

Sampling and Reconstruction of Visual Appearance: From Denoising to View Synthesis

CSE 274 [Fall 2022], Lecture 9

Ravi Ramamoorthi

<http://www.cs.ucsd.edu/~ravir>

1

Applications

- Monte Carlo Rendering
- *Light Transport Acquisition / Many Light Rendering*
- Light Fields and Computational Photography
- View Synthesis
- Animation/Simulation (not covered in course)
- Introduce concepts of sparsity, coherence, compressive sensing for reconstruction

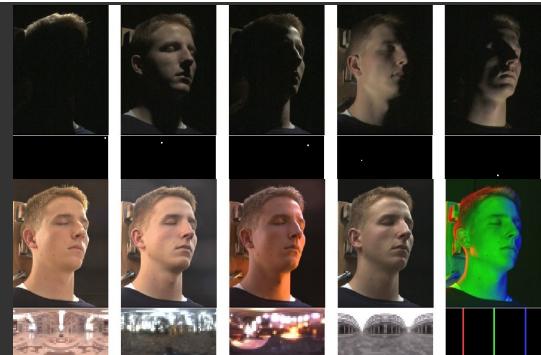
2

Acquiring Reflectance Field of Human Face [Debevec et al. SIGGRAPH 00]

Illuminate subject from many incident directions

3

Example Images



4

Motivation: Image-based Relighting

Sample Lighting Directions

5

Motivation: Image-based Relighting

Sample Lighting Directions

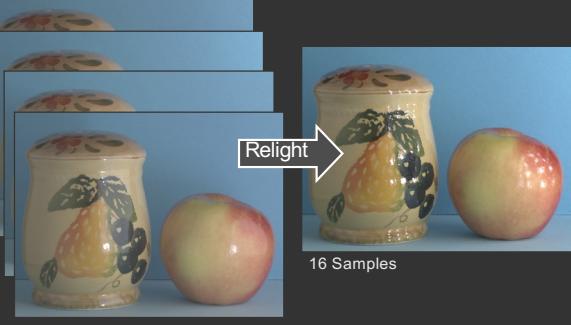
6

Motivation: Image-based Relighting

Sample Lighting Directions

7

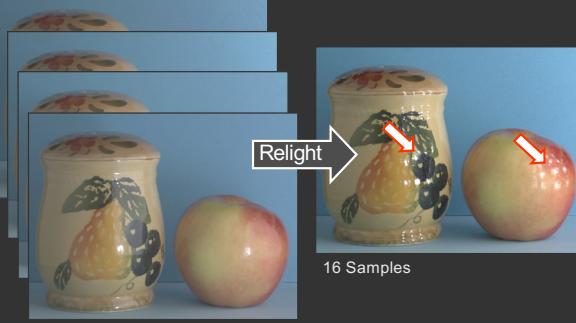
Motivation: Image-based Relighting



Sample Lighting Directions

8

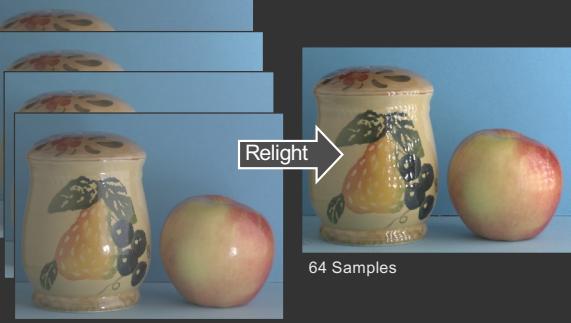
Motivation: Image-based Relighting



Sample Lighting Directions

9

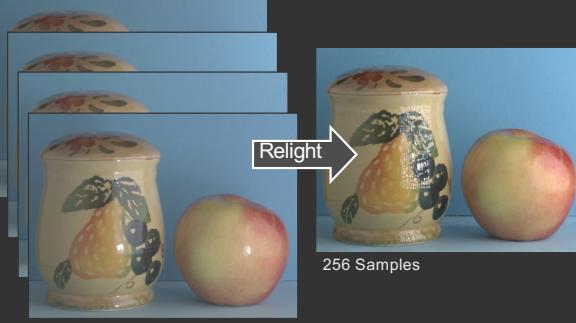
Motivation: Image-based Relighting



Sample Lighting Directions

10

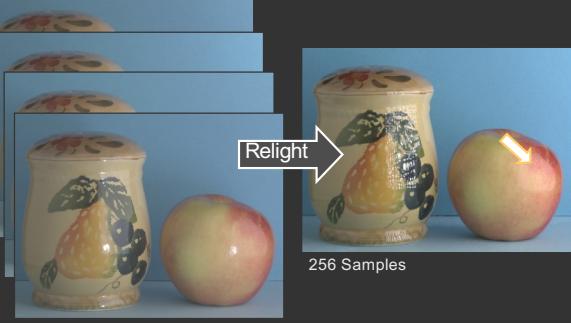
Motivation: Image-based Relighting



Sample Lighting Directions

11

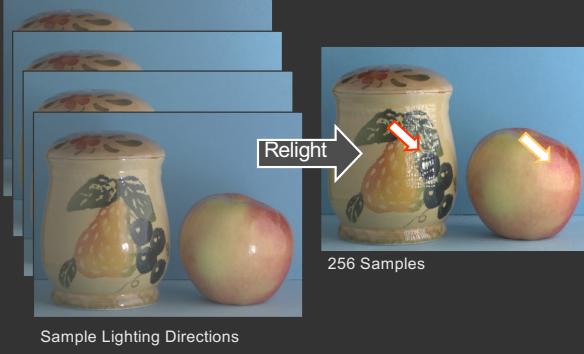
Motivation: Image-based Relighting



Sample Lighting Directions

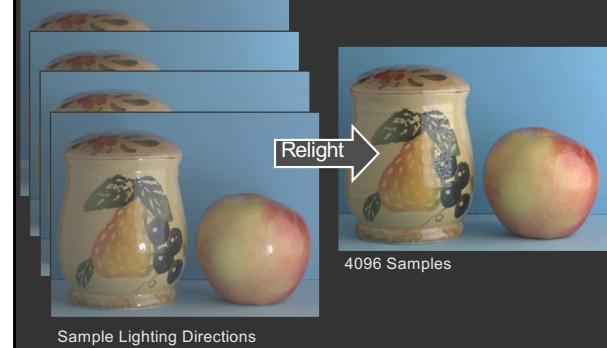
12

Motivation: Image-based Relighting



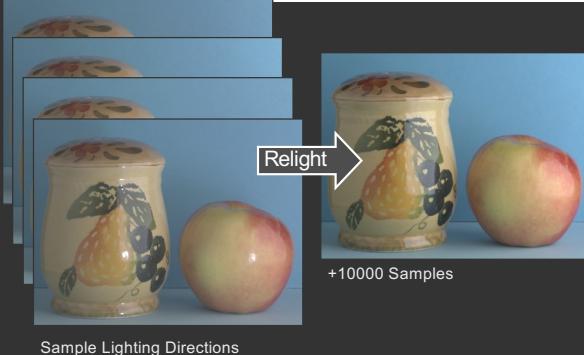
13

Motivation: Image-based Relighting



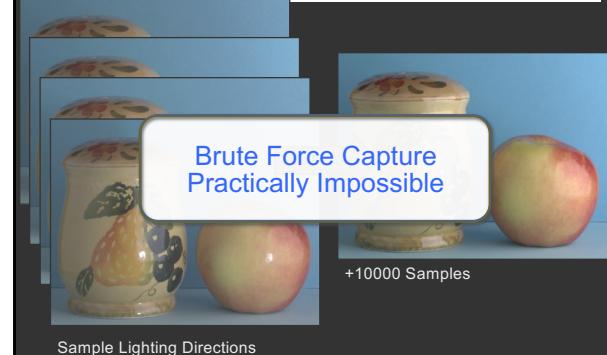
14

Motivation: Image-based Relighting



15

Motivation: Image-based Relighting



16

