon to see that a pre-trained denoiser fails to denoise
a test image in practice (e.g., Fig. 1).

One can also consider correcting (potentially non-ideal) visual
artifacts of denoised estimates as a post-process. Back et al. [2020]
presented such a post-processing model that corrects a denoised
image with another pre-trained neural network. While this post-
processing model can remove visual artifacts from denoising, it still
shares the same problem as supervised learning that we need to
train this model with a dataset that contains denoised-reference
image pairs.

To address this fundamental limitation of supervised learning,
we introduce a combination of two different learning mechanisms,
self-supervised correction for supervised learning, in the context
of MC denoising. We propose a self-supervised post-correction
network trained only with test images on the fly. The training data
for the supervised denoiser and our self-supervised learning are
mutually exclusive, and thus both techniques are complementary
from an optimization perspective. Our main technical contributions
are as follows.

e We propose a new self-supervised loss that enables us to opti-
mize a post-correction framework using only a test image pair,
i.e., a noisy image and its denoised output (Sec. 4.1).

e We present a practical implementation for this post-correction
network where the network can be effectively optimized using
our self-supervised loss (Sec. 4.2).

We demonstrate that our post-correction can improve state-of-
the-art learning-based denoising techniques, especially when the
denoisers receive complex test images with detailed high-frequency
information, as shown in Fig. 1.

2 RELATED WORK

Pretraining-based optimization. Designing an effective denoising
network has been actively explored since it allows for modeling a
complex non-linear relationship from noisy input images to their
ground truth. Kalantari et al. [2015] exploited a multilayer percep-
tron to adapt the parameters of a cross-bilateral filter per pixel.
Chaitanya et al. [2017] used a recurrent neural network that re-
duces temporal noise in animation. Bako et al. [2017] employed
a convolutional neural network that infers denoising weights per
pixel, which was later extended for an animated sequence [Vogels
et al. 2018]. Gharbi et al. [2019] devised a framework that takes
radiance samples as input, and Xu et al. [2019] introduced a gener-
ative adversarial network for denoising. Kettunen et al. [2019] and
Guo et al. [2019] presented specialized neural frameworks that take
image gradients as well as primal pixel colors for gradient-domain
renderings [Hua et al. 2019; Kettunen et al. 2015; Lehtinen et al.
2013]. Recently, Back et al. [2020] proposed a post-reconstruction
network that boosts denoising results, and Yu et al. [2021] exploited
the self-attention mechanism for improving denoising quality by
selecting suitable neighboring pixels.

Jonghee Back, Binh-Son Hua, Toshiya Hachisuka, and Bochang Moon

These methods use different neural architectures for denoising,
but the common to all the techniques is that they pretrain the
networks using a dataset that does not include test images available
only for their inference. We present a post-correction framework
that optimizes our neural network by taking their unseen data (i.e.,
test images) into account.

MSE-based optimization. A conventional approach for optimiz-
ing image denoising is to adjust denoising parameters per pixel. Er-
rors can vary significantly across pixels, especially for MC rendered
images with heterogeneous variances. Overbeck et al. [2009] trans-
formed a rendered image via wavelets and truncated wavelet coeffi-
cients using the variance of pixel colors, and Sen and Darabi [2012]
exploited mutual information to estimate optimal parameters for a
cross-bilateral filter. Li et al. [2012] exploited Stein’s unbiased risk
estimator, which produces unbiased estimates for denoising errors,
and optimized cross-bilateral and non-local means filters. Rous-
selle et al. [2012] proposed a dual-buffer approach for estimating
denoising errors of non-local means filters, and this approach was
exploited later for cross non-local means [Rousselle et al. 2013] and
regression-based denoising [Bitterli et al. 2016]. Moon et al. [2014;
2016] estimated squared bias and variance of the denoising using
local regression and adapted their denoising kernels across pix-
els. Zheng et al. [2021] formulated an estimate to blend multiple
denoised images and predicted optimal per-pixel weights for the
denoised images. A comprehensive overview of such classical opti-
mization for image denoising is available [Zwicker et al. 2015].

A vital benefit of this conventional approach is that a denoising
process can be specialized for each input image since their parame-
ters are optimized using the test image to be rendered at runtime. It
inspires us to design our post-correction technique that enhances
denoised estimates via a deep neural network trained using test in-
put. While our method exploits a similar optimization scheme (i.e.,
MSE-based optimization using test images), the main distinction is
that we train a deep neural network, unlike the classical methods.

Self-supervised learning in other problems. Training a neural net-
work using only test images has been actively studied for computer
vision problems such as image restoration [Heckel and Hand 2019;
Quan et al. 2020; Ulyanov et al. 2018], image decomposition [Gan-
delsman et al. 2019], and image fusion [Uezato et al. 2020]. In com-
puter graphics, training a neural network that adjusts sampling
density for importance sampling without pretraining was explored
in [Miiller et al. 2019; Zheng and Zwicker 2019]. We exploit self-
supervised learning but apply this learning mechanism for MC
denoising and propose a specialized neural network that can cor-
rect denoised estimates.

3 BACKGROUND AND MOTIVATION

We provide an overview of the existing post-correction technique
[Back et al. 2020] that enhances denoised estimates using a pre-
trained neural network. We then motivate our self-supervised learn-
ing that can perform such a correction without any pretraining.

