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The rendering of effects such as motion blur and depth-of-field requires
costly 5D integrals. We accelerate their computation through adaptive sam-
pling and reconstruction based on the prediction of the anisotropy and band-
width of the integrand. For this, we develop a new frequency analysis of
the 5D temporal light-field, and show that first-order motion can be han-
dled through simple changes of coordinates in 5D. We further introduce
a compact representation of the spectrum using the covariance matrix and
Gaussian approximations. We derive update equations for the 5 × 5 co-
variance matrices for each atomic light transport event, such as transport,
occlusion, BRDF, texture, lens, and motion. The focus on atomic operations
makes our work general, and removes the need for special-case formulas.
We present a new rendering algorithm that computes 5D covariance matri-
ces on the image plane by tracing paths through the scene, focusing on the
single-bounce case. This allows us to reduce sampling rates when appropri-
ate and perform reconstruction of images with complex depth-of-field and
motion blur effects.
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1. INTRODUCTION

Photorealistic effects such as depth-of-field and motion blur require
heavy computation because they involve intricate integrals over a
5D domain composed of the image, lens, and time. A large num-
ber of samples is needed to avoid noise due to the variance of the
integrand. However, the variation of the integrand is usually not
arbitrary, and in particular, it can exhibit strong anisotropy in 5D
because radiance often varies slowly along some directions. For ex-
ample, an object with a rough BRDF only exhibits small variations
along the angular direction. This can be expressed in terms of the
Fourier spectrum of radiance: the frequency spectrum of the inte-
grand often does not have energy in all five dimensions and, even in
the directions where it has energy, it is often band-limited. Recent
work has leveraged the frequency content of radiance for the faster
rendering of individual effects such as depth-of-field [Soler et al.
2009], motion blur [Egan et al. 2009], soft shadows [Egan et al.
2011b] and directional occlusion [Egan et al. 2011a]. However,
these solutions are limited in scope because the general derivation
of spectrum prediction equations is hard. We introduce a new ap-
proach that can predict the frequency effect of most aspects of light
transport in dynamic scenes in a unified manner. We present a new
rendering technique that predicts and leverages these properties to
reduce sampling rate and perform appropriate reconstruction for
efficient high-quality rendering.

We predict the band-limited nature of radiance in the 5D domain
of space, angle, and time. Key to our approach is to focus on indi-
vidual local interactions such as occlusion, reflection, and motion.
In particular, we show that any first-order motion can be handled
using a 5D change of coordinates that expresses interactions in the
static frame of the moving object. This allows us to handle moving
light sources, occluders, and receivers in a unified manner. Because
we focus on atomic operations, formulae are easy to derive for the
full 5D spectrum. Arbitrary configurations and light paths can be
handled by chaining operations together.
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The storage and computation of a full 5D spectrum is, however,
prohibitive. We argue that meaningful information about a spectrum
is relative to the distribution of energy in the frequency domain. In-
formation such as the principal directions of the spectrum and the
extent of the spectrum along those directions (or bandwidth) are
critical as they give us clues to the behavior of the function in the
primal domain. Previous methods [Durand et al. 2005; Soler et al.
2009; Egan et al. 2009; Bagher et al. 2012] tried to characterize the
bandwidth of the signal. But some signals might have an infinite
bandwidth while still having most of its energy concentrated in a
finite portion of the domain. To permit a more compact and flexible
characterization of the spectrum, we study its variance. We com-
plete this characterization by using the correlation of the signal that
gives its orientation in the frequency domain. All this information is
gathered in the 5D covariance matrix of the signal in Fourier space.
The key element of this matrix is that we are able to translate light
transport operators on the spectrum into simple linear operators over
the covariance matrix. We also show that this characterization in-
herently results in approximating the spectrum of the signal by a 5D
Gaussian, which is possibly degenerate if the matrix is not full rank.

We present a new rendering algorithm that traces covariance ma-
trices in the scene to predict the 5D spectrum at the image plane.
We adapt the local 5D sampling rate locally in the image plane
according to this prediction, and perform appropriate reconstruc-
tion using sheared 2D filters. Our technique can handle complex
phenomena with depth-of-field and motion blur simultaneously. To
avoid casting costly rays for local visibility, we introduce a voxel
grid where we store the covariance matrix of the local distribution
of normals. We focus on single-bounce paths (i.e., lens-object-light)
but the technique has potential for arbitrary light paths.

Our article makes the following contributions.

—A first-order 5D frequency analysis of light transport handles the
rotation and translation components of arbitrary motions using a
simple change of coordinates.

—A compact characterization of the variation and anisotropy of the
radiance field by the 5 × 5 covariance matrix of its spectrum is
inspired by a Gaussian approximation.

—We give a set of equations for updating the 5D covariance ma-
trix through local light interactions such as transport, occlusion,
glossy reflection, texture mapping, lens integration, and object
motion.

—We provide a derivation of the sampling rate and of a 2D filter
based on the 5D covariance matrix. The derived filters account
for the blur induced by motion blur and depth-of-field.

—A rendering algorithm is able to reconstruct effects such as depth-
of-field and motion blur, by first tracing covariances and then
performing adaptive sampling in 5D on the image plane.

1.1 Related Work

Our work is related to sparse and low-rank approximations of light
transport, frequency analysis of light transport, adaptive sampling
methods, and methods that provide depth-of-field and motion blur.

1.1.1 Sparse and Low-Rank Approximations of Light Transport.
Existing techniques analyze the low-rank nature of the light trans-
port operator in the context of precomputed light transport. Mahajan
et al. [2007] presented an experimental study of the dimensional-
ity of light transport for cast shadows and other phenomena such
as glossy reflection. Lessig and Fiume [2010] studied the rank of

the transport operator and showed that in many situations the ef-
fective dimension of the operator is lower than that of the space
on which it operates. Precomputed radiance transport has used this
property extensively. The transport operator—rather than the signal
itself—is compressed, making it efficient for computing many im-
ages. Dimensionality is usually reduced using principal component
analysis [Sloan et al. 2003]. This a posteriori analysis contrasts with
our method that is based on an a priori bandwidth prediction.

Matrix row-column sampling is another way of exploiting the
low effective dimensionality of light transport in scenes illuminated
by many light sources. The low-rank property of the transfer matrix
is leveraged by clustering light source positions [Hašan et al. 2007].
This approximation is performed by selecting some of its rows and
columns. Multidimensional Lightcuts Walter et al. [2006], proceeds
by clustering emitter and receiver points following a perceptual
metric to adapt to the local dimensionality of light transport.

In adaptive wavelet rendering, Overbeck et al. [2009] exploited
the low rank of light transport, by rendering directly in wavelet
space, where the transport operator is sparse. This method exhibits
low noise, since the reconstructed signal only contains the computed
frequency bands, but operates in image space. Our work seeks to
predict the smoothness of not only the image, but the full 5D inte-
grand at each pixel. Application of compressive sensing [Sen and
Darabi 2011a] to rendering allows to estimate the wavelet transform
of the image during rendering using fewer coefficients.

1.1.2 Frequency Analysis of the Transport Operator. We build
on recent approaches that have studied the frequency aspects of light
transport in static scenes, for example, Ramamoorthi and Hanrahan
[2001], Durand et al. [2005], and Ramamoorthi et al. [2005]. They
presented a priori frequency analysis to perform adaptive sam-
pling and appropriate reconstruction, reduce the number of sam-
ples needed for advanced rendering, and effectively share samples
across pixels when possible. Egan et al. [2011b] applied such an
analysis and sheared reconstruction to shadow fields and directional
occlusion Egan et al. [2011a]. To efficiently ray trace images with
depth-of-field, Soler et al. [2009] proposed to adaptively sample
primary rays by predicting image bandwidth and per-pixel variance
of incoming light. They used a sampled representation of the spec-
trum which is both expensive and prone to noise. Instead, we use
a covariance representation that is compact and stable. Egan et al.
[2009] studied motion in 3D space-time defined in image coordi-
nates. They focus on a set of specific cases because they derive
end-to-end bandwidth formulae. In contrast, we address the full
5D case that includes spatial, angular, and temporal aspects in the
scene, and focus on atomic operations to achieve generality.

