Basics of Denoising, Frequency Analysis

Sampling and Reconstruction of Visual

Appearance: From Denoising to View Synthesis e (Cele [Randising (loljsest gpallicaien)

Basic idea of denoising
CSE 274 [Fall 2022], Lecture 6

Ravi Ramamoorthi

Frequency analysis one key concept

Presentation of key papers at next class
http://www.cs.ucsd.edu/~ravir L
Relevant to other applications as well
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Motivation

Distribution effects (depth of field, motion blur, global
illumination, soft shadows) are slow. Many dimensions sample

motion blur

soft shadows Ray Tracing physically accurate but slow, not real-time
glossy reflection Can we adaptively sample and filter for fast, real-time?

These algorithms use 2 kinds of noise reduction
strategies, sometimes combined:

Adaptive sampling algorithms
Use information from renderer to position new
samples better to reduce noise
Reconstruction (filtering) algorithms

Use information from renderer to remove MC
noise directly

Both methods have been explored in the past,

seenetylodmelien 4 samples/pixel using only post-process filter! but new algorithms make remarkable advances
(48.9 sec)




Multi-Dimensional Adaptive Sampling

Hachisuka, Jarosz, ... Zwicker, Jensen [MDAS 2008]
Scenes with motion blur, depth of field, soft shadows
Involves high-dimensional integral, converges slowly
Exploit high-dimensional info to sample adaptively

Sampling in 2D image plane or other dims inadequate
Need to consider full joint high-dimensional space

Resurgence (2008 - )
Eurographics 2015 STAR report by Zwicker et al.

Papers below are key a-priori, frequency analysis methods
Many other approaches to be discussed in class

[Durand et al. 2005] Frequency analysis light transport

Key theoretical ideas, but not initially very practical
[Chai et al. 2000] Plenoptic Sampling (wedge spectrum)

Egan et al. 2009] First practical a-priori frequency method

Fourier Transform

Tool for converting from spatial to frequency domain

f(x) =, F(ue*™

2miux

e“™ = cos(2rux)+ i sin(2zux)

Or vice versa i o=
One of most important mathematical ideas

Computational algorithm: Fast Fourier Transform
One of 10 great algorithms scientific computing
Makes Fourier processing possible (images etc.)

Not discussed here, but look up if interested

Multi-Dimensional Adaptive Sampling

Motion Blur and Depth of Field 32 samples per pixel

Background: Fourier Analysis

Analysis in the frequency (not spatial) domain
Sum of sine waves, with possibly different offsets (phase)
Each wave different frequency, amplitude

Fourier Transform

Simple case, function sum of sines, cosines

2miux

(e

Continuous infinite case

Forward Transform: F(U) = J.m f( X)eiz}ﬂuxdx

+oo .
Inverse Transform: f( X) = J F(U)ezmuxdu




Fourier Transform Fourier Transform: Examples 1

Simple case, function sum of sines, cosines Single sine curve
oo

[ tant DC t
f(x) — 2 F(u)e2mux (+cons an erm)

— JO f(X)e—Zmude

Discrete case
x=N-1 ) .
f(x)[ cos(2zux/ N)-isin(2zux/N)],  0<u<N-1
) : f(X) — Z F(u)Eerile

U=—o0

::_WF(u)[cos(Zn'uX/ N)+isin(2zux/N) |, 0<x<N-1 Fu)= [ flx)e™dx

Fourier Transform Examples 2 Fourier Transform Properties

Forward Transform: F(U) = J‘“’ f(X)e'z”'“XdX Forward Transform: F(U) = J.: f(X)e'Z”i“XdX

+oo ) oo ;
Inverse Transform: f(X) = _[ F(u)eZmUXdu Inverse Transform: f(X) = J,v F(u)ez’”“"du

Common examples Common properties

Linearity: F(af(x)+ bg(x)) = aF(f(x))+ bF(g(x))
f(x) F(u)

) q q o F(f'(x))= = f'(x)e’z‘””'xdx
S(x—x,) Derivatives: [integrate by parts] f

= 2miuF(u)
1 2D Fourier Transform

Forarg Transtom: F(uv) = [ [~ F(x,y)e 7"
e—ax2 n'/e—nzuzla &

Convolution (NeXt)neerason:  f(xy)= [ [~ Fuv)e?