Supervised post-correction for image denoising. The deep com-
biner (DC) [Back et al. 2020] combines independent and correlated
pixel estimates y and z to produce an improved image fi that esti-
mates the ground truth g. While the DC is not limited to denoisers,



Self-Supervised Post-Correction for Monte Carlo Denoising

HAIR relL20.007885  rellL20.010736  relL20.005534 16K spp

SANMIGUEL  relL20.013591

relL20.016522  relL20.010134
(a) AFGSA, 64 spp (b) AFGSA+DC (c) DC + Ours

64K spp
(d) Reference

Figure 2: Our post-correction results for the supervised deep
combiner (DC) with a denoiser, AFGSA. The DC has been
trained without the denoising results of AFGSA, and it fails
to boost the unseen denoiser. Our technique (c) takes the DC
result (b) as input and restores the lost details.

one can use a noisy image as the independent input y to the DC,
and the corresponding denoised image by a denoiser as the corre-
lated input z to the DC, to remove artifacts due to denoising. They
consider the following statistical models for the two inputs (y and

z);
Ve = He +ec, (1
Zc —Zj = U, — H; + €ci, (2)

where y¢, z. and p, are the c-th pixel colors in y, z and g, and e
and e,; are the error terms. The expectations of the error terms (e,
and e;) assume to be zero vectors. Similarly, z; and y; are the i-th
pixel colors. We shall treat the pixel colors as 3 X 1 vectors.

Given the models, a combination function f(y, z) at pixel c is
defined as

fely.2) = ﬁ{ S owiyit > wize —z»}, ©)

ieQ. i€Q.

which produces the pixel estimate fi, = fc(y,z) as a weighted
average of independent colors y; and correlated color differences
(z¢ — z;) within a local window Q. centered at pixel c.

This post-correction process (Eq. 3) is controlled by the combi-
nation weights w; (w; > 0) that should be adjusted per pixel since
the variances of y; and z. — z; can vary locally. To this end, the DC
pretrains a neural network that produces optimal per-pixel weights
that minimize a supervised loss:

e — pcll?

L y =
(i) A2 +0.01

©
which uses a relative Ly error [Rousselle et al. 2011] that penalizes
the errors in bright areas by leveraging the intensity j. (i.e., the
average of the p,) of the ground truth color .. This supervised
loss relies on the ground truth p, for pixel ¢, which is replaced
by a reference value rendered with a large number of samples in
practice.

This process is a form of supervised learning, which is possible
only when one can access the reference values. Therefore, it can be
conducted only for pretraining a neural network using a training
dataset including the references. The DC is thus pretrained for a

SIGGRAPH ’22 Conference Proceedings, August 7-11, 2022, Vancouver, BC, Canada

specific set of scenes, images, and denoisers (to produce z given y)
as a supervised learning model.

On the contrary, our self-supervised learning trains a neural
network without relying on the p. Therefore, our model can be
trained on the fly for each input y and z at runtime without needing
to know the corresponding p. The key technical problem is that
we need to design a self-supervised loss that effectively optimizes
a neural network using only the imperfect input data (e.g., y and z
for the post-correction scenario).

Problem statement. Pretraining a post-correction network by
supervised learning can be ideal when a training dataset effectively
covers all the possible runtime scenarios. Unfortunately, it is not
practical to assume that we can prepare such an ideal training set
since the test data (i.e., an image we want to render at runtime) is
commonly considered unseen. Fig. 2 shows such failure cases where
post-correction actually deteriorates the correlated input generated
by an untrained denoiser. It motivates our self-supervised learning
that is free from this fundamental issue of supervised learning since
we train the network on the fly at runtime. This flexibility allows
us to even take the output of supervised post-correction as our input
to further improve their results, as shown in Fig. 2.

4 SELF-SUPERVISED POST-CORRECTION

We propose a new self-supervised framework (Fig. 3) that post-
corrects the results of a supervised learning model using their input
and output without any pretraining. To fulfill this objective, we
derive a mean squared error (MSE) based self-supervised loss in
Sec. 4.1 and present a post-correction neural network guided by
the loss in Sec. 4.2.

4.1 Self-Supervised Loss

Our goal is to have a self-supervised model that guides a post-
correction network at runtime. We cannot use the actual error
[l — pel |2 since it can be obtained only when we can access the
ground truth p .. We instead estimate the expectation of the actual
error E||f1, — p||? using only the test input analogously in classical
denoisers [Li et al. 2012; Rousselle et al. 2012]. We adopt the dual-
buffer scheme [Bitterli et al. 2016] that splits MC pixel estimates into
two sub-buffers and estimates denoising errors for a noisy buffer
using another noisy buffer, which can be considered a two-fold
cross-validation. Lehtinen et al. [2018] also used the dual-buffer
scheme to optimize a neural network mainly for generic image
denoising. Unlike Lehtinen et al., we propose to optimize a network
on the fly. As a result, our runtime optimization can complement
the pretraining-based denoising.

Specifically, we take dual-buffered pairs (ya,yb) and (z%, z%).
Splitting noisy estimates y into two sub-buffers is trivial [Rousselle
et al. 2012], and the denoised estimates z% and 2z can be generated
by applying a denoiser to y¢ and yb , respectively. The resulting
pair (y%, z%) is independent of another one (y?, z%).