1.1.3 Adaptive Sampling. Our goal to use fewer samples where
the integrand is smoother follows a long line of adaptive sam-
pling methods, for example, Whitted [1980], Mitchell [1987,
1991], and Kirk and Arvo [1991]. Multidimensional adaptive sam-
pling [Hachisuka et al. 2008] adapts sampling in the full 5D domain,
according to variance estimated from the samples themselves. They
perform anisotropic reconstruction by analyzing a local structure
tensor of the light field. Although we aim at optimally sampling
as well, we inherently differ from this work in both the way we
estimate the variance and in the way we estimate the reconstruction
filter, both of which we do based on the predicted local frequency
content of the illumination rather than a posteriori computation.

The first-order analysis of lighting, shading, and shadows
[Ramamoorthi et al. 2007] permits gradient-based adaptive
sampling. Derivatives convey less information than the raw shape
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Fig. 1. Overview of our proposed algorithm. (a) In a first step, we trace one-bounce light paths and propagate 5 × 5 covariance matrices from the light source
to the camera. (b) The matrices are stored in image space and determine the sampling rate per pixel. (c) We compute the number of samples needed at each
pixel and store the estimated incident radiance at each of them in a 2D buffer. (d) Finally, we render the image using 2D reconstruction kernels (red ellipses),
designed using the covariances, to gather contributions of relevant radiance estimates.

of the spectrum. In particular, the first-order analysis of the light
field only provides a conservative measure of nonsmoothness and
does not capture anisotropy, which means that these techniques
might be oversampling in some cases.

1.1.4 Filtering and Reconstruction. Existing methods simu-
late motion blur by rasterizing micropolygons [Cook et al. 1987;
Fatahalian et al. 2009]. Hou et al. [2010] proposed as an alternative
to ray trace the micropolygons, which allows to render motion
blur and depth-of-field effects efficiently. Because this method
does not account for the illumination itself, these methods make
a conservative job that can be improved by predicting the actual
illumination bandwidth.

An image-space method proposed by Potmesil and Chakravarty
[1983] simulated motion blur of translated objects with a con-
volution. Max and Lerner [1985] developed a similar technique
by rendering the image into layers and applying an appropriate
directional blur. Recently, image based techniques have leveraged
GPU-based anisotropic texture filtering for motion blur of textured
objects [Loviscach 2005]. These methods only handle object
motion, and cannot handle general motion blur of reflection and
moving light sources.

Depth-of-field has received recent attention in real-time render-
ing, by postprocessing a rendered image with depth information
[Kraus and Strengert 2007; Lee et al. 2009, 2010; Barsky et al.
2003; Zhou et al. 2007; Kolb et al. 1995]. Such techniques produce
an approximate yet visually pleasing image because they approx-
imate visibility. As opposed to these techniques, our contribution
simulates depth-of-field effects with ray tracing.

Recently, Lehtinen et al. [2011] proposed a reconstruction
method for motion blur and depth-of-field from sparse sampling
of the 5D light-field that uses speed and depth information to re-
project samples into each pixel in order to obtain an approximate
dense sampling. This method neglects the variation a sample might
have along its reprojection line which might lead to artifacts when
reconstructing glossy surfaces.

Sen and Darabi [2011b] proposed to filter the noise of Monte
Carlo rendering by looking at the correlation between the variation
of the samples’ value and the noise used to generate them. But this

method cannot perform adaptive sampling since it studies only the
correlation between noise and sample values.

2. OVERVIEW

Our algorithm adapts the number of 5D incident radiance sam-
ples, used in numerical integration, across the image pixels for the
simulation of depth-of-field and motion blur. It then uses appropri-
ate reconstruction filters to effectively share the radiance samples
across pixels and provides high-quality images with reduced sample
counts. Both the sampling rate and the reconstruction filters follow
a new prediction of the local 5D frequency content. Central to our
approach is an anisotropic Gaussian approximation of the 5D spec-
trum based on the covariance matrix for compactness and efficiency.

In a first pass (Figure 1), we trace a number of light paths and
propagate the covariance matrix of the 5D spectrum in the neigh-
borhood of each ray. At each interaction (e.g., reflection by a BRDF,
transport, occlusion), we update this matrix according to new sim-
ple atomic operators. In particular, we handle dynamic scenes with
simple local changes of coordinates in 5D. This provides us with
bandwidth and anisotropy information about the 5D spectrum reach-
ing the lens for each pixel (Figure 1(b)). Based on this spectrum
approximation, we compute the required per-pixel 5D sampling
rate following a variant of the Nyquist-Shannon theorem adapted to
Monte Carlo integration.

In the second pass, we use the preceding sampling rates and
compute the appropriate number of radiance samples for each
pixel, sampling across the pixel area, the lens aperture, and the
shutter interval. This results in a number of 5D samples across the
image (Figure 1(c)).

We then determine, for each pixel, the correct 2D reconstruction
filter (Figure 1(d), in red), as a function of the stored 5D covariance
matrices. Pixels that have a smaller spectrum (e.g., the upper-left
one) use a lower sampling rate and a correspondingly larger recon-
struction filter, thereby sharing samples with neighbors. Pixels with
higher-frequency content (e.g., the lower-right one) use a higher
sampling rate and a smaller reconstruction kernel. An important
contribution of this article is to show that reconstruction can be
performed in 2D alone, that is, the weights depend only on the x, y
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Table I. Summary of Transformations to Spectra in Static Scenes.
These are the natural extension of the 4D operators of Durand

et al. [2005] and our new lens operator with a constant in the time
dimension

Transport process Transformation to spectrum

Travel (free space) Angular shear proportional to distance d

Occlusion Spatial convolution with blocker spectrum β

Reflection Angular bandlimiting by reflectance spectrum ρ

Curvature Space-angle shear

Texture Convolution with texture spectrum

Lens Space-angle shear, angle-space shear and phase shift

coordinates across the image plane, independent of the lens and
time coordinates. This allows us to store and access the radiance
samples in a 2D data structure rather than a 5D one.

This algorithm is made possible by a novel frequency analysis of
time-varying light transport and a new Gaussian approximation of
the 5D spectrum based on the covariance matrix. In particular, we
show that maintaining the covariance matrix is simple for a variety
of light interactions. Covariance is a powerful yet compact source
of information to represent the distribution of energy in different
directions in 5D and predict where the signal is strongly anisotropic
and low bandwidth.

3. 5D FREQUENCY ANALYSIS OF LIGHT
TRANSPORT

We extend the 4D local light-field parametrization used by Durand
et al. [2005] to include time in the fifth dimension, for handling mov-
ing objects. We denote the local light-field and its spectrum using
�(x, �, t) and �̂(ωx, ω�, ωt ) respectively where x denotes (x, y)—
that span the plane orthogonal to the direction of propagation—and
� denotes (θ, φ)—angles measured from x and y respectively. Like
Durand et al. [2005], we take the paraxial hypothesis: angles θφ are
small and are well-approximated by their tangent.

We analyze the 5D spectrum of the local temporal light-field
�(x, y, θ, φ, t) in the neighborhood of a ray as it propagates through
the scene. We build on the 4D analysis by Durand et al. [2005] for
static interactions and add the time dimension to handle motion.
We first show that interactions such as occlusion, transport, and
BRDF are similar to their static counterparts, except for the fifth
dimension, and that the incoming light-field potentially contains
temporal energy. We then derive the case with motion and show
that a simple change of coordinates suffices, which corresponds to
shears in space-time and angle-time.

3.1 Static 4D interaction

At the temporal scale we are interested in, light interacts instan-
taneously. Effects such as occlusion, transport, and reflection by a
BRDF only concern light rays that share the same temporal coordi-
nate t . They can be treated independently for different 4D time slices
of the temporal light-field. This means that we can apply the for-
mulae derived by Durand et al. [2005] for the 4D static components
of our local temporal light-fields.

The 4D static operators on the spectrum involve shear, convolu-
tion, and multiplication. Table I summarizes the transformations on
local light-field spectra in static scenes, due to transport processes.

4D convolutions in the primal, such as those required for shad-
ing, become 5D convolutions with a kernel that has the same 4D
component as before and is infinitely thin along time, since shading

Fig. 2. At the lens, the incoming rays undergo a shift as well as a shear due
to lens refraction. Finally, there is transport through free space to the sensor.

only happens with rays at the same instant. In the Fourier domain,
this means that the 5D spectrum of the BRDF is constant along the
time-frequency dimension, assuming that the BRDF is not time-
varying.

Multiplications in the primal are necessary for textures and occlu-
sion. If the texture is constant across time, this means that its Fourier
transform is a Dirac along that direction. Time-varying textures can
be handled by computing their 3D FFT. Occlusion by blockers that
are locally static also corresponds to a convolution by a spectrum
that is the 4D spectrum of blockers times a Dirac in time. Moving
occluders are handled using the change of coordinates described in
Section 3.2.

