

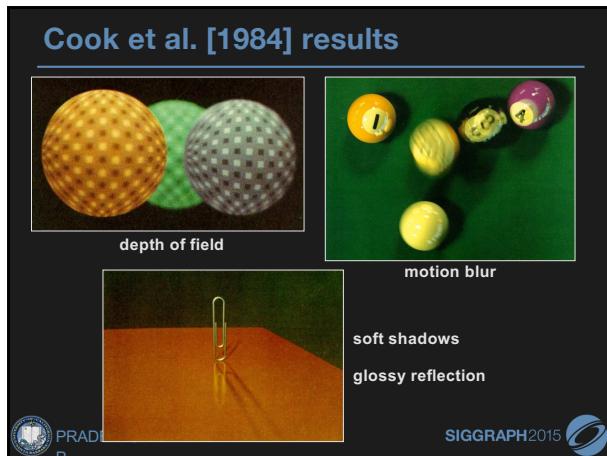
1

Basics of Denoising, Frequency Analysis

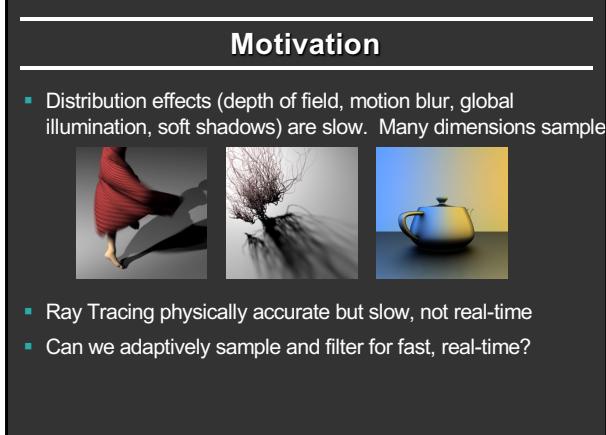
Monte Carlo Rendering (biggest application)

- Basic idea of denoising
- Frequency analysis one key concept
- Presentation of key papers at next class
- Relevant to other applications as well

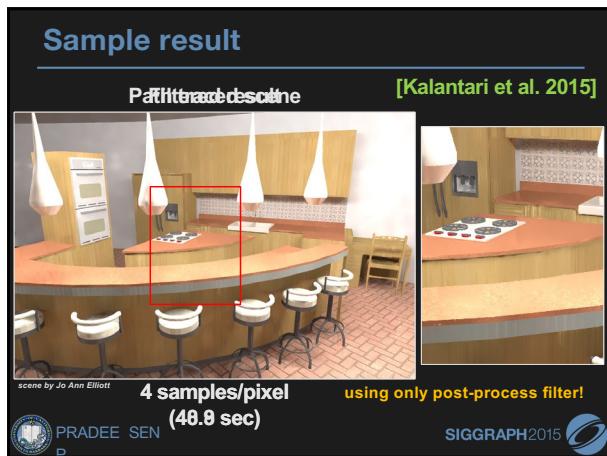
2



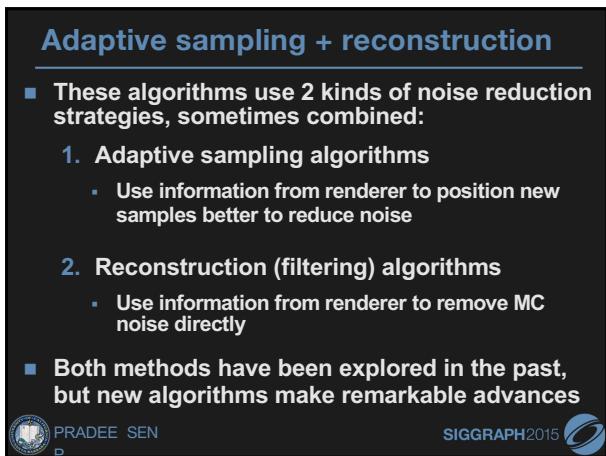
3



4



5



6

Multi-Dimensional Adaptive Sampling

- Hachisuka, Jarosz, ... Zwicker, Jensen [MDAS 2008]
- Scenes with motion blur, depth of field, soft shadows
- Involves high-dimensional integral, converges slowly
- Exploit high-dimensional info to sample adaptively
- Sampling in 2D image plane or other dims inadequate
 - Need to consider full joint high-dimensional space