Relighting as a Matrix-Vector Multiply

$$\begin{bmatrix}
 P_1 \\
 P_2 \\
 P_3 \\
 \vdots \\
 P_N
 \end{bmatrix}
 \begin{bmatrix}
 T_{11} & T_{12} & \cdots & T_{1M} \\
 T_{21} & T_{22} & \cdots & T_{2M} \\
 T_{31} & T_{32} & \cdots & T_{3M} \\
 \vdots & \vdots & \ddots & \vdots \\
 T_{N1} & T_{N2} & \cdots & T_{NM}
 \end{bmatrix}
 \begin{bmatrix}
 L_1 \\
 L_2 \\
 \vdots \\
 L_M
 \end{bmatrix}$$

17

Relighting as a Matrix-Vector Multiply

$$\begin{array}{c}
 \text{Output Image (Pixel Vector)} \\
 \begin{bmatrix}
 P_1 \\
 P_2 \\
 P_3 \\
 \vdots \\
 P_N
 \end{bmatrix} \\
 = \\
 \begin{array}{c}
 \text{Input Lighting (Cubemap Vector)} \\
 \begin{bmatrix}
 T_{11} & T_{12} & \cdots & T_{1M} \\
 T_{21} & T_{22} & \cdots & T_{2M} \\
 T_{31} & T_{32} & \cdots & T_{3M} \\
 \vdots & \vdots & \ddots & \vdots \\
 T_{N1} & T_{N2} & \cdots & T_{NM}
 \end{bmatrix}
 \end{array} \\
 \begin{array}{c}
 \text{Precomputed Transport Matrix} \\
 \begin{bmatrix}
 L_1 \\
 L_2 \\
 \vdots \\
 L_M
 \end{bmatrix}
 \end{array}
 \end{array}$$

18

Matrix Columns (Images)

$$\begin{bmatrix} T_{11} & T_{12} & \cdots & T_{1M} \\ T_{21} & T_{22} & \cdots & T_{2M} \\ T_{31} & T_{32} & \cdots & T_{3M} \\ \vdots & \vdots & \ddots & \vdots \\ T_{N1} & T_{N2} & \cdots & T_{NM} \end{bmatrix} \quad \begin{array}{c} \text{A 3D scene with a plant} \\ \text{represented as a matrix of columns} \end{array}$$

19

(Pre)compute: Ray-Trace Image Cols

$$\begin{bmatrix} T_{11} & T_{12} & \cdots & T_{1M} \\ T_{21} & T_{22} & \cdots & T_{2M} \\ T_{31} & T_{32} & \cdots & T_{3M} \\ \vdots & \vdots & \ddots & \vdots \\ T_{N1} & T_{N2} & \cdots & T_{NM} \end{bmatrix} \quad \begin{array}{c} \text{A 3D scene with a teapot} \\ \text{represented as a matrix of columns} \end{array}$$