Sampling Theorem, Bandlimiting Sampling Theorem, Bandlimiting

A signal can be reconstructed from its samples,
if the original signal has no frequencies above
half the sampling frequency — Shannon

A signal can be reconstructed from its samples, if
the original signal has no frequencies above half

the sampling frequency — Shannon
The minimum sampling rate for a bandlimited

. . The minimum sampling rate for a bandlimited
function is called the Nyquist rate

function is called the Nyquist rate

A signal is bandlimited if the highest frequency is
“ % f MJ bounded. This frequency is called the bandwidth
u\ J \/ J

In general, when we transform, we want to filter to
bandlimit before sampling, to avoid aliasing

Under-sampling




Antialiasing

Sample at higher rate
Not always possible
Real world: lines have infinitely high frequencies,
can’ t sample at high enough resolution

Prefilter to bandlimit signal
Low-pass filtering (blurring)
Trade blurriness for aliasing

Convolution 1
+ Spatial domain: output pixel is weighted sum of

pixels in neighborhood of input image
o Pattern of weights is the “filter”
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Input

Convolution 3

Ideal bandlimiting filter

Formal derivation is exercise

if full width fmax = 1

sin zzx
Sinc(x) =

Figure 4.5 Wolberg

Convolution 2

* Example 1:

Input Output
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Convolution 4

+ Example 1:

0.5

n*ii :n,zs Filter

Jl rl

Input Ou



Convolution 5

« Example 1:

0.5

ulii iu:i Filter

L 1\4

Input Output
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A Frequency Analysis
of Light Transport

F. Durand, mit csalL
N. Holzschuch, C. Soler, ARTIS/IGRAVIR-IMAG INRIA
E. Chan, miT csaiL

F. Sillion, ARTIS/GRAVIR-IMAG INRIA

lllumination effects

* Shadow boundaries:

£

Point light source Area light source

© U. Assarsson 2005.

Convolution in Frequency Domain

Forward Transform: F(U) = J.w f( X)e’z”i”"dx

Inverse Transform: f(X) = J‘:r”’ F(U)ez”iuxdu
Convolution (f is signal ; g is filter [or vice versal])

h(y)= [ (0g(y - x)dx = [ g(f(y - x)dx

h=f*g or f®g
Fourier analysis (frequency domain
multiplication) H(u) = F(u)G(u)

lllumination effects

* Blurry reflections:

SCLLY

From [Ramamoorthi and Hanrahan 2001]

Problem statement

* How does light interaction in a scene explain
the frequency content?

* Theoretical framework:

— Understand the frequency spectrum of the
radiance function

— From the equations of light transport




Unified framework:

* Spatial frequency
(e.g. shadows, textures)

* Angular frequency
(e.g. blurry highlight)

Local light field

* 4D light field, around a central ray

* We study its spectrum during transport

Local light field

* 4D light field, around a central ray
* We study its spectrum during transport
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Local light field

* 4D light field, around a central ray

Central ray

Local light field

* 4D light field, around a central ray

* We study its spectrum during transport
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Local light field parameterization

* Space and angle

angle

Central ray




Local light field

Local light field representation -
Fourier spectrum

* Density plot: * We are interested in the Fourier spectrum of
the local light field

* Also represented as a density plot

Local light field

. Fourier analysis 101
Fourier spectrum

* Spectrum corresponds to blurriness:

— Sharpest feature has size ~ 1/Fyax

* Convolution theorem:
— Multiplication of functions: spectrum is convolved
— Convolution of functions: spectrum is multiplied

* Classical spectra:

— Box becomes sinc
— Dirac becomes constant

>
Q
=]
o1
—
S
o)
=
-
<
=
—
&0
z

Spatial frequency

Transport Transport in Fourier space
e Shear: x =x-vd * Shearin primal: x ' =x-vd
 Shear in Fourier, along the other dimension

Ray space Ray space

—

Ray space Ray space Fourier space ‘ Fourier space

=

v (angle)
v (angle)
Qv (angle)
Qv (angle)

. -d

X (space) X (space) X (Space) Qx (space)




Transport becomes Shear BRDF integration

* This is consistent with light field spectra
[Chai et al. 00, Isaksen et al. 00]

* Ray-space: convolution 2
— Outgoing light:
convolution of incoming light and BRDF
— For rotationally-invariant BRDFs

* Fourier domain: multiplication

— Outgoing spectrum: multiplication of incoming
spectrum and BRDF spectrum

(d1)Scene image

(d2) EPI (d3) Fourier transform of EPL

From [Chai ef 0]
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Adaptive shading sampling Adaptive shading sampling

* Per-pixel prediction of max. frequency (bandwidth)  Per-pixel prediction of max. frequency (bandwidth)
— Based on curvature, BRDF, distance to occluder, etc.