Given those sub-buffered inputs, let us apply post correction to
each image pair independently to obtain estimates jz and ﬁb. We
define a supervised loss that optimizes this correction process for



SIGGRAPH *22 Conference Proceedings, August 7-11, 2022, Vancouver, BC, Canada

__4 CNN X

I
By, T
for buffer a
coe
16| 16| 15| _\
S E—

9 ConvL
onvLayers ﬂy ~,
for buffer b

Jonghee Back, Binh-Son Hua, Toshiya Hachisuka, and Bochang Moon

~

Post-correction
function

Buffer a

Nmsy-dnonsed

If- rvi
Sali QUREEEE images for b

loss function

s

Post-correction
function

Buffer b

Corrected output at

KNoisy—denoised images Auxiliary features Y
Input image pairs

Noisy-denoised
images for a

Post-correction neural network

Figure 3: We split an image pair (noisy-denoised images) together with auxiliary features into dual buffers (a and b), and
each buffer is fed into a convolutional neural network (CNN) in turn so that the parameters of our post-correction function
(B, vy and t in Eqgs. 10 and 11) can be determined. We generate two output images (1* and flb) from the dual-buffered inputs

independently, and this correction process is optimized using our self-supervised loss (Eq. 9) at runtime.

the first pair as
Elljg - pll®

L% = —Le T
(ie) 2 +0.01

®)
To derive a self-supervised loss .ﬁ(ﬁg) we can estimate the un-
known E|| 18 — p,| |2 by an unbiased estimate:

Ellf® = pll® ~ 18 - y2I1? - 17 6% (v, ©6)

where O'Z(yc) is an unbiased estimate of the variance 0'2(y ), ie.,
the sample variance of the pixel color yC ,and 1 is a vector of ones
of size 3 X 1. Please see the supplementary report for a detailed
derivation. By plugging the unbiased estimate of the MSE (Eq. 6)
into L(f1%) (Eq. 5), the loss for f1f is approximated as

i —yell - 176 (ye)

nay o, HEe c ) 7
L(pe) 2 4001 7

This approximate loss still depends on the reference value, i.e., the
fic in the denominator, and thus the unknown should be estimated.
For the estimation, it is desirable to choose a value that is statistically
independent of the output estimate fif since it allows us to ignore
the (noisy) variance-related term 1752 (yé’) /(ji2 +0.01). Note that
this omission does not affect an optimization when its gradient
with respect to the output estimate ¢ is zero.

In this respect, we have two intuitive candidates gé’ and 22 ,le,
the intensities of ylc’ and zlc’ , for the unknown /. In practice, the
biased value z? is often more accurate than the unbiased one gf
since a denoiser often reduces the error of their noisy input yC
drastically. Hence, we choose the zC for the denominator (Eq. 7)
and result in our self-supervised loss for 1¢:

ra b2
£ty = e Yl )
(22)%2 +0.01
The loss .ﬁ(ﬁlc’) for the other buffer [t’c’ can be derived in the same
manner. This self-supervised loss allows us to optimize the param-
eters 0 of a neural network that produces post-corrected estimates
1% and ji®, and it can be represented as

N
* _ : 1 praa poab
0" = arg;nm N CZ:; 0.5 (.E(yc) + L(j1; )) , 9)

where N is the number of pixels for the input images.

reILz 0.034826

A 444

rele 0.001973 reILz 0.004506 re/Lz 0.001416

reILz 0 01 3846 relL2 0. 011142

64K spp

a) AMCD b) AMCD + DC c) AMCD + Ours (d) Reference
(64 spp) (usmg our loss)
10 T 10
28 : ==(b) |1 1o[|== (b)
= (c) = (c)

024 8 :
[
5] 6
k7]
21, 4

1.2 2 s

20 40 60 80 100 20 40 60 80 100
epoch epoch

(e) Convergence for the DRAGON
(the first row)

(f) Convergence for the BATHROOM
(the second row)

Figure 4: Comparisons between post-correction neural net-
works of DC (b) and our technique (c) for a recent de-
noiser, AMCD (a). Both networks are optimized using our
self-supervised loss, and we generate their results ((b) and
(c)) using 20 epochs. Our lightweight network, which has
79.5x smaller parameters than the DC, is robust against over-
fitting (see (e) and (f)), and it leads to more stable post-
correction results.

4.2 A Practical Post-Correction Neural
Network

We explain a practical implementation of the post-correction neural
network. A straightforward option is to directly employ an existing
model [Back et al. 2020] while replacing its supervised loss with our
self-supervised loss. However, we found that this choice results in
overfitting to the noise in the input y since the training data (only
a test image pair) is insufficient for training the complex network
with millions of trainable parameters (see Fig. 4). Moreover, training
such a complex neural network at runtime can be expensive (e.g.,
41.9 seconds for the example results in Fig. 4).