Lens shears. As we want to perform lens integration to obtain
depth-of-field, we need to characterize a lens operator for the fre-
quency analysis theory. Previously, Soler et al. [2009] proposed
such an operator but they looked at integration of the light-field by
the entire lens. Instead, we would like to obtain the non-integrated
light-field on the sensor to achieve the depth-of-field effect after-
wards.

We add another operation for static light-fields to handle the effect
of a small thin lens. We build on results from paraxial optics [Gerrard
and Burch 1975] to derive this operation. We assume that the lens is
small enough so that a ray coming to the camera can be parametrized
with respect to the center of the lens and that the angle between the
central ray direction and the sensor-lens axis is small enough. This
hypothesis restricts our analysis to lenses without fish-eye effects.
Our theory would handle such lenses at the expense of additional
projections onto the lens’ surface and sensor.

Given an incoming local light-field at the lens l(x,�, t) we want
to characterize the local light-field at the sensor position oriented
along the central direction of the sensor and lens l′(x, �, t). First,
when the light-field passes throught the lens, its direction is changed
due to refraction, by the two interfaces it crosses. Since the lens
is assumed to be thin, travel can be neglected between the two
interfaces and the curvature shear caused by the interfaces produces
a cumulated curvature shear of parameter κ = 1/f , where f is the
focal length of the lens Gerrard and Burch [1975, Chapter II.4.1].
Then, the light leaves the lens and travels to the sensor, making the
light field in or out of focus depending on the spatial position

�′(x,�, t) = �

(
x − d1

(
� + 1

f
x
)

,� + 1

f
x, t

)
, (1)

where f is the focal length of the lens, and d1 is the distance from
the outgoing central position on the lens to the sensor position and
d2 is the distance of the plane in focus from the lens. Figure 2
presents notations for the different quantities involved.

Example. Given a point in focus (with coordinate [x, �] in the
local light-field), the local coordinates at the lens will be[

xl

�l

]
=

[
x − d2�

�

]
. (2)
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Fig. 3. Frequency analysis of BRDF shading for a rotating glossy plane. We model shading as a static operation (c–e) in the coordinate system of the moving
receiver. The changes of coordinates occur in (b) and (f). The spectrum of the static incoming light (a) has a temporal component (b) in the coordinate system
of the moving receiver.

Using Eqs. (1) and (2), we can write the spatial component at the
sensor as

xs = x − d2� − d1

(
� + 1

f
(x − d2�)

)

= x
(

1 + 1

f

)
. (3)

The influence of the angle � on the final spatial component of the
local light-field at the sensor cancels out, indicating that the point
is indeed in focus.

3.2 Change of Coordinates for Motion

Motion in the scene can result in complex interactions. Imagine
a deforming reflector receiving light from a rotating light source,
partially blocked by a translating occluder. Previous approaches
such as Egan et al. [2009] have sought to derive end-to-end equations
and have necessitated special cases for different configurations.
Another option would be to extend local operators such as BRDF
shading, taking into account the motion of the receiver and other
elements, and how it affects normals and other aspects. This would
unfortunately lead to complex formulae, not unlike full end-to-end
approaches.

Instead, we simplify the handling of motion by reducing the
problem to simple local transformations in the coordinate system of
each moving object. The incoming temporal light-field potentially
has complex temporal components, but this is not a problem because
the transformation itself is simple.

In order to treat each interaction locally as static, we change the
parametrization of the light field to the coordinate system of the local
moving object. This follows the traditional Galilean principle that all
motion is relative. For illustration, consider the reflection of a fixed
light source by a rotating, glossy plane. We show the corresponding
spectrum operations in Figure 3. The incoming light-field spectrum
has no temporal component because the light is static (Figure 3(a)).
We reparametrize the incoming temporal light-field in the frame of
the moving reflector (Figure 3(b)). In this new coordinate system,
the light-field spectrum has temporal energy, corresponding to the
opposite motion of the reflector (angle-time shear). We then handle
the reflection using static operators [Durand et al. 2005], includ-
ing incidence angle, cosine term, curvature handling, and BRDF
bandlimiting (Figure 3(c–e)). This provides us with the outgoing
temporal light field in the frame of the moving object. We finally
perform another change of coordinate (angle-time shear with the
opposite direction for motion) to express it in the static world frame
(Figure 3(f)).

We have discussed a static incoming light field for illustration
purposes only, and an incoming light field with a complex temporal
spectrum is treated the same way through a change of coordinates.
Other types of motion and interactions are handled similarly, ex-
pressing the local temporal light-field in the frame of a moving light
source or blocker.

Equations for the coordinate changes. We consider a first-
order approximation of motion at the location of the central ray. Let
the object have translational velocity v = (vx, vy, vz) and angular
velocity r = (rθ , rφ, rψ ). Velocities are expressed in the local frame
of the incident temporal light-field with rotations corresponding to
the x and y axis of the plane parameterizing our local light-field, as
well as the rotation by rψ around the central ray.

The linearization of motion leads the to simple formula

�′(xst , �st , t) = �(x − (vx, vy)t,� − (rθ , rφ)t, t), (4)

where xst and �st denote the spatial and anglular coordinates in
the moving object’s local frame respectively. A derivation of this
property can be found in Appendix A. The equation reveals that the
local light-field undergoes a shear in space-time due to translation
and in angle-time due to local rotation. We define the corresponding
transformation in the Fourier domain using an operator, G.

G(�̂) ≡ �̂(ωx, ω�, ωt + vωx + rω�) (5)

G is a forward motion operator that expresses the light-field spec-
trum in the local frame of the moving object.

The z component of the velocity and the in-plane rotation rψ

do not affect our first-order analysis. This is because they only
create second-order effects that multiply different variables such as
angle and time for the in-plane rotation. Our method can, however,
handle objects that globally rotate. Consider the case of a textured
disk that rotates around its center (Figure 4(a)). The local blur is
tangential and proportional to the distance to the center. This means
that there is no blur at the exact center of the disk. If we move
away from the center, the local motion considered by our technique
is recentered to the point of interest, and includes both a (vx, vy)
translation component and an in-plane rotational component rψ .
The local blur is mostly caused by the translational component, as
predicted by our first-order model. A similar situation occurs when
an object is moving towards a viewer. In the center, there is no
blur, but away from it, blur can be analyzed as caused by a (vx, vy)
translation since the ray going from the viewpoint to the plane is
not orthogonal anymore (see Figure 4(b)).

The static operators are applied on G(�̂) and the result is then
transformed back into the global static frame using a reverse time
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(a) rotation around the central ray

(b) translationalong the central ray

Fig. 4. (a) We only need to account for tangential rotation since the radial
component can be considered as translatory motion in a firs-order analysis.
(b) Similarly, motion along the ray direction is approximated by a translation
in the tangent plane.

operator, to obtain the transformed temporal local light-field. The
reverse time operator is essentially the same transform as G, but
with negative translational and rotational velocities, and is therefore
equal to its inverse G−1.

In the Fourier domain, the shears are time-space and time-angle
for translation and rotation, respectively. Previous work on motion
blur [Levin et al. 2008; Egan et al. 2009] also used shears, but
in the 3D time space defined by image coordinates, and based on
2D translational velocity. In contrast, our transformation is in the
5D space of temporal light-fields and exhibits both translation and
rotation.

3.3 Time-Varying Signals

Some of the signals involved might have built-in temporal content,
for example, a movie projector or a TV. The frequency content
of such source signals can be directly incorporated by considering
their discrete Fourier transform.

4. COVARIANCE MATRICES AND GAUSSIAN
APPROXIMATION

In this section, we describe a compact formulation to track the
extent of local variation and anisotropy of temporal light-fields in
5D space: the covariance matrix.

We compute the 5D covariance matrix of the local light-field’s
Fourier amplitude spectrum, and use it to measure local variation
and anisotropy. We define this matrix � such that the entry at the
ith row and j th column is

�i,j ≡
∫

z∈�

〈z, ei〉 〈z, ej 〉
∣∣�̂(z)

∣∣ dz. (6)

Here 〈., .〉 denotes an inner product, ei and ej are members of the
canonical basis of the Fourier domain � = �x ×�y ×�t ×�p×�t ,
and

∣∣�̂(z)
∣∣ is the amplitude of the local light-field spectrum. The

diagonal elements in � represent the variances of the amplitude of
the spectrum along each dimension and �i,j , i �= j represent the
covariances between the ith and j th dimensions. The covariance of
the spectrum1 conveys important information such as the extent of
variation and anisotropy.