20

(Pre)compute 2: Rasterize Matrix Rows

$$\begin{bmatrix} T_{11} & T_{12} & \cdots & T_{1M} \\ T_{21} & T_{22} & \cdots & T_{2M} \\ T_{31} & T_{32} & \cdots & T_{3M} \\ \vdots & \vdots & \ddots & \vdots \\ T_{N1} & T_{N2} & \cdots & T_{NM} \end{bmatrix} \quad \begin{array}{c} \text{A 3D scene with a plant} \\ \text{represented as a matrix of rows} \end{array}$$

21

Outline

- *Matrix Row-Column Sampling (Many Lights)*
(clustering for matrix completion of light transport)
- Compressive Sensing for Light Transport
- Matrix Completion

Hasan, Pellacini, Bala SIGGRAPH 07

22

Complex Illumination: A Challenge

23

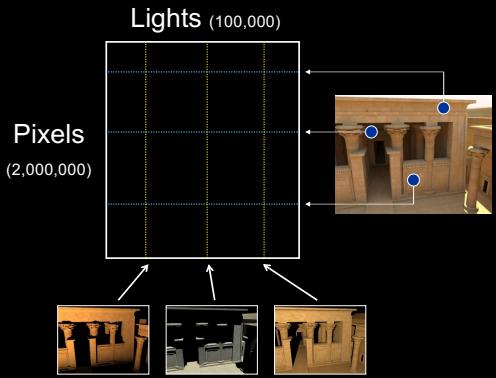
Conversion to Many Lights

- Area, indirect, sun/sky

Courtesy Walter et al., Lightcuts, SIGGRAPH 05/06

24

A Matrix Interpretation



25

Problem Statement

- Compute sum of columns

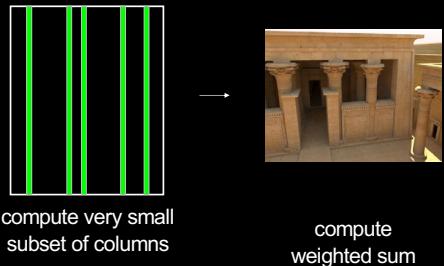
$$\text{Lights} = \sum (\text{Pixels})$$

The diagram shows a large image of a room with columns on the left, with three blue dots pointing to specific pixels. To the right is a large matrix with 100,000 columns and 2,000,000 rows. Arrows point from the image to the matrix and from the matrix to the equation.

26

Image as a Weighted Column Sum

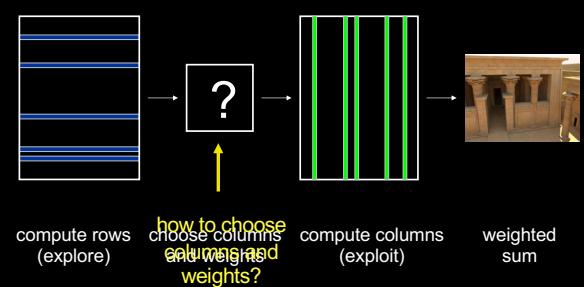
- The following is possible:



- Use rows to choose a good set of columns!

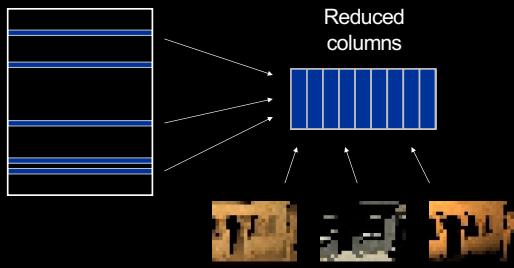
27

Exploration and Exploitation



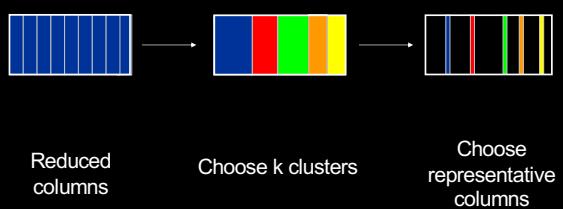
28

Reduced Matrix



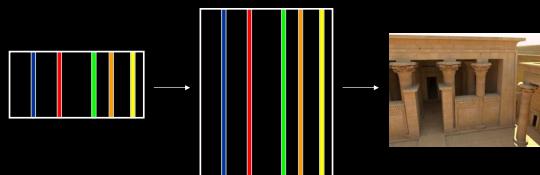
29

Clustering Approach



30

Reduced to Full

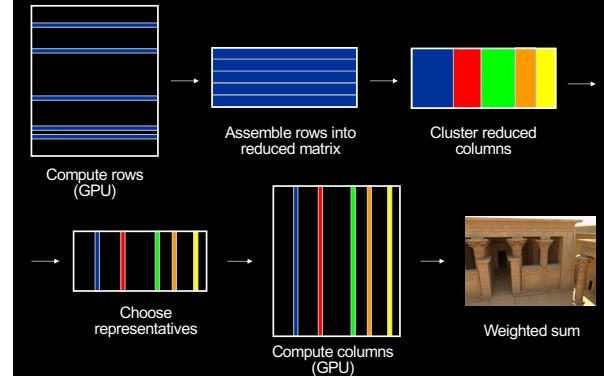


Representative columns

Use the same representatives for the full matrix

Weighted sum

Full Algorithm



Assemble rows into reduced matrix

Cluster reduced columns

Choose representatives

Compute columns (GPU)