Self-Supervised Post-Correction for Monte Carlo Denoising

E T ETE LT

SIGGRAPH ’22 Conference Proceedings, August 7-11, 2022, Vancouver, BC, Canada

spp, time (in minutes) 68 spp, 3.99 m
rellz 0.053089

68 spp, 4.03 m
0.001814

64 spp, 4.01 m
0.001432

HAIR

rell2 0.008332 0.003456 0.002356

DRAGON

68 spp, 3.99 m
0.002006

spp, time (in minutes) 244 spp, 114.08 m 244 spp, 114.13 m 242 spp, 113.52 m 244 spp, 114.08 m 242 spp, 113.47 m 244 spp, 114.08 m 242 spp, 113.47 m
0.006133

64 spp, 3.96 m
0.001559

68 spp, 3.99 m
0.001519

64 spp, 3.96 m 64K spp
0.001379

0.002557 0.005626 0.002542

62 spp, 1.46 m
0.011491

74 spp, 1.48 m
0.012040

spp, time (in minutes) 74 spp, 1 43 m
rell2 0.054102

74 spp, 1.43 m
0.034395

62 spp, 1.41 m 64K spp
0.011699

62 spp, 1.41m
0.011579

74 spp, 143 m
0.030630

spp, time (in minutes) 248 spp, 17.25m 248 spp, 17.29 m 244 spp, 17.21m 248 spp, 17.25m 244 spp, 17.16 m 248 spp, 17.25m 244 spp, 17.16 m 64K spp

rellL2 0.018626
(a) Reference (b) Path tracing

0.005053
(c) KPCN

0.004378
(d) KPCN + Ours

0.010229
(e) AMCD

0.004766
(f) AMCD + Ours

0.009340
(9) AFGSA

0.004727
(h) AFGSA + Ours (i) Reference

Figure 5: Equal-time comparisons of the denoising methods with and without our post-correction. Our self-supervised opti-
mization helps the supervised-learning methods improve denoising quality when they fail to preserve fine details.

We propose to use a lightweight framework (Fig. 3) that re-
lies on the same convolutional neural network of the previous
method [Back et al. 2020] but with much smaller parameters. Our
network size is only 0.02M which is 79.5x smaller than the original
one with 1.59M [Back et al. 2020]. As an additional optimization
to the baseline, we reformulate the existing localized combination
(Eq. 3) into
Yico wilyi+Be ozc—21)+ BLo(p.—p;)+Be o(ne—np)}

YieQe Wi

9e(y, 2)=
(10)
where the symbol o is the element-wise product. Note that we
replace z. — z; in the original combination (Eq. 3) with % o (z¢ —
z)+ Bl o (p.—p;)+ B o(nc —n;) using albedo and normal buffers
(p and n, respectively). Specifically, p,. and n. are the albedo and
normal values of size 3 X 1 at pixel ¢ and BZ, B2, and B of size
3 X 1 are the scale parameters that control a relative importance for
(zc = 21), (p. = p;) and (nc —m;).

We set BZ to one vector and the others (8 and B7) to zero
vectors, this formulation is equivalent to the previous combination
kernel (Eq. 3), derived by assuming that E[e.;] is zero vector. In
practice, the assumption can be invalid since the z. and z; are
biased pixel estimates generated by a denoiser. We also exploit the
rendering-specific information (e.g., albedo and normal values) for
compensating the approximation error, and this bias compensation
is controlled by the network through the parameters (8%, B2, and

Be):

We can define the weight w; (in Eq. 10) in a cross-bilateral form:

log, (1+ |lye ~yil )

log,(1+ |lzc - zi||z))

()2 +e (Y& +e
L= — 2 .12 2
Wi = XeXp( ||pC Pi ” - ||ncn an” - (vc‘u Zvl) ) ifi # [
&) +e (y&P+e  (y&)P+e
7. otherwise.
(11

vZ,vZ, vE, vyl and y? are the bandwidth parameters for the image
pair (y and z) and auxiliary features including albedo p, normal
n and visibility buffers v, respectively. We found that taking a
logarithm for the squared color differences is needed for a stable
learning since the colors have a high dynamic range unlike the
other features. Note that we treat the weight w, = 7. for the center
pixel ¢ separately in Eq. 11 to avoid that the center weight becomes
always one by the cross-bilateral weighting like as [Isik et al. 2021].
The € is set to 0.0001 to avoid the division by zero.

As aresult, the post-correction function g.(y, z) (Eq. 10) requires
a set of the scale parameters (8, = {BZ, B, B"}) and bandwidth
parameters (y, = 0, vZ vl vl yZ}) and center weight 7. per
pixel c. The per-pixel parameters are generated by a neural net-
work (Fig. 3) with trainable parameters 6, analogously as in some
prior work [Bako et al. 2017; Kalantari et al. 2015]. We train the
network parameters using our self-supervised learning (Eq. 9) using
the dual-buffered input pairs ((y4, z%) and (yb ,z%) in Sec. 4.1). As
we employ the auxiliary buffers (p, n, and v), we also split those
buffers and feed those into the network. Once the optimal network



SIGGRAPH *22 Conference Proceedings, August 7-11, 2022, Vancouver, BC, Canada

HAIR 64 spp, 29.98 m 62 spp, 29.24 m 16K spp
rellL20.009841 rellL2 0.005625

™

£ ™

VA

DRAGON 74 spp, 1.44 m
relL20.017521

S

'\.

i

T 4

62 spp, 1.43 m
relL20.011327

SANMIGUEL 72 spp, 5.01m 68 spp, 4.96 m
rell20.012641 relL20.009293
(a) Denoiser + DC (b) DC + Ours (c) Reference

Figure 6: Same-time comparisons between DC for denoiser
(i.e., AFGSA) and our technique for the DC. Our run-
time optimization enables us to improve the supervised
technique (DC) by correcting their outputs through our
post-correction lightweight neural network trained by self-
supervised learning.

parameters 0" are estimated, we infer the two output estimates by
the function gc(y = y%,z = z%) and g.(y = yb.z = zb) using the
dual buffers. Our final estimates are computed as the average of
the two estimates. Fig. 4 shows that our optimization makes the
self-supervised learning robust against overfitting and results in
more accurate post-correction results than the baseline (DC) driven
by the self-supervised loss.

