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Sampling and Reconstruction of Visual 
Appearance: From Denoising to View Synthesis

CSE 274 [Fall 2022], Lecture 9

Ravi Ramamoorthi
http://www.cs.ucsd.edu/~ravir
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Applications
§ Monte Carlo Rendering 

§ Light Transport Acquisition / Many Light Rendering

§ Light Fields and Computational Photography

§ View Synthesis

§ Animation/Simulation (not covered in course)

§ Introduce concepts of sparsity, coherence, 
compressive sensing for reconstruction
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Acquiring Reflectance Field of Human 
Face [Debevec et al. SIGGRAPH 00]

Illuminate subject from many incident directions
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Example Images
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Motivation: Image-based Relighting

Sample Lighting Directions
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Motivation: Image-based Relighting

Sample Lighting Directions
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Motivation: Image-based Relighting

Sample Lighting Directions
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Motivation: Image-based Relighting

Sample Lighting Directions

Relight

16 Samples
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Motivation: Image-based Relighting

Sample Lighting Directions

Relight

16 Samples
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Motivation: Image-based Relighting

Sample Lighting Directions

Relight

64 Samples
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Motivation: Image-based Relighting

Sample Lighting Directions

Relight

256 Samples
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Motivation: Image-based Relighting

Sample Lighting Directions

Relight

256 Samples
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Motivation: Image-based Relighting

Sample Lighting Directions

Relight

256 Samples
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Motivation: Image-based Relighting

Sample Lighting Directions

Relight

4096 Samples
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Motivation: Image-based Relighting

Sample Lighting Directions

Relight

+10000 Samples
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Motivation: Image-based Relighting

Sample Lighting Directions

Relight

+10000 Samples

Brute Force Capture 
Practically Impossible
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Relighting as a Matrix-Vector Multiply
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Input Lighting
(Cubemap Vector)

Output Image
(Pixel Vector)

Precomputed
Transport

Matrix

Relighting as a Matrix-Vector Multiply
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Matrix Columns (Images)
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(Pre)compute: Ray-Trace Image Cols
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(Pre)compute 2: Rasterize Matrix Rows
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Outline

§ Matrix Row-Column Sampling (Many Lights)

(clustering for matrix completion of light transport)

§ Compressive Sensing for Light Transport

§ Matrix Completion

Hasan, Pellacini, Bala SIGGRAPH 07
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Complex Illumination: A Challenge
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Conversion to Many Lights

Courtesy Walter et al., Lightcuts, SIGGRAPH 05/06

• Area, indirect, sun/sky

24
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A Matrix Interpretation

Pixels
(2,000,000)

Lights (100,000)
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• Compute sum of columns

• Note: We don’t have the matrix data

Problem Statement

= Σ ( )

Pi
xe

ls

Lights
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Image as a Weighted Column Sum

compute very small 
subset of columns

compute 
weighted sum

• The following is possible:

• Use rows to choose a good set of columns!
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Exploration and Exploitation

compute rows 
(explore)

compute columns 
(exploit)

weighted 
sum

?

choose columns 
and weights

how to choose 
columns and 

weights?
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Reduced Matrix

Reduced 
columns

29

Clustering Approach

Choose k clusters
Choose 

representative 
columns

Reduced 
columns

30
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Reduced to Full

Use the same 
representatives for 

the full matrix

Weighted 
sum

Representative 
columns
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Full Algorithm

Compute rows 
(GPU)

Weighted sum

Assemble rows into 
reduced matrix

Cluster reduced 
columns

Choose 
representatives

Compute columns 
(GPU)
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Results
• We show 5 scenes:

• Show reference and 5x difference image
• All scenes have 100,000+ lights
• Timings

– NVidia GeForce 8800 GTX
– Light / surface sample creation not included

Temple BunnyKitchen Trees Grand Central
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Results: Kitchen
• 388k polygons
• Mostly indirect illumination
• Glossy surfaces
• Indirect shadows

Our result: 13.5 sec       
(432 rows + 864 columns)

Reference: 13 min       
(using all 100k lights)

5x diff
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Results: Temple
• 2.1m polygons
• Mostly indirect & sky illumination
• Indirect shadows

Our result: 16.9 sec 
(300 rows + 900 columns)

Reference: 20 min 
(using all 100k lights)

5x diff
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Results: Trees
• 328k polygons
• Complex incoherent geometry

Our result: 2.9 sec         
(100 rows + 200 columns)

Reference: 14 min       
(using all 100k lights)

5x diff
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Results: Bunny
• 869k polygons
• Incoherent geometry
• High-frequency lighting
• Kajiya-Kay hair shader

Our result: 3.8 sec         
(100 rows + 200 columns)

Reference: 10 min       
(using all 100k lights)

5x diff
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Results: Grand Central
• 1.5m polygons
• Point lights between 

stone blocks

Our result: 24.2 sec         
(588 rows + 1176 columns)

Reference: 44 min       
(using all 100k lights)

5x diff
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Outline

§ Matrix Row-Column Sampling (Many Lights)

(clustering for matrix completion of light transport)

§ Compressive Sensing for Light Transport

§ Matrix Completion

Gu et al. ECCV 08
Peers et al. SIGGRAPH 09
Sen and Darabi EG 09 (reading)
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Motivation: Image-based Relighting

Sample Lighting Directions

Relight

+10000 Samples

Brute Force Capture 
Practically Impossible
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Compressible / Sparseness

ψ ψ

5% Largest Coeff.All Coefficients
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Measurements

C
anonical D

om
ain

W
avelet D

om
ain

Measured Quanta

ψ
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Measurements
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Compressible / Sparseness
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Compressible / Sparseness

C
anonical D

om
ain

W
avelet D

om
ain

Measured Quanta

ψExhaustive Measurements?
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Compressive Sensing: A Brief Introduction
• Sparsity / Compressibility: 

– Signals can be represented as a few non-zero coefficients in an 
appropriately-chosen basis, e.g., wavelet, gradient, PCA.