Weighted sum

31

32

Results

- We show 5 scenes:

- Show reference and 5x difference image
- All scenes have 100,000+ lights
- Timings
 - NVidia GeForce 8800 GTX
 - Light / surface sample creation not included

33

Results: Kitchen

- 388k polygons
- Mostly indirect illumination
- Glossy surfaces
- Indirect shadows

Our result: 13.5 sec
(432 rows + 864 columns)

Reference: 13 min
(using all 100k lights)

34

Results: Temple

- 2.1m polygons
- Mostly indirect & sky illumination
- Indirect shadows

Our result: 16.9 sec
(300 rows + 900 columns)

Reference: 20 min
(using all 100k lights)

35

Results: Trees

- 328k polygons
- Complex incoherent geometry

Our result: 2.9 sec
(100 rows + 200 columns)

Reference: 14 min
(using all 100k lights)

36

Results: Bunny

- 869k polygons
- Incoherent geometry
- High-frequency lighting
- Kajiya-Kay hair shader

Our result: 3.8 sec
(100 rows + 200 columns)



Reference: 10 min
(using all 100k lights)

Results: Grand Central

- 1.5m polygons
- Point lights between stone blocks

Our result: 24.2 sec
(588 rows + 1176 columns)

Reference: 44 min
(using all 100k lights)

37

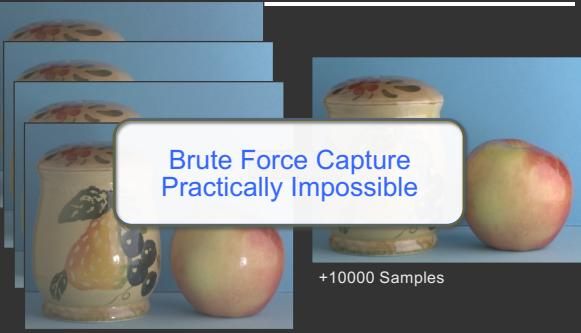
Outline

- Matrix Row-Column Sampling (Many Lights)
(clustering for matrix completion of light transport)
- *Compressive Sensing for Light Transport*
- Matrix Completion

Gu et al. ECCV 08
Peers et al. SIGGRAPH 09
Sen and Darabi EG 09 (reading)

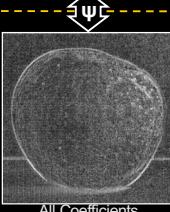
39

Motivation: Image-based Relighting

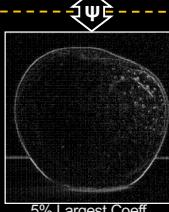


40

Compressible / Sparseness

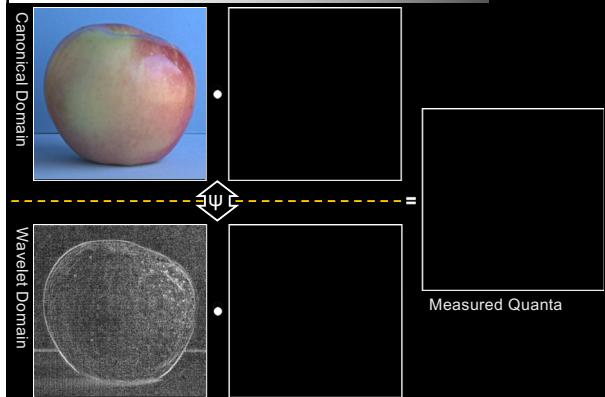


All Coefficients



5% Largest Coeff.