Network and training details. Our network (Fig. 3) consists of 9
layers, each of which uses convolutional filters with 3 X 3 kernel
size. The last layer uses 15 filters (i.e., the number of the parame-
ters for B, y, and 7.), and the other layers use 16 filters. For the
activation function in the last layer, we use the tanh function for
B and the softplus for y . and z.. We use the ReLU for the other
layers. We have implemented our self-supervised framework us-
ing Tensorflow [Abadi et al. 2015]. We have extracted 128 X 128
patches from the input color and auxiliary images for our runtime
training and trained the network for 20 epochs using the Adam
optimizer [Kingma and Ba 2014]. We have set the learning rate to

O.OIJSLN Zlc\]zl 1762(y.) where 6%(y,) is the estimated variance

using dual-buffers (i.e., 5%(yc) = (y¢ - yé’ Yo (yé - yé’ )/4). The batch
size has been set to 16, and we have used Xavier uniform initial-
izer [Glorot and Bengio 2010]. We have set the window size |Q.|
to 19 x 19.

5 RESULTS AND DISCUSSION

We applied our self-supervised post-correction to the state-of-the-
art denoising methods, KPCN [Bako et al. 2017], AMCD [Xu et al.
2019], and AFGSA [Yu et al. 2021]. We tested the pre-trained models
released by the authors to generate their denoised estimates. We
compared our technique also with the supervised deep combiner

Jonghee Back, Binh-Son Hua, Toshiya Hachisuka, and Bochang Moon

x10 10—2
2R
g
g
15
S ~~~00
2 S
& — KPCN
2 - = = KPCN+Ours - = = KPCN+Ours .
— AMCD — AMCD N
=== AMCD+Ours N === AMCD+Ours N
05[] — AFGSA CISARTo — AFGSA ey
- = = AFGSA+Ours *ao ] qg0|lemm AFGSA+OUrs 3
N
32 64 128 256 512 1024 32 64 128 256 512 1024
spp spp
(a) BATHROOM (b) HAIR

o~
a
[
2
kst
[ = = = KPCN+Ours - = = KPCN+Ours
- AMCD - AMCD
=== AMCD+Ours === AMCD+Ours
—— AFGSA — AFGSA
109 AFGSA+Ours === AFGSA+Ours ﬁ’«
32 64 128 256 512 1024 32 64 128 256 512 1024
Spp spp

(c) DRAGON (d) SANMIGUEL

Figure 7: Numerical convergence plots (in log-log scale) for
denoising techniques with and without our post-correction.

999

relL20.112400

relL20.002109 relL20.002139 64K spp
relL2 0.062694 relL2 0.009440 rellL20.007756 16K spp
(a) PT (32 spp) (b) AFGSA (c) AFGSA + Ours (d) Reference

Figure 8: Failure cases occur when the denoised estimates (b)
are post-corrected using our self-supervised loss that relies
on the noisy input (a).

(DC) [Back et al. 2020]. We have fully retrained the DC using 800
training images generated using eight public scenes [Bitterli 2016]
for a fairer comparison. We used the PBRT renderer [Pharr et al.
2016] to generate test images, and all the tests were conducted
using an Intel Xeon CPU E5-2687W and NVIDIA GeForce RTX
3090 GPU. We used the four test scenes (BATHROOM, HAIR, DRAGON,
and SANMIGUEL).

Equal-time comparisons. Fig. 5 compares denoised estimates and
their post-corrected results using our technique. The reported times
for our method include the self-supervised learning times as we
train a neural network on the fly. As shown in the figure, the de-
noisers do not always show good denoising results for all the test
scenes. For example, KPCN produces relatively high-quality results
with preserved details for the DRAGON and SANMIGUEL but over-
blurs some details for the BATHROOM and HAIR. AFGSA preserves
the high-frequency information for the BATHROOM but produces
over-smoothed artifacts for the other scenes, similarly to AMCD.
It indicates that a learning-based denoiser, even with extensive
pre-training, would not be ideal for all the possible scenarios since



Self-Supervised Post-Correction for Monte Carlo Denoising

the test images at runtime can be arbitrarily different from the
training images in practice. Our technique uses unseen data (i.e.,
the test images) for learning a post-correction network on the fly
and improves the denoising results when supervised techniques
fail (e.g., over-blurred artifacts).

As shown in Fig. 6, the supervised post-correction (DC) does
not effectively restore lost high-frequency details. Because of the
flexibility of self-supervised learning, our framework can take the
post-corrected estimates from the DC as input to our method and
further corrects the results. It demonstrates that our post-correction
using self-supervised learning can complement different kinds of
supervised techniques.

Numerical convergence. Fig. 7 shows numerical convergences of
the tested methods. Our method helps the denoising techniques to
produce more numerically accurate results, primarily when these
methods fail. For example, AMCD and AFGSA do not effectively
reduce their errors by increasing the sample size. The figure shows
that our self-supervised gain becomes more significant for the two
methods with large sample counts. Technically, the self-supervised
loss can become more accurate with a larger sample size since it
relies on noisy unbiased estimates (e.g., ylc’ in Eq. 7).