A conceptually simpler interpretation is that we approximate the
amplitude spectrum of the local light-field using a 5D Gaussian
defined entirely by the proceding covariance matrix.

g(z) = e−zT �−1z

This representation is close to Heckbert’s elliptical Gaussian fil-
ters [Heckbert 1989].

Some transport operators clamp energy in subspaces of the spec-
trum, causing the covariance matrix to contain a few null eigenval-
ues. The Gaussian is then degenerate, and the concept less elegantly
fits our purpose. Nevertheless, the equivalence between covariance
and (possibly degenerate) Gaussians will be useful to derive some
formulae, particularly during convolution of spectra.

In the remainder of this section, we explain how the 5D covariance
representation of the light-field spectra can be updated through
transport processes such as motion, free space transport, occlusion
and reflection using simple matrix operations.

4.1 Background

A convenient property of covariance matrices is that updating the
covariance matrix of a signal when the domain is transformed by a
linear operator is straightforward: Let � be the covariance matrix
of the signal, and �′ the covariance matrix of the signal after the
transformation of its input variables by a 5D matrix M . We have

�′ = |M|MT �M. (7)

We provide a proof of this property in Appendix B. We will use this
property to update the covariance matrix after changes of coordi-
nates due to general motion, reflection, and transport through free
space.

We also need to be able to handle convolutions for occlusion
and reflection (texture as well as cosine term). Although there is no
general formula, for zero-centered Gaussians at least, convolution
is equivalent to summing up the covariance matrices. That is, given
two Gaussians with covariance matrices �1 and �2, the covariance
matrix of their convolution is

�1⊗2 = �1 + �2. (8)

We adopt this as an approximation of the covariance matrix of the
convolution of two spectra.

The covariance of the sum of spectra also has a simple expression:
since spectra are zero-centered, the covariance of the sum is the sum
of the covariances. If spectrum h is defined as h(x) = αf (x)+βg(x),
then the covariance matrix of h is

�h = α�f + β�g. (9)

1Since we approximate the local light-field, Eq. (6) adopts the definition
of covariance of functions that is used to study the relationship along the
different input dimensions. This differs from the more common usage of
covariance to study relationships between random variates.
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Table II. Linear Time-Transformation Matrices (a) G and G−1 (corresponding to −vx, −vy,−rθ , −rφ) Perform Transformations into and
out of the Static Coordinate Frame; (b) Td performs an angular shear due to travel in free space; (c) Sα performs a spatial scale due to the

incoming or outgoing cosines; (d) Cη is a spatial shear that accounts for local curvature during reparametrization for reflection; (f) M

performs the symmetry of the signal to express it in the reflected frame; (g) Lf,d performs the camera transformation. Nonlinear
transformation matrices: (h) �B is the occlusion matrix that represents the transform of the blocker visibility function; (e) �C is the

differential cosine irradiance matrix. (i) Rz is the rotation matrix to align local coordinate frames

(a) Time transform matrix

G =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

vx vy rθ rφ 1

⎤
⎥⎥⎥⎥⎥⎥⎦

(b) Travel matrix

Td =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 −d 0 0

0 1 0 −d 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

(c) Scale matrix

Sα =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0

0 α 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

(d) Curvature matrix

Cη =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0

0 1 0 0 0

−ηx 0 1 0 0

0 −ηy 0 1 0

0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

(e) Cosine term matrix

�C =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0

0 0 0 0 0

0 0 C 0 0

0 0 0 C 0

0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

(f) Symmetry matrix

M =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0

0 1 0 0 0

0 0 −1 0 0

0 0 0 −1 0

0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

(g) Lens matrix

Lf,d =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 −d 0 0

0 1 0 −d 0
1
f

0 1 0 0

0 1
f

0 1 0

0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

(h) Occlusion matrix

�B =

⎡
⎢⎢⎢⎢⎢⎢⎣

Ox,x Ox,y 0 0 0

Ox,y Oy,y 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

(i) Rotation matrix

Rz =

⎡
⎢⎢⎢⎢⎢⎢⎣

cos θ − sin θ 0 0 0

sin θ cos θ 0 0 0

0 0 cos θ − sin θ 0

0 0 sin θ cos θ 0

0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

4.2 Motion

Object motion is handled identically for all processes—light
sources, occlusion, and reflection—through a change of coordi-
nates.

Let � be the covariance of the incident local temporal light-field.
Let G be the matrix operator transforming the local light-field in
the static coordinate system of the moving object. According to
Eq. (7) the covariance of the signal in the moving frame is (see
Appendix A)

�st = GT �G. (10)

Next we apply all necessary transformations that happen in the
moving frame (e.g., reflectance) updating �st to �′

st. Finally we
convert back the covariance into the world coordinate system by
transforming �′

st back into the global static frame.

�′ = (G−1)T �′
stG

−1 (11)

4.3 Transport through Free Space

The local light-field spectrum undergoes a shear in angle during
transport of distance d through free space. This is a linear transform
of the space by a matrix Td defined in Table II. Using Eq. (7), the
covariance �′ after transport is

�′ = T T
d � Td. (12)

4.4 Occlusion

The spectrum resulting from occlusion is the convolution of the
incident spectrum and the blocker’s spectrum. The convolution of
two Gaussians is given in Eq. (8) and we estimate the resulting
covariance matrix by summing the incoming covariance matrix and
the covariance of the blocker spectrum. The transformed covariance
due to occlusion, �′

st, is the sum of the covariance before occlusion,
�st, and the covariance of the blocker spectrum, �B .

�′
st = �st + �B (13)

Fig. 5. Successive transformations to convert the incoming light field (with
axes x, y), into the frame of the object (with axes x′′, y′′): a rotation Rz to
align x with the object’s plane and a scale along y′ by 1

cos θ
.

4.5 Reflection

Shading is performed as a composition of the transformations due
to the following processes [Durand et al. 2005], which we further
describe shortly: a foreshortening (and alignment) along the inci-
dent ray; a spatial shear due to curvature; a mirror reflection; a
convolution due to the irradiance cosine term; a multiplication by
the spectrum of the BRDF; a second curvature shear; and finally a
different foreshortening along the reflected ray.

Foreshortening for Incident Ray. To handle reflections, we
need to project our light field into the local frame of the object. This
process is also done when we project the local light-field on the
outgoing direction. Those two projections are handled by combining
a rotation Rz around the local direction to align the local x of the
local light-field with the object’s surface, and a scale along the y
direction by the inverse cosine of the angle θ between the incoming
direction and the normal n. Later on, the covariance matrix might
need to be further rotated around the normal, to match the coordinate
system of the next component such as texture, curvature, or BRDF.
Notations are summarized in Figure 5.
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The scale Sα is anisotropic in space since the foreshortening is
purely in the plane containing the normal and incident (or reflected)
ray. We have

�′
st = ST

α RT
z �st Rz Sα, (14)

where α = 1/ cos θ is the scaling factor, θ is the incident (or
reflected) angle. Matrices Rz and Sα are shown in Table II.

Curvature. The effect of local curvature is a spatial shear of the
local light-field spectrum and remains the same for the covariance.
Let Rη be the rotation matrix that aligns the frame of the light field
with the directions of principal curvature, we have

�′
st = CT

η RT
η �st Rη Cη, (15)

where Cη is shown in Table II, and (ηx, ηy) represents the principal
eigenvalues of the local curvature tensor.

Mirror Reflection. The expression of the local light-field in the
reflected direction implies a reflection along the angular dimensions.
The angular covariance terms are therefore negated, leaving the
angular variance terms untouched

�′
st = MT �st M, (16)

where M is shown in Table II.

Cosine Term. Before shading, the incoming spectrum is con-
volved with the spectrum of the clamped cosines of incident di-
rections. Following Eq. (8), the corresponding operation on the
covariance is an addition of the covariance matrices of the spectrum
of the clamped cosine and that of the light field’s spectrum

�′
st = �st + �C, (17)

where �C is shown in Table II.

Shading. Shading by the BRDF is a convolution in the primal,
and an angular product of the spectrum with the spectrum of the
BRDF in the Fourier domain.

When we consider time- and space-invariant BRDFs, their spec-
trum only has energy along the two angular dimensions. In the
primal domain, they have the shape of a 2D Gaussian multiplied by
Diracs in the other three dimensions. The covariance matrix of the
spectrum is therefore not invertible, although well-defined.