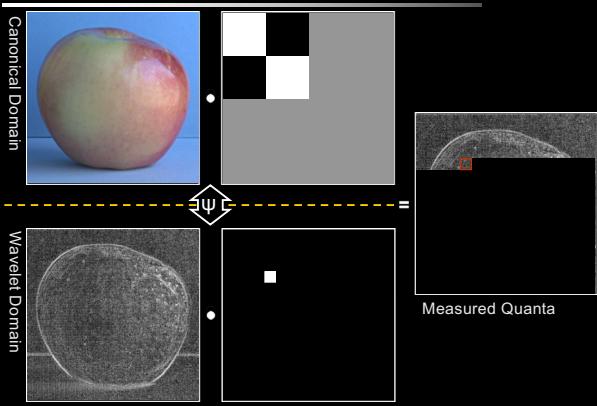
Measurements



41

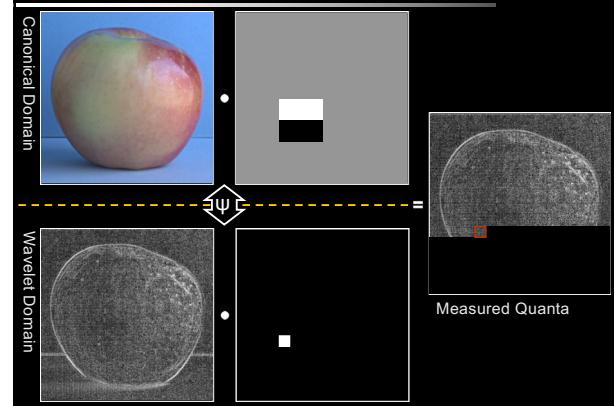
42

Measurements



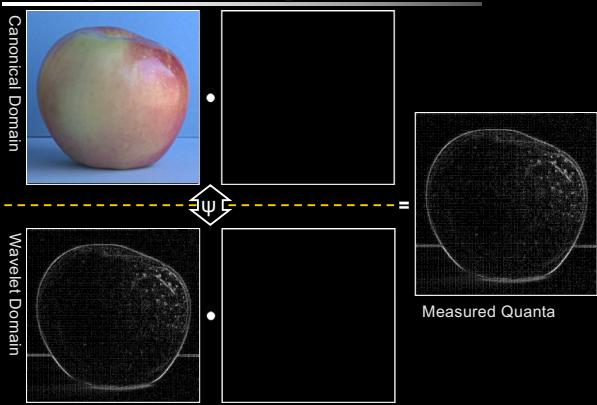
43

Measurements



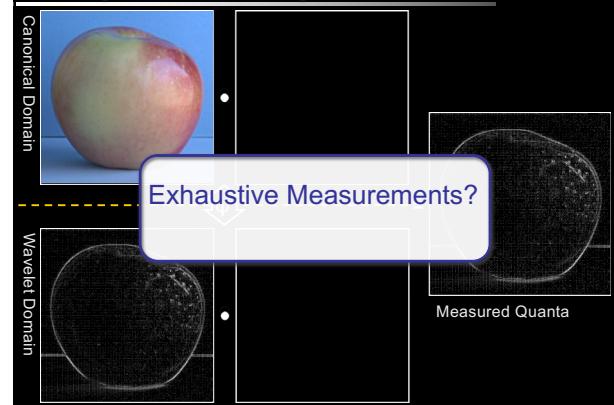
44

Compressible / Sparseness



45

Compressible / Sparseness



46

Compressive Sensing: A Brief Introduction

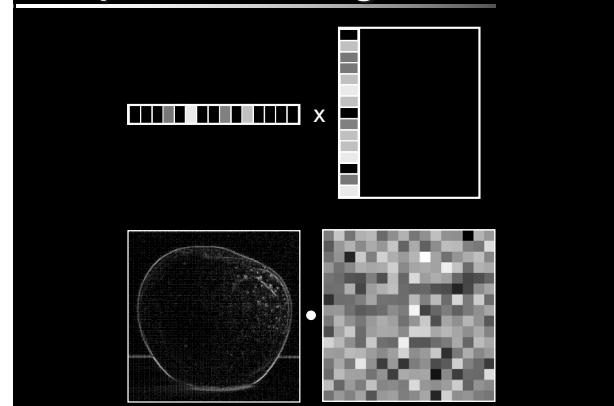
[Candes et al., 06][Donoho, 06]...

- Sparsity / Compressibility:
 - Signals can be represented as a few non-zero coefficients in an appropriately-chosen basis, e.g., wavelet, gradient, PCA.
- For sparse signals, acquire **measurements** (condensed representations of the signals) with **random projections**.

$$\mathbf{A} \begin{pmatrix} \text{Measurement Ensemble} \\ m \times n, \text{ where } m < n \end{pmatrix} \begin{pmatrix} \text{Signal} \\ n \times 1 \end{pmatrix} = \begin{pmatrix} \text{Measurements} \\ m \times 1 \end{pmatrix} \mathbf{b}$$