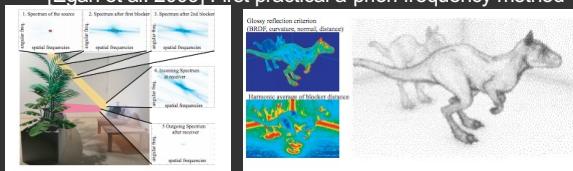
7

Multi-Dimensional Adaptive Sampling

8

Resurgence (2008 -)

- Eurographics 2015 STAR report by Zwicker et al.
 - Papers below are key a-priori, frequency analysis methods
 - Many other approaches to be discussed in class
- [Durand et al. 2005] Frequency analysis light transport
 - Key theoretical ideas, but not initially very practical
- [Chai et al. 2000] Plenoptic Sampling (wedge spectrum)
- [Egan et al. 2009] First practical a-priori frequency method



9

Background: Fourier Analysis

Analysis in the frequency (not spatial) domain

- Sum of sine waves, with possibly different offsets (phase)
- Each wave different frequency, amplitude

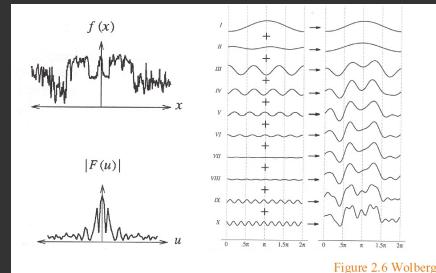


Figure 2.6 Wolberg

10

Fourier Transform

- Tool for converting from spatial to frequency domain
- Or vice versa
- One of most important mathematical ideas
- Computational algorithm: Fast Fourier Transform
 - One of 10 great algorithms scientific computing
 - Makes Fourier processing possible (images etc.)
 - Not discussed here, but look up if interested

Fourier Transform

- Simple case, function sum of sines, cosines

$$f(x) = \sum_{u=-\infty}^{+\infty} F(u) e^{2\pi i u x}$$

$$e^{2\pi i u x} = \cos(2\pi u x) + i \sin(2\pi u x)$$

$$i = \sqrt{-1}$$

- Continuous infinite case

$$\text{Forward Transform: } F(u) = \int_{-\infty}^{\infty} f(x) e^{-2\pi i u x} dx$$

$$\text{Inverse Transform: } f(x) = \int_{-\infty}^{+\infty} F(u) e^{2\pi i u x} du$$

11

12

Fourier Transform

- Simple case, function sum of sines, cosines

$$f(x) = \sum_{u=-\infty}^{+\infty} F(u) e^{2\pi i u x}$$

$$F(u) = \int_0^1 f(x) e^{-2\pi i u x} dx$$

- Discrete case

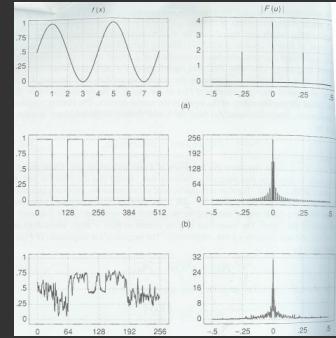
$$F(u) = \sum_{x=0}^{x=N-1} f(x) [\cos(2\pi u x / N) - i \sin(2\pi u x / N)], \quad 0 \leq u \leq N-1$$

$$f(x) = \frac{1}{N} \sum_{u=0}^{u=N-1} F(u) [\cos(2\pi u x / N) + i \sin(2\pi u x / N)], \quad 0 \leq x \leq N-1$$