In the scalar case, the multiplication of zero-mean Gaussians
results in a Gaussian whose covariance is the harmonic mean of the
inputs. In the 5D case, we need to do a summation of the pseudo-
inverse of the covariance matrix by the pseudo-inverse of the BRDF
frequency spectrum, and invert the result

�′
st = (

B+ + �−1
st

)−1
, (18)

where B+ is the pseudo-inverse of the covariance matrix of the
BRDF’s spectrum. We give a full proof of this in Appendix C.

Texture. The effect of texture is to add spatial frequencies.
Specifically, the transformed spectrum is a convolution of the in-
cident spectrum with the local spatial spectrum of the texture. As
with occlusion, we sum the incoming spectrum’s covariance and
the covariance of the texture �T , after possibly rotating it into the
same coordinate system using a rotation Rt .

�′
st = RT

t �stRt + �T (19)

4.6 Lens

We described the lens operation in terms of local light-fields in
Section 3.1. The operator being a linear transform of the space, the

Fig. 6. Notations for the rotating sphere example. A mirror sphere rotates
around an axis ω. Our model correctly predicts the zero angular-time co-
variance of the light reflected at point x. vx, vyrθ and rφ are respectively
the spatial and angular velocities, in the local coordinate system at point x.

operation on the covariance matrix becomes

�′
st = LT

f,d�stLf,d (20)

where the matrix L is described in Table II.

4.7 Putting it All Together

To illustrate the power of our theory, we carry out the analysis of an
intriguing case. Consider a spherical mirror rotating around one of
its axes ω. It is well-known that, despite the motion, the reflection
remains perfectly sharp even for finite exposure times. Indeed, our
theory predicts the same.

Consider the transformations undergone by the incident light-
field through reflection at an arbitrary point x on the sphere of
radius r (see notations on Figure 6). The incident spectrum is first
represented in the local tangent frame. This amounts to a rotation
about the incident ray and a spatial scale by the incident cosine. Let
� denote the covariance of the incident spectrum in the local tangent
frame at the starting time of exposure t = 0. This transformation is
independent of the exposure.

The next step involves transforming � into the moving object’s
static coordinates, using G, where reflection can be treated as an
instantaneous process. Following this, reflection involves a trans-
formation due to curvature Cη (with η = 1/r), reparametrization
in the direction of mirror reflection M , and a multiplication by the
BRDF spectrum (constant for specular reflection). After reflection,
the inverse transformations are applied for curvature and motion.

The resulting reflected covariance is given as �′ = RT �R where

R = G−1 Cη M C−η G =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 −2η 0 0

0 1 0 −2η 0

0 0 −1 0 0

0 0 0 −1 0

0 0 −2(rθ − ηvx) −2(rφ − ηvy) 1

⎤
⎥⎥⎥⎥⎥⎥⎦

.

vx and vy are the translational velocities and rθ and rφ are the angular
velocities of the point of reflection. The time-angle covariance terms
disappear if rθ = ηvx and rφ = ηvy , which is indeed the case for
all points on the sphere! This confirms that the reflection does not
vary over time and remains sharp.

In the presence of texture on the sphere, since we add the co-
variance of the texture during reflection, the reflection contains
time-space coefficients corresponding to the covariance of the tex-
ture. That is, for a finite exposure, a spinning sphere with texture is
predicted to be blurry as expected.
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5. TRACING COVARIANCE

In this section, we use the already derived update equations to esti-
mate the local 5D covariance after integration on the image plane.
For each pixel, we sample light paths (Section 5.1), and estimate
the covariance matrix at the sensor by applying the operations on
covariance matrices from the light to the camera (Section 5.2). We
pay particular attention to handling occlusion (Section 5.3) since
care is needed to determine when the local light-field is partially
occluded. Other update operations are straightforward. Finally we
show how to accumulate covariance matrices (Section 5.4) to obtain
an estimate of the matrix at each pixel.

5.1 Path Tracing Covariance to the Camera

For each pixel, we trace a small number of rays (typically 10 to
100 depending on the scene’s lighting complexity) to estimate co-
variance. Rays are cast from different lens locations and at different
times and the resulting hit positions in the scene are connected to
one of the light sources. Given a path, we propagate a covariance
matrix from the light source to the lens. We initialize the matrix with
the covariance of the light and update it according to the operators
derived in Section 4.

Since the covariance matrix is symmetric, we only have to update
15 floating point values at each operation. We also keep track of
the orientation of the tangent plane (two unit vectors) to be able to
handle anisotropy.

5.2 Covariance of Light Sources

Diffuse area light sources have no variation in angle, and their spatial
covariance depends on their size. For example, at rectangular light
sources, we align the tangent plane with the principal direction of
the light source and use.

�1,1 = 2 (π/sx)2, �1,2 = 0, �2,2 = 2 (π/sy)2,

where sx , sy are the sizes of the light along the principal directions.
For environment maps, we compute the local angular covariance
using a windowed Fourier transform on the 2D map of angles.
Spotlights have angular content and the angular variance is inversely
proportional to the half-angle of spread. We have not implemented
light sources with temporally varying emissivities, such as video
projectors, but they can be included by computing the DFT of their
temporal emission. We do, however, handle light sources that are
in motion. For moving light sources, we apply the motion matrix
defined in Eq. (5) after computing the covariance of the light source.

5.3 Occlusion

Partial occlusion of the local light-field potentially introduces en-
ergy in the high frequencies of the magnitude spectrum. To account
for this, we developed a volumetric data structure that stores local
normal distributions to answer two queries: (a) does an occluder
exist in the neighborhood of a path; and (b) if yes, what anisotropy
does it introduce in the local light-field spectrum with reference to
its 2D local spatial frame?

Occlusion is characterized, at a given location, by a 2D binary
function along the spatial dimensions. The frequency content of this
2D function is captured by the silhouettes of the blockers, which can
be deduced from the surface normals that are orthogonal to the di-
rection of propagation (see Figure 7). We exploit this observation by
storing 3D normal distributions, and using them to estimate occlu-
sion caused on a local light-field by extracting normal distributions
in the plane orthogonal to the light path.

Fig. 7. When an occlusion is detected during ray tracing (a), we need to find
an approximated equivalent 2D occluder (b), and compute its local spectrum
(c). For that, we use the local distribution of normals of the occluder near
the occlusion point in the tangent plane.

Fig. 8. We use a voxel grid to hand occlusion, and store normal distributions
at each voxel. This information is used to estimate the local 2D spectrum
of obstacles as they partially occlude the local light field at points along
the central light ray. The stored covariance matrix (of the local normal
distribution) is first rotated to align it with the local frame of the ray and
then the appropriate 2D submatrix (corresponding to the tangent frame of
the ray) is projected to the XY plane of the local light-field.

We use a regular 3D grid, where each voxel contains a 3 by
3 covariance matrix of the distribution of surface normals inside
the corresponding voxel. This 3D covariance matrix is built by
uniformly sampling normals on objects and accumulating 3D co-
variance contributions for each normal inside the voxel.

When a ray crosses a voxel “near” an obstacle we add the covari-
ance matrix of the occluder to the covariance matrix of the spectrum
(Eq. (13)). First, we rotate the voxel’s 3D matrix to align it with the
frame of the ray. Then, from this rotated matrix, we extract the 2D
x −y submatrix corresponding to the tangent frame of the ray. This
2D submatrix is the covariance matrix of normals projected to the
x − y plane of the local light-field of the ray. We convert this 2D
matrix into a 5D covariance matrix of the blocker, by padding other
dimensions with zeros (see Figure 8).

If the normal distribution at each voxel is filtered to obtain a
single normal direction, the resulting 5D occlusion matrix is equiv-
alent to the half-plane occlusion approximation used in Soler et al.
[2009]. Furthermore, our approach enables the encoding of direc-
tional information for occlusion while seamlessly avoiding artifacts
due to unwanted occlusions at either end of the ray. At the ends,
where the distribution of normals is close to the normal at the in-
tersection points, the occlusion covariance matrices automatically
become null.

We handle moving occluders conservatively by filling the grid
with positions of the moving object, sampled during the shutter
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(a) (e) (f)(d)(c)(b)

spectrum
reaching
the lens

spectrum
of shutter
kernel (or
window)

spectrum after
windowing
by shutter
(convolution
in Fourier)

spectrum after
integration along
time (slicing):
Final image spectrum

Spectrum after naive sampling Spectrum after smart sampling

Fig. 9. Sampling and Reconstruction, in two dimensions (�x,�t ) for simplicity. For the spectrum reaching the sensor (a), we first convolve it (c) with the
kernel of the shutter (b) (or the lens kernel). We are interested in the integration of the signal in the primal space. This is translated into the frequency domain
into a slice of our convolved spectrum (d). We show that we can organize our samples (f) to allow us to save samples from the original packing (e).

interval. This conservative estimate of the occlusion through time
allows us to store the same amount of data as for the static case.