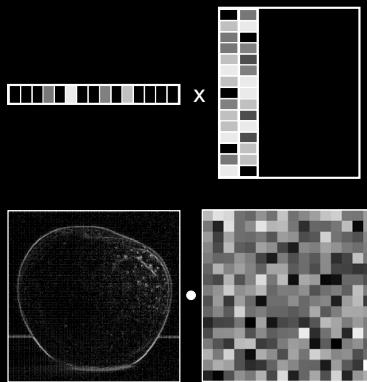
47

Compressive Sensing



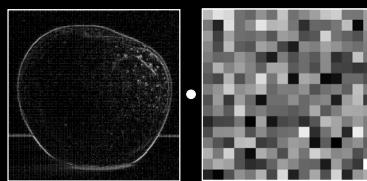
48

Compressive Sensing



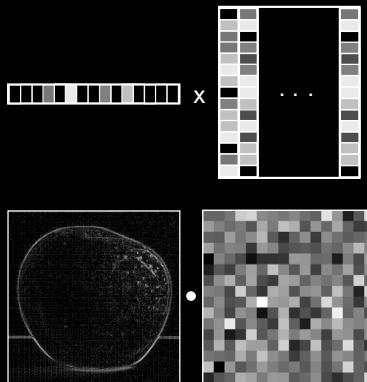
49

Compressive Sensing



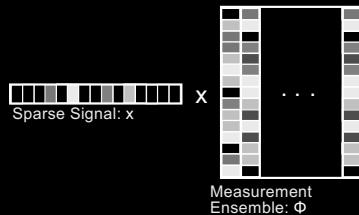
50

Compressive Sensing



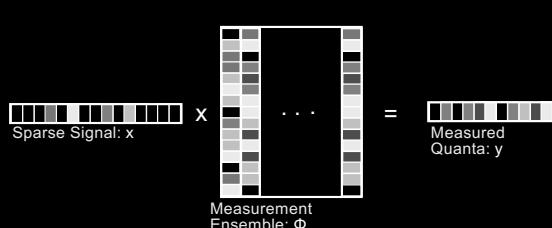
51

Compressive Sensing



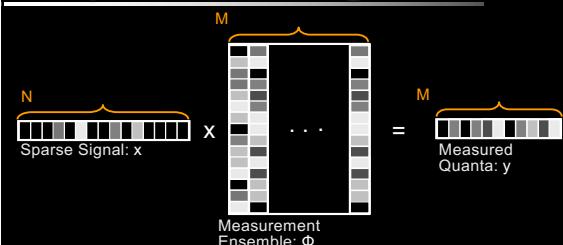
52

Compressive Sensing



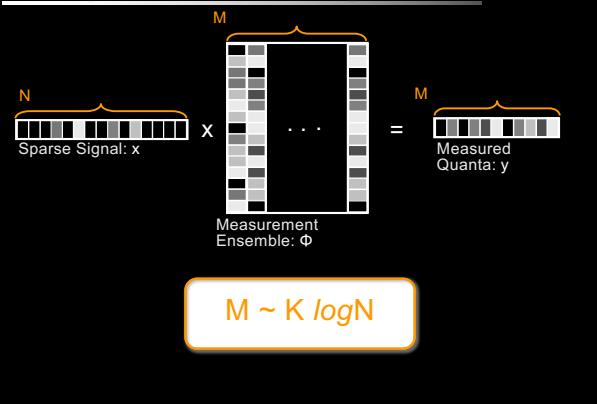
53

Compressive Sensing



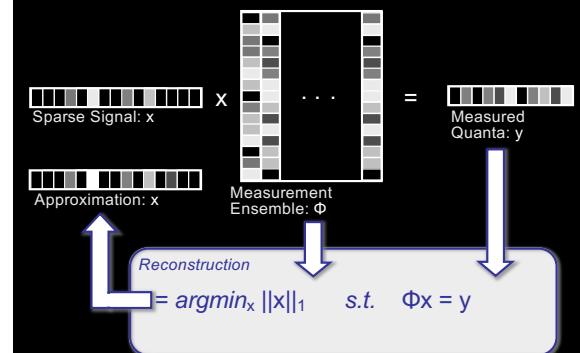
54

Compressive Sensing



55

Compressive Sensing

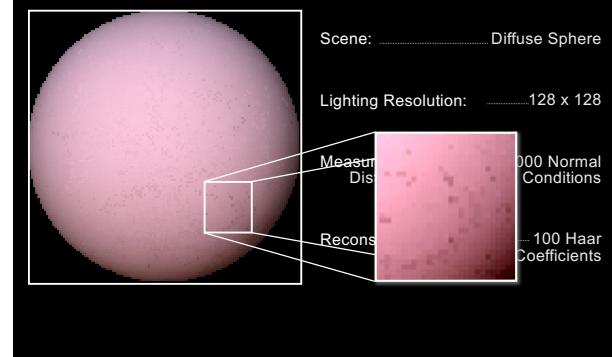


56

Brute Force: Result

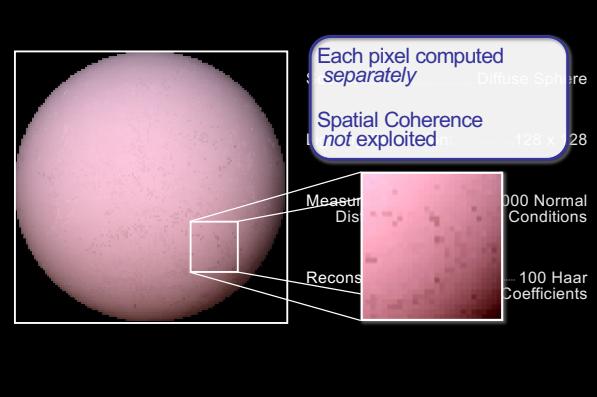
57

Brute Force: Result



58

Brute Force: Result

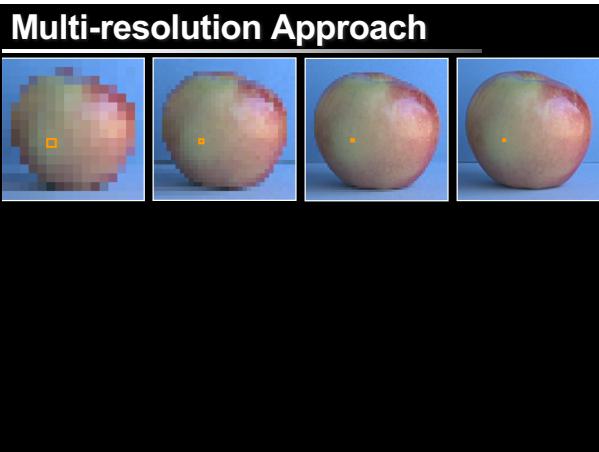


59

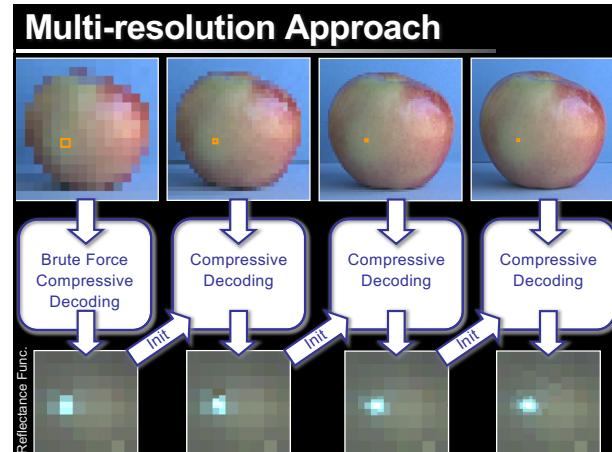
Multi-resolution Approach



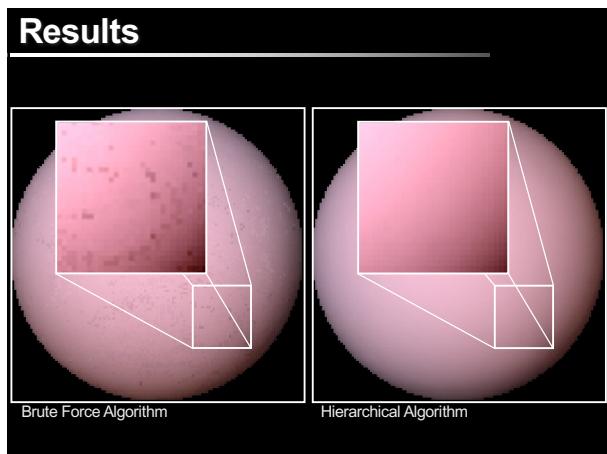
60



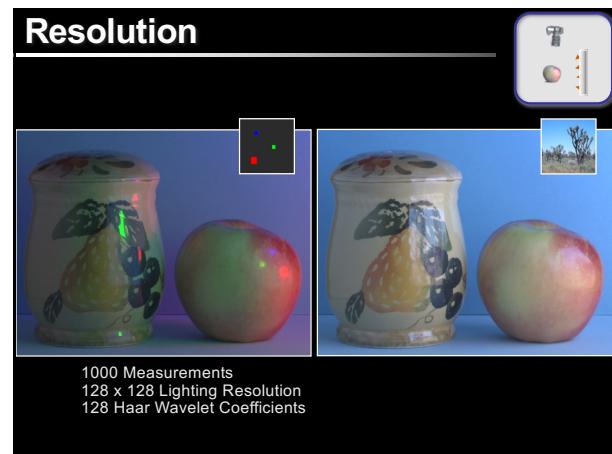
61



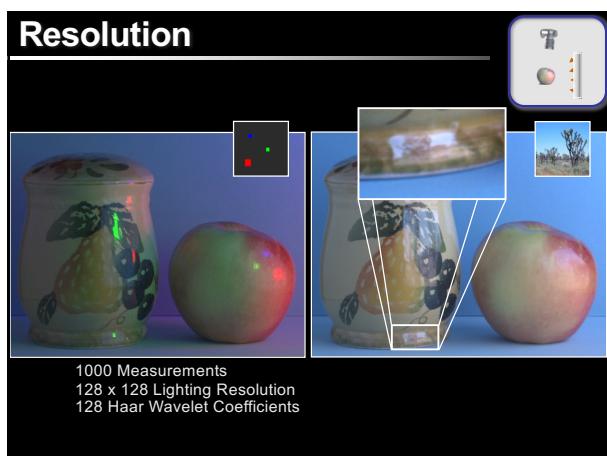
62