• For sparse signals, acquire measurements (condensed 
representations of the signals) with random projections.

[Candes et al., 06][Donoho, 06]…

=X

Measurement Ensemble
m×n,  where m<n

Measurements
m×1

Signal
n×1

bA
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Compressive Sensing

x

48
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Compressive Sensing

x

49

Compressive Sensing

x

. . .

. . .
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Compressive Sensing

x . . .
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Compressive Sensing

x . . .

Measurement 
Ensemble: Φ

Sparse Signal: x
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Compressive Sensing

x . . .

Measurement 
Ensemble: Φ

Sparse Signal: x
=

Measured 
Quanta: y
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Compressive Sensing

x . . .

Measurement 
Ensemble: Φ

Sparse Signal: x
=

Measured 
Quanta: y

N

M

M
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Compressive Sensing

x . . .

Measurement 
Ensemble: Φ

Sparse Signal: x
=

Measured 
Quanta: y

N

M

M

M ~ K logN
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Compressive Sensing

x = argminx ||x||1 s.t. Φx = y
Reconstruction

x . . .

Measurement 
Ensemble: Φ

Sparse Signal: x
=

Measured 
Quanta: y

Approximation: x
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Diffuse Sphere

128 x 128

1000 Normal
Distributed Noise Light Conditions

100 Haar 
Wavelet Coefficients 

Scene:

Lighting Resolution:

Measurements:

Reconstruction:

Brute Force: Result
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Diffuse Sphere

128 x 128

1000 Normal
Distributed Noise Light Conditions

100 Haar 
Wavelet Coefficients 

Scene:

Lighting Resolution:

Measurements:

Reconstruction:

Brute Force: Result
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Diffuse Sphere

128 x 128

1000 Normal
Distributed Noise Light Conditions

100 Haar 
Wavelet Coefficients 

Scene:

Lighting Resolution:

Measurements:

Reconstruction:

Brute Force: Result

Each pixel computed
separately

Spatial Coherence
not exploited
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Multi-resolution Approach

60
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Multi-resolution Approach

61

Compressive 
Decoding

Init

Multi-resolution Approach

Brute Force 
Compressive 

Decoding

Compressive 
Decoding

Init

Compressive 
Decoding

Init

R
ef

le
ct

an
ce

 F
un

c.
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Results

Brute Force Algorithm Hierarchical Algorithm
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Resolution

1000 Measurements
128 x 128 Lighting Resolution
128 Haar Wavelet Coefficients
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Resolution

1000 Measurements
128 x 128 Lighting Resolution
128 Haar Wavelet Coefficients
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Results

Reference 1000 Measurement
128 x 128 Lighting Resolution
128 Haar Wavelet Coefficients
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1000 Measurement
128 x 128 Lighting Resolution
128 Haar Wavelet Coefficients

Results

Reference
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1000 Measurement
128 x 128 Lighting Resolution
128 Haar Wavelet Coefficients

Reference

Results

0.04
0.06
0.09
0.13
0.17
0.25
0.30
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Inhomogeneous Participating Media

Volume densities rather than boundary surfaces. 
Efficiency in acquisition is critical, especially for time-
varying participating media. 

Drifting Smoke of Incense
(532fps Camera)

Mixing a Pink Drink with Water 
(1000fps Camera)

Video clips are from http://www.lucidmovement.com
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• Projector: DLP, 1024x768, 360 fps
• Camera: Dragonfly Express 8bit, 320x140 at 360 fps
• 24 measurements per time instance, and thus recover dynamic 

volumes up to 360/24 = 15 fps.

Projector

Camera

Milk Drops

Compressive Structured Light

Gu, Nayar, Grinspun, Belhumeur, Ramamoorthi 08, 13
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Milk Dissolving: One Instance of time

Photograph

• Milk drops dissolving in a water tank.

Measurements
(24 images of size 128x250)

Reconstructed Volume
(128x128x250)
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Milk Dissolving: Time-varying Volume

Video (15fps) Reconstructed Volume
(128x128x250)

• Milk drops dissolving in a water tank.

72



13

Outline

§ Matrix Row-Column Sampling (Many Lights)

(clustering for matrix completion of light transport)

§ Compressive Sensing for Light Transport

§ Matrix Completion
§ Extension to compressive sensing: Low rank matrices
§ Minimize matrix norm (rank), given some entries
§ Combine many ideas seen previously

Huo et al. SIGGRAPH Asia 16

73

Outline

§ Matrix Completion
§ Extension to compressive sensing: Low rank matrices
§ Minimize matrix norm (rank), given some entries
§ Combine many ideas seen previously

Huo et al. SIGGRAPH Asia 16
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Results (Participating Media)
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Summary
§ Light Transport for Acquisition, Many Light Rendering

§ Compressive Sensing for projected patterns

§ Matrix Completion for many light rendering

§ Leverages popular ideas in applied math

§ Consider all forms of coherence

§ Think about modern extensions with deep learning
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