5.4 Aggregating Covariance Due to Multiple Paths

Each light path provides us with a 5D covariance matrix that char-
acterizes the local frequency spectrum. To obtain the combined
covariance estimate at a given pixel position, we accumulate the
various contributions. Since the covariance of two zero-centered
functions is additive (Eq. (9)), we can build a Monte Carlo estimate
of the covariance matrix from the different samples �i acquired at
pixel p. We use this estimate of the covariance matrix to estimate
the density and filter per pixel.

� 	
∑
i∈p

Ei

E
�i (21)

Here Ei is the radiance carried by sample i, and E is the total
radiance accumulated by samples for the current pixel.

6. RENDERING

Our rendering algorithm involves four steps as illustrated in
Figure 1.

(1) We accumulate covariance per pixel by tracing a number of
covariance light paths using the theory described in Section 5.

(2) We compute, at each pixel, the required 5D sampling density,
as well as a 2D reconstruction filter (Section 6.1).

(3) For each pixel, we sample its 5D domain with the determined
sampling rate and store these 5D samples into a 2D xy-grid
(Section 6.2).

(4) For each pixel, we sum the weighted contribution of all samples
inside the 2D reconstruction filter, possibly using samples from
nearby pixels (Section 6.3).

6.1 Estimating Sampling Density and Reconstruction
Filters

2D bandwidth. In contrast to Egan et al. [2009], we perform
reconstruction in the 2D image domain rather than the full 5D light-
field. This is made possible by a new derivation that considers the
effect of the lens aperture and exposure interval as a multiplication

followed by an integration, rather than a convolution. Our derivation
might result in slightly higher sampling rates, but it alleviates the
need to sample outside the shutter interval or lens. Furthermore,
our approach avoids the need for higher-dimensional acceleration
structures for efficient sample queries.

We first model the effect of integration over a finite shutter inter-
val and lens aperture before considering sampling. The incoming
radiance (Figure 9(a)) is multiplied (windowed) by the shutter func-
tion (b), which corresponds to a convolution in the Fourier domain
(c). Depth-of-field and motion blur result from the integral of this
windowed radiance along time and aperture, which corresponds
to slicing in the Fourier domain (d). The resulting 2D slice is the
Fourier transform of the final image. In the case of motion blur, a
longer shutter speed corresponds to a smaller kernel (b), and we get
the intuitive behavior where longer shutter speeds lead to less high
frequencies for moving parts in the final image. This 2D bandwidth
is the key to deriving 2D reconstruction filters.

Sampling and Reconstruction. We seek to compute the illu-
mination for each pixel by sampling radiance in 5D (in the space of
lens, image, and time) and averaging these samples using an appro-
priate reconstruction kernel. Following Shannon, sampling creates
replicas in the Fourier domain (Figure 9(e)). The goal of accurate
sampling is to prevent replicas of the spectrum from overlapping
the useful signal. that characterizes the final image, as shown by
Figure 9(d).

We need to pack the Gaussian functions, which we approximate
with ellipsoids of half-axes lengths given by the matrix eigenval-
ues’ square root. Critical sampling is obtained when the sampling
distance along the eigenvectors is proportional to the square root of
the eigenvalues’ product (the product of sigmas), as illustrated in
Figure 9.

The sampling density in 5D is consequently the product of twice
the square root of the eigenvalues, that is 32 times the square root
of the determinant of the covariance matrix, up to a constant k, the
5D volume of integration.

N = 32k
√

|� | (22)

Our situation is different from that of traditional sampling because
we are only interested in the final sliced spectrum. That is, our goal
is to prevent replicas of the full spectrum in (c) (see Figure 9) to
overlap the sliced spectrum in (d). We must consider the replicas of
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the full spectrum (c) and not that of the slice (d) because (c) is the
only function we can access accurately with point sampling.

Since only the slice should not overlap, we can make the replicas
half-overlapping as shown in Figure 9(f). For the simple 2D case of
our example, that means we only need half the samples predicted
by sampling theory (since our minimum distance along the time
axis is halved). In our general 5D case we can have 3 dimensions
half-overlapping leading to a 1/8 reduction of samples.

N = 4k
√

|� | (23)

The reconstruction filter is then simply the inverse transform of the
2D slice shown in Figure 9(d). It is further explained in Section 6.3.

6.2 Sampling Radiance

For each pixel, we sample the 5D pixel’s domain, with the number
of samples from Eq. (23). We store those samples in a 2D grid. The
samples contain the integrated radiance (a number of secondary
light rays are sent to integrate radiance per sample) for the given
subpixel position, lens coordinate, and time value. We compute this
value using path tracing and importance sampling of light sources
but other integration methods could be used (multiple importance
sampling, Metropolis light transport, etc.).

6.3 Reconstruction

To perform reconstruction, we sum the samples with weights based
on their position in the image plane. We choose to use a Gaussian
filter since it has a convenient formulation in both Fourier and primal
spaces.

Given our covariance matrix � for the current pixel, we compute
the filter by slicing its inverse �−1 along the two spatial components.

�−1
s = �−1

x,y

Then, to obtain the filter in image space, we need to apply an inverse
Fourier transform. Since we are using a Gaussian filter, the covari-
ance of the filter in the primal is the inverse of the covariance of the
filter in Fourier space (up to a constant factor). Our reconstruction
filter will therefore have the following formulation.

ws(x − p) = e− 1
2 (x−p)T �s (x−p) (24)

6.4 Implementation Details

Similar to Egan et al. [2009] we need to take into account the
variation of covariance in a neighborhood (last paragraph of their
appendix). In particular, the reconstruction for a pixel with a low-
frequency prediction needs to gather samples from distant pixels.
However, the spectrum estimate of these distant pixels could be
very different, and in particular reveal high frequencies that cannot
be handled by such a wide reconstruction filter. To avoid this, we
only use samples from pixels whose filters overlap the pixel we are
looking at.

We postprocess the matrices in image space after the covariance
tracing step in order to maintain some coherence and avoid outliers
(low frequency with respect to the neighbors) that can occur when
the number of covariance matrices sampled per pixel is not enough
to correctly capture the frequency content. For this, we use a max
filter on the determinant of the matrix. This postprocess is in favor
of high-frequency covariance matrices and thus conservative. We
apply this process per pixel and each matrix takes the max within
its filter footprint.

In our implementation, we used a Gaussian shutter. Other kinds
of shutter can be used as long as the covariance of their spectrum is
defined.

7. RESULTS

In this section, we present the results of our covariance tracing, adap-
tive sampling, and reconstruction algorithms. First, we validate the
use of covariance tracing with respect to measured covariance from
a path tracer (Section 7.1). We show that we can predict the effects
of motion, texture, and occlusion using covariance matrices. Then,
we perform unit tests (Section 7.2) to validate our algorithm for
the different phenomena such as blur due to shallow depth-of-field,
motion blur, occlusion, etc. Finally, we demonstrate the efficiency
of our algorithm in rendering complex scenes in comparison with a
path tracer with multiple importance sampling (Section 7.3).

7.1 Validation of the Covariance Computation

We validated our covariance computation by comparing to ground-
truth covariance matrices. We designed a path tracer that records
dense radiance samples in 5D space and computed the covariance
component over the Fourier transform of this 5D function. Figure 10
presents the comparison of measured local light-fields (using a path
tracer) from a light source reflecting on a diffuse striped plane
moving orthogonally to the direction of the stripes. Our predicted
covariance matrices are close to the measured quantities, and the
correlation factors are correctly estimated 2.

Figure 11 presents the comparison of measured local light-fields
from a light source occluded by a rotated quad. We show that
the occlusion grid correctly estimates the anisotropy of the local
light-field after the blocker. It should be noticed that our predicted
covariance matrix estimates a higher degree of occlusion anisotropy.
This is because the windowed Fourier transform applied to compute
the reference covariance introduces parasitic low frequencies in all
directions at the same time.

Figure 12 presents an analysis of different regions on a soft
shadow casted by a moving occluder. Our analysis correctly predicts
regions where the shadow is influenced by the motion and regions
where the motion does not change the shadow. Note that the source
used in Figure 12 is smaller than the one used in Figure 11 resulting
in higher spatial covariance.