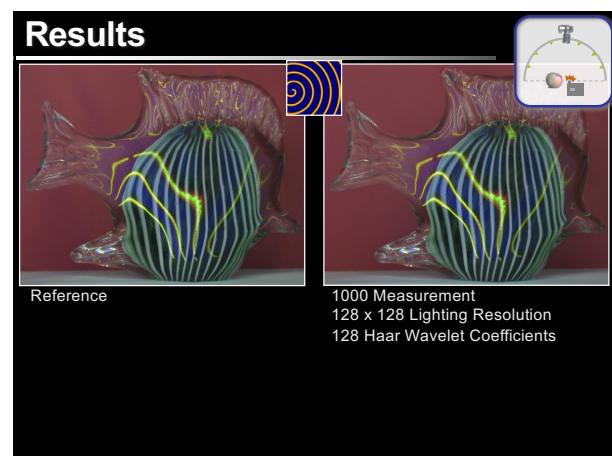
63



64

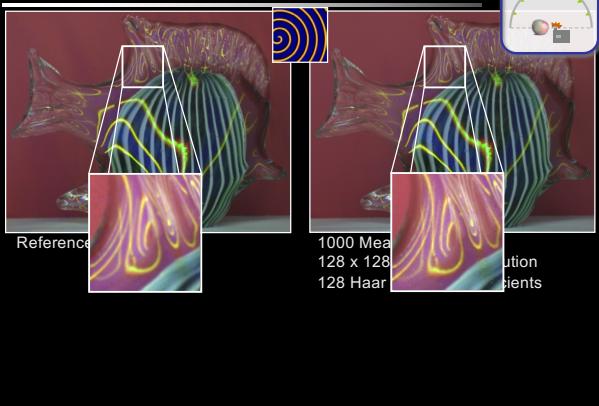


65



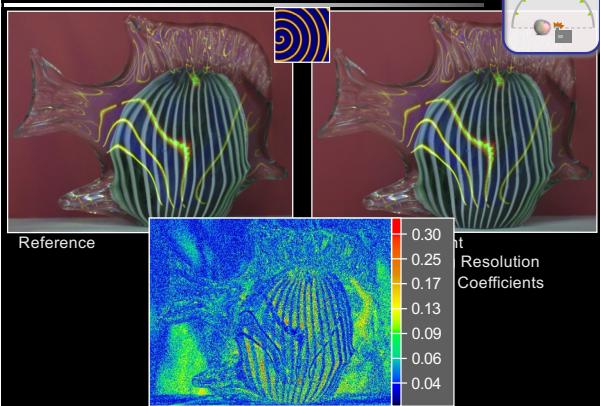
66

Results



67

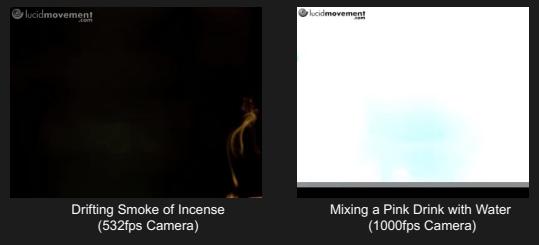
Results



68

Inhomogeneous Participating Media

Volume densities rather than boundary surfaces.
Efficiency in acquisition is critical, especially for time-varying participating media.

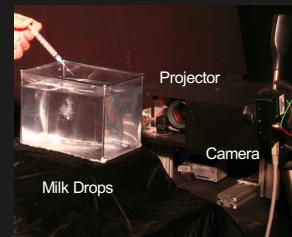


Video clips are from <http://www.lucidmovement.com>

69

Compressive Structured Light

- Projector: DLP, 1024x768, 360 fps
- Camera: Dragonfly Express 8bit, 320x140 at 360 fps
- 24 measurements per time instance, and thus recover dynamic volumes up to $360/24 = 15$ fps.

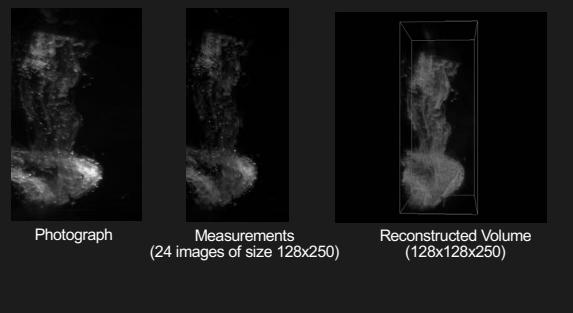


Gu, Nayar, Grinspun, Belhumeur, Ramamoorthi 08, 13

70

Milk Dissolving: One Instance of time

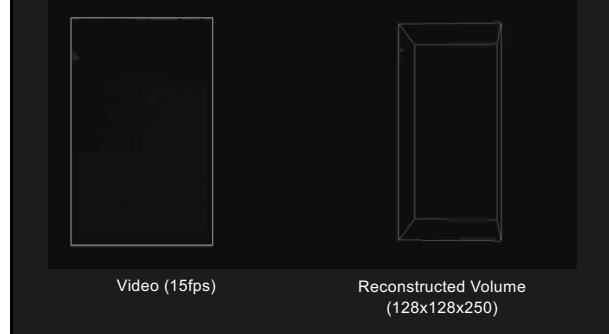
- Milk drops dissolving in a water tank.



71

Milk Dissolving: Time-varying Volume

- Milk drops dissolving in a water tank.