Ablation studies for our combination function. We reformulate the
previous combination (Eq. 3) into a new localized function (Eq. 10)
that explicitly exploits rendering-specific features (e.g., albedo and
normal values) for bias compensation. We infer the combination
weights w; using a cross-bilateral function (Eq. 11). Table 1 shows
the post-correction results of our self-supervised network with
and without the two adaptations (Egs. 10 and 11). As shown in
Table 1, the cross-bilateral weighting (setting B and D in the table)
allows the self-supervised correction to be more accurate than those
without the weighting (setting A and C). Thanks to the additional
use of auxiliary features for bias compensation, our combination
(Eq. 10) with the cross-bilateral weighting (setting D) outperforms
the previous combination (Eq. 3) with the same weighting scheme
(setting B) except for a case (AFGSA for the brRAGON). We include
the post-corrected images of the different configurations in the
supplemental report.

Runtime overhead. Table 2 shows the breakdowns for the run-
time overhead, excluding the sampling times for generating the
noisy path-traced estimates. The denoising time for generating
the dual-buffered input depends on a chosen denoising technique.
On the other hand, the training and inference times (12.52 secs in
total) are only affected by the resolutions of the test images. This
computational overhead is non-negligible for a few sample counts.
However, since our training time does not depend on the sample
size, the overhead becomes minor and minor as the sample count
increases. As a result, our post-correction can be effective for offline
rendering scenarios where the sample count is moderate to large,
as shown in the equal-time comparisons (Fig. 5).

Limitations and future work. One limitation of our post-correction
framework is that the self-supervised loss is only an estimate of
the unknown supervised loss, and thus it contains its own noise
(mainly due to the use of unbiased but noisy estimates, e.g., ylc’ in
Eq. 7). The noisy self-supervised loss guides our post-correction

SIGGRAPH ’22 Conference Proceedings, August 7-11, 2022, Vancouver, BC, Canada

Table 1: Ablation studies for our self-supervised post-
correction with 128 spp. We show the relL; errors of the origi-
nal combination (Eq. 3) and our revised combination (Eq. 10)
with and without the cross-bilateral weighting (Eq. 11).
Brown and cyan colors highlight the best and second-best
results.

Scenes Denoisers ~ Setting A Setting B Setting C  Setting D
BATHROOM KPCN 0.002903  0.001015  0.002200  0.000991
AFGSA 0.002699 0.001127 0.001842 0.000942

" KPCN 0.004383  0.003899  0.004412  0.003429
HAIR AFGSA 0004185 0004005  0.004379  0.003713
DRAGON KPCN 0.008340  0.008314  0.008217  0.007471
AFGSA  0.008223  0.007715  0.007863  0.007731

SANMIGUEL KPCN 0.008211  0.006973  0.008577  0.006228
AFGSA 0.007512  0.006848  0.010412  0.006547

* Four settings with different design choices

A: original combination (Eq. 3)

B: original combination (Eq. 3) w/ cross-bilateral weighting (Eq. 11)
C: refined combination (Eq. 10)

D: refined combination (Eq. 10) w/ cross-bilateral weighting (Eq. 11)

Table 2: Runtime breakdowns (in secs) for a test image of
size 1IKx1K.

Step KPCN + Ours  AMCD + Ours AFGSA + Ours
Buffer splitting 3.02 0.04 0.02
Post-correction 12.52 12.52 12.52
Total 15.54 12.56 12.54

Table 3: Our results for the SANMIGUEL scene (in Fig. 5),
where we change the viewing direction over five frames. We
use 64 spp for all the frames. We train our neural network
for the current frame using the trained network from the
previous frame (with reuse), and it produces more accurate
results than using the random initialization per frame (with-
out reuse).

Methods 1% frame 2% frame 3" frame 4™ frame 5% frame
KPCN 0.011741 0.011547 0.011513 0.011533 0.011410
Without reuse  0.009758 0.009623 0.009699 0.009815 0.009468
With reuse - 0.008868 0.008671 0.009008  0.008431
AFGSA 0.014113 0.014044 0.014011 0.014100  0.014073
Without reuse  0.010020 0.009790 0.009292 0.010004  0.009275
With reuse - 0.008593 0.008332 0.008113 0.008094

to improve existing supervised methods for most cases (see Fig. 7),
but a failure case can occur when we correct denoised estimates
with much-higher quality than noisy estimates. As shown in Fig. 8,
our method fails to improve the denoised estimates of AFGSA for
the BATHROOM, e.g., 1.4% worse than the input. We improve the
numerical accuracy of the denoised estimates for the HAIR scene,
but our result leaves some residual noise.

For animated sequences, one might consider reusing the neu-
ral network trained by the previous frames as a starting point



SIGGRAPH *22 Conference Proceedings, August 7-11, 2022, Vancouver, BC, Canada

for the current frame without initializing the network parameters
randomly. Table 3 shows that this simple change improves our
post-correction accuracy (e.g., 8.5% to 23.3% improvement over
the random initialization). Nevertheless, it would be desirable to
incorporate temporal coherency in our framework to suppress flick-
ering artifacts. We leave this investigation as future work. It would
also be interesting to develop an extended self-supervised loss for
gradient-domain rendering [Hua et al. 2019; Lehtinen et al. 2013]
where estimated image gradients are available as additional unbi-
ased input.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their constructive com-
ments and suggestions, and we also appreciate the following au-
thors and artists for each scene: nacimus (BATHROOM), Cem Yuksel
(HAIR), Christian Schiiller (praGON) and Guillermo M. Leal Llaguno
(sanMIGUEL). Bochang Moon is the corresponding author of the
paper. This work was supported by the National Research Founda-
tion of Korea (NRF) funded by the Korea government (MSIT) (No.
2020R1A2C4002425) and Ministry of Culture, Sports and Tourism
and Korea Creative Content Agency (No. R2021080001).