13

Fourier Transform: Examples 1

Single sine curve
(+constant DC term)



$$f(x) = \sum_{u=-\infty}^{+\infty} F(u) e^{2\pi i u x}$$

$$F(u) = \int_0^1 f(x) e^{-2\pi i u x} dx$$

14

Fourier Transform Examples 2

Forward Transform: $F(u) = \int_{-\infty}^{\infty} f(x) e^{-2\pi i u x} dx$

Inverse Transform: $f(x) = \int_{-\infty}^{+\infty} F(u) e^{2\pi i u x} du$

- Common examples

$f(x)$	$F(u)$
$\delta(x - x_0)$	$e^{-2\pi i u x_0}$
1	$\delta(u)$
e^{-ax^2}	$\sqrt{\pi/a} e^{-\pi^2 u^2 / a}$

Fourier Transform Properties

Forward Transform: $F(u) = \int_{-\infty}^{\infty} f(x) e^{-2\pi i u x} dx$

Inverse Transform: $f(x) = \int_{-\infty}^{+\infty} F(u) e^{2\pi i u x} du$

- Common properties

- Linearity: $F(af(x) + bg(x)) = aF(f(x)) + bF(g(x))$

- Derivatives: [integrate by parts] $F(f'(x)) = \int_{-\infty}^{\infty} f'(x) e^{-2\pi i u x} dx = 2\pi i u F(u)$

- 2D Fourier Transform

Forward Transform: $F(u,v) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x,y) e^{-2\pi i u x} e^{-2\pi i v y} dx dy$

Inverse Transform: $f(x,y) = \int_{-\infty}^{\infty} \int_{-\infty}^{+\infty} F(u,v) e^{2\pi i u x} e^{2\pi i v y} du dv$

15

16

Sampling Theorem, Bandlimiting

- A signal can be reconstructed from its samples, if the original signal has no frequencies above half the sampling frequency – Shannon
- The minimum sampling rate for a bandlimited function is called the Nyquist rate

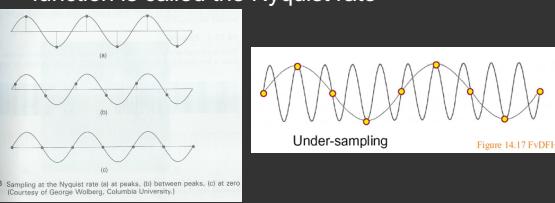


Figure 14.17 Sampling Theorem, Bandlimiting

Sampling Theorem, Bandlimiting

- A signal can be reconstructed from its samples, if the original signal has no frequencies above half the sampling frequency – Shannon
- The minimum sampling rate for a bandlimited function is called the Nyquist rate
- A signal is bandlimited if the highest frequency is bounded. This frequency is called the bandwidth
- In general, when we transform, we want to filter to bandlimit before sampling, to avoid aliasing

17

18

Antialiasing

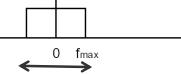
- Sample at higher rate
 - Not always possible
 - Real world: lines have infinitely high frequencies, can't sample at high enough resolution
- Prefilter to bandlimit signal
 - Low-pass filtering (blurring)
 - Trade blurriness for aliasing

19

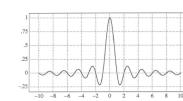
Ideal bandlimiting filter

- Formal derivation is exercise

- Frequency domain



- Spatial domain



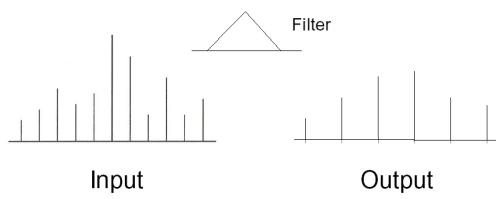
$$\text{if full width } f_{\max} = 1 \\ \text{Sinc}(x) = \frac{\sin \pi x}{\pi x}$$

Figure 4.5 Wolberg

20

Convolution 1

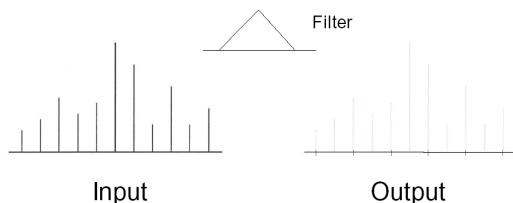
- Spatial domain: output pixel is weighted sum of pixels in neighborhood of input image
 - Pattern of weights is the "filter"