7.2 Unit Tests

In this section, we propose to review some basic examples in order
to view the effects handled by our theory. These examples are
provided as pedagological examples and so we do not compare to
ground truth or focus on efficiency.

In Figure 13, we show how shininess and curvature of an object
can affect the covariance, the respective reconstruction filters, and
the predicted number of samples required. The filters are correctly
oriented along the surface, due to our handling of anisotropy.

In Figure 14, we show how motion elongates reconstruction fil-
ters along the projected direction of the motion. In Figure 15, we
illustrate that our algorithm exploits angular frequency to adapt the
reconstruction of the depth-of-field effect. Both effects exploit the
fact that slicing the 5D covariance matrix to produce 2D filters will
stretch the filter in the direction of the shear (e.g., angular directions
for the lens, direction of motion for time).

2Differences between values are explained by the window we applied to
compute the Fourier transform of measured light fields and to their coarse
resolutions.
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Fig. 10. A comparison of predicted and measured covariance matrices of light-field spectra for a toy scene involving a square light source with a Gaussian
emission pattern, illuminating a textured reflector at a distance of 1m. The reflector is translating vertically at a speed of 0.1m.s−1. The first row shows the sliced
spectrum of 5D measurements at three positions (just after the source, just before the reflector, and just after the reflector), to be compared with the predicted
covariance matrices in the following row. Notes: (1) In the measurements, we zeroed values below 10−6 for clarity. (2) some positive values in the measurements
come from the windowing applied before the FFT, for example, the θ − θ and ϕ − ϕ covariances in the 1st and 3rd steps. (3) At each step, we show slices with
the most significant correlation, that is, respectively the X − Y , Y − θ , and Y − t slices.

In Figure 16, we show the effect of occlusion on the estimate of
filters. We underline the effect of the resolution of the occlusion
grid on small, scale elements. Our voxel-based method tends to
overestimate occlusion and can possibly lead to oversampling of
smooth regions if the resolution of the occlusion grid is not high
enough.

7.3 Comparisons

We compared our algorithm implementation to a standard path
tracer. The snooker scene (Figure 17) presents a billiard scene under
the lighting of a sky environment map. The scene exhibits both
low-and high-frequency materials (diffuse, glossy, and specular).
Frequency information is computed using 15 covariance samples
per pixel. We limited the maximum number of primary rays per pixel
to 100 for our algorithm. We used a 200-wide voxel grid for the
occlusion detection. We show a zoomed comparison between our
algorithm and a path tracer in Figure 18 for an equal computation
time.

The helicopter scene (Figure 21) shows a toy lit by a square light
source. The blades of the helicopter are rotating around its rotor’s
axis creating motion blur, while the textured background of the
scene is out of focus. We used 10 light paths per pixel to estimate
the covariance and a maximum of 200 samples per pixel for the

reconstruction. Again, we compare our results with a path-traced
image computed within the same amount of time.

We performed all computations on a Xeon W3520 at 2.66 GHz
with 8GB of RAM. Our algorithm takes advantage of parallel com-
putation for sampling both covariance rays and radiance rays.

We show the effect of the 5D windowing in Figure 20. Since
the spatial x − y windowing is a user parameter, it can be used
to control the width of the filters in low-frequency regions. We
noticed that using too wide a filtering kernel leads to diffusion of
high frequencies during the max filtering step. A trade-off must be
made to obtain an optimal speed of our method.

These scenes demonstrate that our method allows us to save
computation time for the low-frequency parts of the scene as shown
in Table III.

7.4 Discussion

Comparison to Egan et al. We differ from Egan et al. [2009]
in that we consider the shutter effect as a multiplication by a unit
pulse, the size of which depends on the time the shutter stays open,
followed by an integration along time in the primal domain. On the
contrary, Egan et al. consider the shutter effect to be the convolution
of the signal by the same unit pulse taken at discrete time (again in
the primal space). As a result, in our final reconstruction, filters are
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Fig. 11. A comparison of the predicted and measured covariances at the
edge of the shadow caused by the square occluder. Our estimate correctly
captures the anisotropy of the signal (the first eigenvector is (0.69, 0.71)). It
is significantly more anisotropic (eigenvalues 89 and 0.05) than the measured
covariance (eigenvalues 31.2 and 10.8), which we attribute to the effect of
windowing in the measurement (see the bars along each axis in the spectrum
image).

Fig. 12. We analyze the effect of a moving occluder on our covariance esti-
mator. Our estimator correctly depicts the anisotropy created by the motion
of the occluding plane along the y axis. Occlusions by edges orthogonal to
the motion bring high frequency to the temporal domain while occlusions
by edges along the motion do not affect the temporal domain. We do not
provide measured covariances because the windowing of the measured light
field introduced too much frequency to be compared against our prediction.

Table III. Timing Comparison between Our Algorithm and Our
Reference Tracer for the Snooker (Figure 17) and for the

Helicopter Scene (Figure 21)

Scene Our (covariance tracing / reconstruction) Reference

Snooker 25m (2m36 / 16s) 2h25m

Helicopter 29m (2m / 16s) x

The first column shows the time taken by our algorithm. Inside the brackets we show
the covariance acquisition and the reconstruction timings. For the helicopter scene,
we do not report the path tracer timing since we are doing an equal time comparison.

(a) input scene (b) reconstruction filters

Fig. 13. Four spheres of different size and shininess are lit by a square
light source. The curvature and shininess of the spheres influence the recon-
struction filter shapes. The filters align correctly with the geometry factor
allowing us to filter samples along curvature. Note: we extract the maximum
frequency of the BRDF for the covariance estimation.

(a) input scene (b) reconstruction filters

Fig. 14. The motion of the planes influences the reconstruction filters’
shape (b) by elongating them in the direction of the motion. Note: the
frequency of the texture has been set to its max to produce a comprehensive
figure.

(a) small lens radius (b) larger lens radius

Fig. 15. A comparison of two different aperture sizes, for the same camera
configuration (position, direction, and sensor size). For a small aperture (a),
the depth-of-field is large (little defocus blur) and the filters are not changed.
For a bigger aperture size (b), the depth-of-field is much shallower and the
filters are bigger.

not sheared in space-time like with Egan et al.’s approach, which
dramatically simplifies implementation. This also means that there
is no need to consider samples outside the shutter interval. The
reconstruction filter can be sheared in the image plane if the 5D
spectrum (Figure 9(a)) is not isotropic. This is usually the case with
moving objects where the spectrum reaching the lens (Figure 9(a))
is sheared along the object motion.

Comparison to Soler et al. [2009]. Our approach has the
same benefit as Soler et al.’s depth-of-field approach because we
can take advantage of low bandwidth either along the lens or the
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(a) input scene (b) reconstruction filters (red inset)

Fig. 16. A complex occluder is casting a sharp shadow onto a diffuse
plane. We present different resolutions of the occlusion grid for the red
inset presented on the input scene (a). The example on the right half of (b)
correctly depicts the contour of the shadow on the plane as the resolution of
the grid is fine enough. On the contrary, the left half of (b) overestimates the
occlusion due to a coarse resolution of the grid.

image. However, their method relies on a two-step reconstruction
whereas we do one single 2D reconstruction. As a result, their
method can only exploit low bandwidth along either of the axes—
angle or space—but not diagonally, while our method is able to
achieve this as well. Furthermore, our method handles motion blur
and general light paths.

Comparison to 2D postprocessing. Our method is different
from 2D postprocessing solutions [Max and Lerner 1985; Potmesil
and Chakravarty 1981] that blur a 2D or 2.5D image with spatially
varying filters according to depth or motion. The ressemblance
exists only for purely diffuse planes. In general, our reconstruction
filter is not simply the circle of confusion or motion vector: it
takes into account complex effects in combination such as glossy
highlights, occlusion, and lighting.

In a simple case such as the defocus of a diffuse object, the size of
the reconstruction filter is exactly the size of the circle of confusion.
But for more complex situations such as glossy objects or occlusion
boundaries, the bandwidth becomes higher and the reconstruction
filter is smaller.

8. LIMITATIONS

The main complication in computing the covariance matrix is the
detection of partial occlusion. Since we use a voxel grid we add
two major constraints: First, the locality of the frequency analysis
is bound to the resolution of the voxel grid. This can result in
overestimating the occlusion in scenes where tiny details occur
(such as leaves on a tree). Second, the use of the voxel grid adds the
cost of ray marching during the occlusion detection step. To retain
the same locality in the occlusion detection for different scene sizes,
the size of the voxel grid must be adapted, potentially increasing
the computational cost of the frequency analysis.