72

Outline

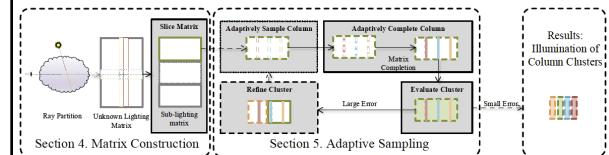
- Matrix Row-Column Sampling (Many Lights)
(clustering for matrix completion of light transport)
- Compressive Sensing for Light Transport
- **Matrix Completion**
 - Extension to compressive sensing: Low rank matrices
 - Minimize matrix norm (rank), given some entries
 - Combine many ideas seen previously

Huo et al. SIGGRAPH Asia 16

73

Outline

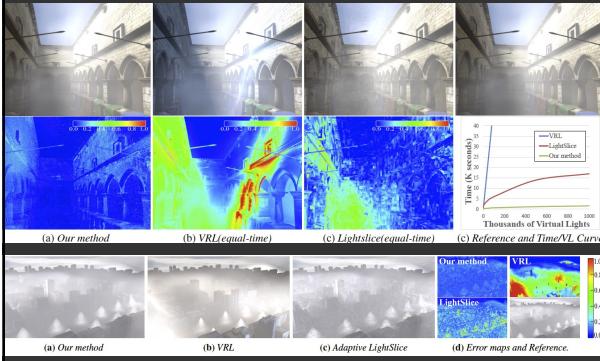
- **Matrix Completion**
 - Extension to compressive sensing: Low rank matrices
 - Minimize matrix norm (rank), given some entries
 - Combine many ideas seen previously



Huo et al. SIGGRAPH Asia 16

74

Results (Participating Media)



75

Summary

- Light Transport for Acquisition, Many Light Rendering
- Compressive Sensing for projected patterns
- Matrix Completion for many light rendering
- Leverages popular ideas in applied math
- Consider all forms of coherence
- Think about modern extensions with deep learning

76