— Based on curvature, BRDF, distance to occluder, etc.
— No spectrum computed, just estimate max frequency

— No spectrum computed, just estimate max frequency

Per-pixel bandwidth criterion

Shading samples

Uniform sampling

Adaptive sampling

20,000 samples

20,000 samples




Plenoptic Sampling A Geometrical Intuition

Plenoptic Sampling. Chai, Tong, Chan, Shum 00
Signal-processing on light field

Minimal sampling rate for antialiased rendering
Relates to depth range, Fourier analysis

Fourier spectra derived for 2D light fields for
simplicity. Same ideas extend to 4D

Key paper in many newer methods on sheared and
axis-aligned filtering for adaptive sampling

Camera i Camera i+1

A Geometrical Intuition A Constant Plane

Disparity Error
<

1 Pixel

VA A
Camera i Camera i+1
Rendering
Camera

Two Constant Planes Between Two Planes




Between Two Planes

Minimum Sampling Curve

Joint Image
and

Geometry Space

Minimum Sampling
Curve

6 12 Accurate

Number of Depth Layers

Observation

* Motion blur is expensive

* Motion blur removes spatial complexity

Light Field Reconstruction

Frequency Analysis and
Sheared Reconstruction for
Rendering Motion Blur

Kevin Egan Columbia University

Yu-Ting Tseng Columbia University ’
Nicolas Holzschuch INRIA -- LJIK i
Frédo Durand MIT CSAIL

Ravi Ramamoorthi University of California, Berkeley

@ SIGGRAPH200°

Space-time
graph

Basic Example

* Object not moving

f(x, 1)

SPACE ——
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Basic Example
* Low velocity, t€[0.0,1.0]

f(x, t)

Shear in Space-Time
* Object moving with low velocity
f(x, y) f(x, t)

=

Shear in Space-Time

* Object moving away from camera

f(x, y) f(x, t)

shear

-

Basic Example
* High velocity, t£[0.0,1.0]

f(x, y) f(x, t)

Shear in Space-Time

* Object moving with high velocity

Basic Example

* Applying shutter blurs across time

f(x, t)
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Basic Example — Fourier Domain

* Fourier spectrum, zero velocity

f(X’ t) F(QX! Qt)
texture
bandwidth

1 1
1 1
1 1/
1 1§
1 1
1 1

-1 liQ
X

O

Basic Example — Fourier Domain

* Large shear

f(x, 1)

Sampling in Fourier Domain

e Sampling produces in Fourier domain
* Sparse sampling produces dense replicas

Primal Domain Fourier Domain

Basic Example — Fourier Domain

* Low velocity, small shear in both domains

Basic Example — Fourier Domain
* Non-linear motion, wedge shaped spectra

f(x, t)

t

shutter applieé blur
across time

X

Standard Reconstruction Filtering
 Standard filter, dense sampling (slow)

replicas

Fourier Domain / j

Qy

no aliasing
o

12



Standard Reconstruction Filter

 Standard filter, sparse sampling (fast)

Fourier Domain

aliasing

Sheared Reconstruction Filter

* Compact shape in Fourier = wide in primal

Primal Domain Fourier Domain

Teapot Scene

Our Method
8 samples / pix

g

motion blurred
reflection

Sheared Reconstruction Filter

* Our sheared filter, sparse sampling (fast)

Fourier Domain

No aliasing!

Car Scene

Our Method, Stratified Sampling
4 samples per pixel 4 samples per pixel

Ballerina Video

Ballerina sequence
(8 samples/pixel)

Note smooth motion-blur
of dress and shadows

Frequency Analysis
and Sheared Reconstruction
for Rendering Motion Blur

ID: 0034
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