Furthermore, our method might become ineffective in very com-
plicated regions where effects such as occlusion and depth-of-field
or motion blur cooccur. Since we use preintegrated light samples,
variance is only reduced by the number of samples gathered. For
such regions, gathering from outside a pixel will create noticable
aliasing and we obtain worse results than path tracing, with say
stratified sampling, which decreases the variance in all dimensions
simultaneously. However, since we are able to identify such conflu-

ences of complex effects, we could still use traditional path tracing
for these pixels.

9. CONCLUSION

We have presented a new method to propagate frequency informa-
tion along light paths. We demonstrated the use of the covariance
matrix for adaptive sampling in a one-bounce ray tracing algorithm,
which permits the sharing of samples across pixels using a 2D re-
construction method. We validated the usability and the validity of
our approximation against some ground-truth covariance matrices.

We aim to further exploit the possibilities offered by the covari-
ance matrix in more general cases such as volumetric environments
or complete global illumination algorithms such as path tracing
methods.

APPENDIXES

A. MOTION SHEAR

We show that the transformation of motion can be seen as a shear
in a first-order approximation. We will provide demonstration for a
3D spectrum that is anisotropic in space and anisotropic in angle.

Given a point xt on the tangent plane of the central ray and an
angle θt , as shown in Figure 22 we want to estimate the new position
xt+dt and new angle θt+dt after a linear motion and rotation of the
tangent plane. We note that θ is the angle covered by the rotation
of the tangent plane during dt , y the tangential translation of the
tangent plane during dt , and xo the intersection between the tangent
plane at t + dt and the central ray at t .

The new value of the angle is a simple addition θt+dt = θt − θ .
We will decompose the derivation of xt+dt into two steps. First

we will find the intermediate position xz after taking into account
the translation only. Then we will infer the new position xt+dt from
xz by looking at the rotation.

The intermediate position is the result of a spatial shear with a
travel distance of t vz and a shift of distance y.

xz = xt − y + vz t tan(θt )

The last term is a second-order term and we neglect it.

xz 	 xt − y

The new position is found using the approximation that for very
small angles θt , we can apply the law of cosines on the triangle
defined by the intermediate point, the new point, and the central
position after motion. This approximation gives us

xt+dt 	 xz

cos(θt )
.

The formulation for xt+dt is then

xt+dt 	 xt − y

cos(θ )
.

Substituting the expression of y with the velocity multiplied by
time, and putting it into a matrix formulation, we get⎡

⎢⎣x ′

θ ′

t ′

⎤
⎥⎦ =

⎡
⎢⎣

1
cos(θ) 0 − vx

cos(θ)

0 1 −vθ

0 0 1

⎤
⎥⎦

⎡
⎢⎣x

θ

t

⎤
⎥⎦ .

We can further linearize the one over cosine term

1

cos(θt )
	 1
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(a) equal time reference using 512 samples per
pixel (25 minutes)

(b) our algorithm (25 minutes) (c) reference with same maximum number of sam-
ples per pixel (3000 samples per pixel, 2 hours 25
minutes)

Fig. 17. The snooker scene (adapted from Soler et al. [2009], TOG 28/2 c© ACM 2009) rendered using our algorithm at the center, with a path tracer using
the maximum number of samples in a pixel used in our algorithm at the right (same quality), and using the same amounts of time as our algorithm at the left.

Fig. 18. A close-up comparison for the snooker scene (Figure 17) between our algorithm and equal time path tracing. We present several regions where
the effect of our adaptive sampling and reconstruction are perceptible. In the red inset (a) we demonstrate that we make the rendering of glossy out-of-focus
surface converge faster. The yellow inset (b) shows the rendering of motion-blur with a glossy surface. The green inset (c) illustrates the rendering of complex
combinations of effects such as depth-of-field occlusion of glossy surfaces. In this setting, we can see that our algorithm exhibits artifacts because of a limited
number of samples. Finally the blue inset (d) shows the rendering of both out of focus diffuse green region of the pool and the glossy ball.

⎡
⎢⎣x ′

θ ′

t ′

⎤
⎥⎦ =

⎡
⎢⎣1 0 −vx

0 1 −vθ

0 0 1

⎤
⎥⎦

⎡
⎢⎣x

θ

t

⎤
⎥⎦ . (25)

B. LINEAR TRANSFORMATION OF THE SIGNAL

In this section we derive the expression for the matrices to be used
to update the covariance matrix of the light field’s spectrum in each
situation.

We want to compute the covariance of the function f expressed
in a domain deformed by an invertible linear warping function B,
denoted as f ′, by the linear transform B with its associated matrix

B. For any point x in the space, the value for the f in the space
warped by B is

f ′(x) = f ◦ B−1(x).

We want to express the covariance matrix �′ of f ′, based on
the covariance matrix of � of f . From the definition we gave in
Section 4 of the covariance matrix

�′
i,j =

∫
x∈R5

〈x, ei〉 〈x, ej 〉 f ′(x) dx

=
∫

x∈R5
〈x, ei〉 〈x, ej 〉 f (B−1(x)) dx.
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Fig. 19. The snooker scene (adapted from Soler et al. [2009], TOG 28/2 c© ACM 2009) rendered using our algorithm. We present the filters used to perform
the reconstruction and the estimated needed sampling rate. Note that we used a windowing of 3 pixel-wide for this example. We used a small window to avoid
high-frequency leaking into the diffuse region that will occur during the max filtering step. We present a view of the filters using a smaller windowing in
Figure 20.

(a) using a 3 pixel-wide window (b) using a 10 pixels wide window

Fig. 20. In this figure, we compare the spatial windowing parameter. Using
a large spatial windowing kernel leads to a larger filters in smooth regions.

We apply the change of variables Bu = x, to obtain the following
integral formula.

�′
i,j =

∫
u∈R5

〈Bu, ei〉 〈Bu, ej 〉 f (u) |B|du

=
∫

u∈R5
〈u, BT ei〉 〈u, BT ej 〉 f (u) |B|du (26)

Now we expand the dot products.

〈u, BT ei〉 =
∑

k

Bk
i 〈u, ek〉

Injecting this into Eq. (26) gives

�′
i,j = |B|

∑
k

∑
l

Bk
i B

l
j

∫
u∈R5

〈u, ek〉 〈u, el〉 f (u) du

= |B|
∑

k

∑
l

Bk
i B

l
j�k,l

= |B|(BT �B)i,j .

Consequently, the matrix operator associated with the linear
transformation B of the space is

√|B|B.

C. BRDF MULTIPLICATION

BRDF multiplication is a band-limiting process. In the most general
situation, the 5D covariance matrix � of the signal doesn’t have
a full rank, and the calculation needs to be carefully conducted,
approximating the signal by a combination of a Gaussian and Dirac
functions.

Since � is always symmetric semidefinite and positive, it can be
diagonalized with an orthogonal transform. Let � be the diagonal
matrix of eigenvalues and U the matrix of eigenvectors.

� = U�UT

Some of the eigenvalues λi might be null. It corresponds to a
Dirac along the associated eigenvector (since we always have energy
in our light path, the DC term is never zero). Using the notation
ω = (ωx, ωy, ωθ , ωφ, ωt ) we have

f (ω) = e−ωT U�+UT ω
∏

j

δj (ω),

where �+ is the pseudo-inverse of �, and δj (ω) = δ(〈ej , ω〉).
Because it has covariance only in the angular domain, the BRDF

spectrum is well-represented by a product of a 2D Gaussian along
the θ and φ directions.

brdf(ω) = e−ωT Bω

Here B has zeros everywhere except for the angular part of the
matrix. Therefore, the product of the two functions is

f (ω) × brdf(ω) = e−ωT U�+UT ω
∏

j

δj (ω)e−ωT Bω

= e−ω′T �+ω′
e−ω′T UT BUω′ ∏

j

δj (ω)

= e−ω′T (�++UT BU )ω′ ∏
j

δj (ω).
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Fig. 21. The helicopter scene (courtesy of vklidu from blenderartists.org) rendered using our algorithm (a) and compared with an equal time path-traced
rendering (b). We used 10 light paths to estimate the covariance and used a maximum of 200 converged samples for the reconstruction.

Fig. 22. Shear from a light-field frame to another.

The covariance matrix �′ of this function is computed from the
pseudo-inverse of �+ + UT BU .

�′ = ((UT �U )+ + UT BU )+

= UT (�+ + B)+U.
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