REFERENCES

Martin Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig
Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghe-
mawat, lan Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing
Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dan Mané,
Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon
Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Van-
houcke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin
Wattenberg, Martin Wicke, Yuan Yu, and Xiaogiang Zheng. 2015. TensorFlow:
Large-Scale Machine Learning on Heterogeneous Systems.

Jonghee Back, Binh-Son Hua, Toshiya Hachisuka, and Bochang Moon. 2020. Deep
Combiner for Independent and Correlated Pixel Estimates. ACM Trans. Graph. 39,
6, Article 242 (2020), 12 pages.

Steve Bako, Thijs Vogels, Brian Mcwilliams, Mark Meyer, Jan Novak, Alex Harvill,
Pradeep Sen, Tony Derose, and Fabrice Rousselle. 2017. Kernel-Predicting Convo-
lutional Networks for Denoising Monte Carlo Renderings. ACM Trans. Graph. 36,
4, Article 97 (2017), 14 pages.

Benedikt Bitterli. 2016. Rendering resources. https://benedikt-bitterli.me/resources/.

Benedikt Bitterli, Fabrice Rousselle, Bochang Moon, José A. Iglesias-Guitian, David
Adler, Kenny Mitchell, Wojciech Jarosz, and Jan Novék. 2016. Nonlinearly Weighted
First-order Regression for Denoising Monte Carlo Renderings. Computer Graphics
Forum 35, 4 (2016), 107-117.

Chakravarty R. Alla Chaitanya, Anton S. Kaplanyan, Christoph Schied, Marco Salvi,
Aaron Lefohn, Derek Nowrouzezahrai, and Timo Aila. 2017. Interactive Reconstruc-
tion of Monte Carlo Image Sequences Using a Recurrent Denoising Autoencoder.
ACM Trans. Graph. 36, 4, Article 98 (2017), 12 pages.

Yosef Gandelsman, Assaf Shocher, and Michal Irani. 2019. "Double-DIP": Unsuper-
vised Image Decomposition via Coupled Deep-Image-Priors. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

Michaél Gharbi, Tzu-Mao Li, Miika Aittala, Jaakko Lehtinen, and Frédo Durand. 2019.
Sample-Based Monte Carlo Denoising Using a Kernel-Splatting Network. ACM
Trans. Graph. 38, 4, Article 125 (2019), 12 pages.

Xavier Glorot and Yoshua Bengio. 2010. Understanding the difficulty of training
deep feedforward neural networks. In Proceedings of the Thirteenth International
Conference on Artificial Intelligence and Statistics (Proceedings of Machine Learning
Research, Vol. 9). PMLR, 249-256.

Jie Guo, Mengtian Li, Quewei Li, Yuting Qiang, Bingyang Hu, Yanwen Guo, and Ling-
Qi Yan. 2019. GradNet: Unsupervised Deep Screened Poisson Reconstruction for
Gradient-Domain Rendering. ACM Trans. Graph. 38, 6, Article 223 (2019), 13 pages.

Reinhard Heckel and Paul Hand. 2019. Deep Decoder: Concise Image Representations
from Untrained Non-convolutional Networks. International Conference on Learning
Representations (2019).

Binh-Son Hua, Adrien Gruson, Victor Petitjean, Matthias Zwicker, Derek
Nowrouzezahrai, Elmar Eisemann, and Toshiya Hachisuka. 2019. A Survey on
Gradient-Domain Rendering. Computer Graphics Forum 38, 2 (2019), 455-472.

Mustafa Isik, Krishna Mullia, Matthew Fisher, Jonathan Eisenmann, and Michaél
Gharbi. 2021. Interactive Monte Carlo Denoising Using Affinity of Neural Features.

Jonghee Back, Binh-Son Hua, Toshiya Hachisuka, and Bochang Moon

ACM Trans. Graph. 40, 4, Article 37 (2021), 13 pages.

Nima Khademi Kalantari, Steve Bako, and Pradeep Sen. 2015. A Machine Learning
Approach for Filtering Monte Carlo Noise. ACM Trans. Graph. 34, 4, Article 122
(2015), 12 pages.

Markus Kettunen, Erik Hirkénen, and Jaakko Lehtinen. 2019. Deep Convolutional
Reconstruction for Gradient-Domain Rendering. ACM Trans. Graph. 38, 4, Article
126 (2019), 12 pages.

Markus Kettunen, Marco Manzi, Miika Aittala, Jaakko Lehtinen, Frédo Durand, and
Matthias Zwicker. 2015. Gradient-domain Path Tracing. ACM Trans. Graph. 34, 4,
Article 123 (2015), 13 pages.

Diederik Kingma and Jimmy Ba. 2014. Adam: A Method for Stochastic Optimization.
International Conference on Learning Representations (2014).

Jaakko Lehtinen, Tero Karras, Samuli Laine, Miika Aittala, Frédo Durand, and Timo
Aila. 2013. Gradient-domain Metropolis Light Transport. ACM Trans. Graph. 32, 4,
Article 95 (2013), 12 pages.

Jaakko Lehtinen, Jacob Munkberg, Jon Hasselgren, Samuli Laine, Tero Karras, Miika
Aittala, and Timo Aila. 2018. Noise2Noise: Learning Image Restoration without
Clean Data. In Proceedings of the 35th International Conference on Machine Learning
(Proceedings of Machine Learning Research, Vol. 80), Jennifer Dy and Andreas Krause
(Eds.). PMLR, Stockholmsmaissan, Stockholm Sweden, 2965-2974.

Tzu-Mao Li, Yu-Ting Wu, and Yung-Yu Chuang. 2012. SURE-based optimization for
adaptive sampling and reconstruction. ACM Trans. Graph. 31, 6, Article 194 (2012),
9 pages.

Bochang Moon, Nathan Carr, and Sung-Eui Yoon. 2014. Adaptive Rendering Based on
Weighted Local Regression. ACM Trans. Graph. 33, 5, Article 170 (2014), 14 pages.

Bochang Moon, Steven McDonagh, Kenny Mitchell, and Markus Gross. 2016. Adaptive
Polynomial Rendering. ACM Trans. Graph. 35, 4, Article 40 (2016), 10 pages.

Thomas Miiller, Brian Mcwilliams, Fabrice Rousselle, Markus Gross, and Jan Novak.
2019. Neural Importance Sampling. ACM Trans. Graph. 38, 5, Article 145 (2019),
19 pages.

Ryan S. Overbeck, Craig Donner, and Ravi Ramamoorthi. 2009. Adaptive Wavelet
Rendering. ACM Trans. Graph. 28, 5, Article 140 (2009), 12 pages.

Matt Pharr, Wenzel Jakob, and Greg Humphreys. 2016. Physically based rendering:
From theory to implementation. Morgan Kaufmann.

Yuhui Quan, Mingqin Chen, Tongyao Pang, and Hui Ji. 2020. Self2Self With Dropout:
Learning Self-Supervised Denoising From Single Image. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

Fabrice Rousselle, Claude Knaus, and Matthias Zwicker. 2011. Adaptive Sampling and
Reconstruction Using Greedy Error Minimization. ACM Trans. Graph. 30, 6, Article
159 (2011), 12 pages.

Fabrice Rousselle, Claude Knaus, and Matthias Zwicker. 2012. Adaptive Rendering with
Non-local Means Filtering. ACM Trans. Graph. 31, 6, Article 195 (2012), 11 pages.

Fabrice Rousselle, Marco Manzi, and Matthias Zwicker. 2013. Robust Denoising using
Feature and Color Information. Computer Graphics Forum 32, 7 (2013), 121-130.

Pradeep Sen and Soheil Darabi. 2012. On Filtering the Noise from the Random Pa-
rameters in Monte Carlo Rendering. ACM Trans. Graph. 31, 3, Article 18 (2012),
15 pages.

Tatsumi Uezato, Danfeng Hong, Naoto Yokoya, and Wei He. 2020. Guided Deep
Decoder: Unsupervised Image Pair Fusion. In Computer Vision — ECCV 2020. 87—
102.

Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. 2018. Deep Image Prior. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR).

Thijs Vogels, Fabrice Rousselle, Brian Mcwilliams, Gerhard Rothlin, Alex Harvill, David
Adler, Mark Meyer, and Jan Novak. 2018. Denoising with Kernel Prediction and
Asymmetric Loss Functions. ACM Trans. Graph. 37, 4, Article 124 (2018), 15 pages.

Bing Xu, Junfei Zhang, Rui Wang, Kun Xu, Yong-Liang Yang, Chuan Li, and Rui Tang.
2019. Adversarial Monte Carlo Denoising with Conditioned Auxiliary Feature
Modulation. ACM Trans. Graph. 38, 6, Article 224 (2019), 12 pages.

Jiaqi Yu, Yongwei Nie, Chengjiang Long, Wenju Xu, Qing Zhang, and Guiging Li. 2021.
Monte Carlo Denoising via Auxiliary Feature Guided Self-Attention. ACM Trans.
Graph. 40, 6, Article 273 (2021), 13 pages.

Quan Zheng and Matthias Zwicker. 2019. Learning to Importance Sample in Primary
Sample Space. Computer Graphics Forum 38, 2 (2019), 169-179.

Shaokun Zheng, Fengshi Zheng, Kun Xu, and Ling-Qi Yan. 2021. Ensemble Denoising
for Monte Carlo Renderings. ACM Trans. Graph. 40, 6, Article 274 (2021), 17 pages.

Matthias Zwicker, Wojciech Jarosz, Jaakko Lehtinen, Bochang Moon, Ravi Ramamoor-
thi, Fabrice Rousselle, Pradeep Sen, Cyril Soler, and S-E Yoon. 2015. Recent advances
in adaptive sampling and reconstruction for Monte Carlo rendering. Computer
Graphics Forum 34, 2 (2015), 667-681.



	Abstract
	1 Introduction
	2 Related Work
	3 Background and Motivation
	4 Self-Supervised Post-Correction
	4.1 Self-Supervised Loss
	4.2 A Practical Post-Correction Neural Network

	5 Results and Discussion
	Acknowledgments
	References