21

Convolution 2

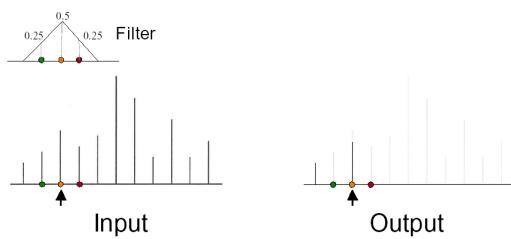
- Example 1:



22

Convolution 3

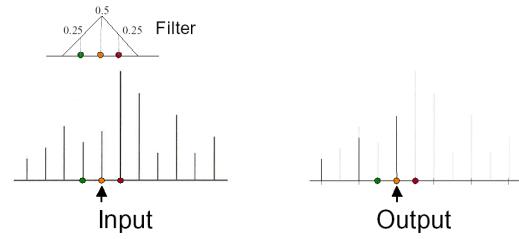
- Example 1:



23

Convolution 4

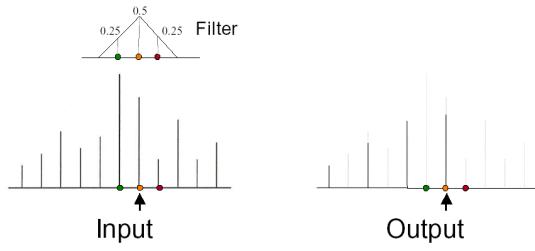
- Example 1:



24

Convolution 5

- Example 1:



25

Convolution in Frequency Domain

$$\text{Forward Transform: } F(u) = \int_{-\infty}^{\infty} f(x) e^{-2\pi i ux} dx$$

$$\text{Inverse Transform: } f(x) = \int_{-\infty}^{+\infty} F(u) e^{2\pi i ux} du$$

- Convolution (f is signal ; g is filter [or vice versa])
$$h(y) = \int_{-\infty}^{+\infty} f(x)g(y-x) dx = \int_{-\infty}^{+\infty} g(x)f(y-x) dx$$

$$h = f * g \text{ or } f \otimes g$$
- Fourier analysis (frequency domain multiplication) $H(u) = F(u)G(u)$

26

A Frequency Analysis of Light Transport

F. Durand, MIT CSAIL

N. Holzschuch, C. Soler, ARTIS/GRAVIR-IMAG INRIA

E. Chan, MIT CSAIL

F. Sillion, ARTIS/GRAVIR-IMAG INRIA

27

Illumination effects

- Blurry reflections:

From [Ramamoorthi and Hanrahan 2001]

28

Illumination effects

- Shadow boundaries:

© U. Assarsson 2005.

29

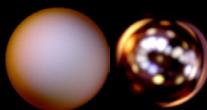
Problem statement

- How does light interaction in a scene explain the frequency content?
- Theoretical framework:
 - Understand the frequency spectrum of the radiance function
 - From the equations of light transport

30

Unified framework:

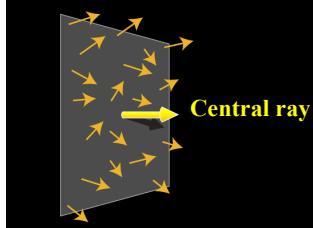
- Spatial frequency
(e.g. shadows, textures)
- Angular frequency
(e.g. blurry highlight)



31

Local light field

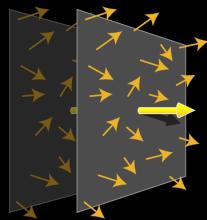
- 4D light field, around a *central ray*



32

Local light field

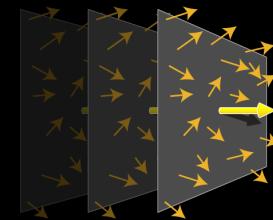
- 4D light field, around a *central ray*
- We study its spectrum during transport



33

Local light field

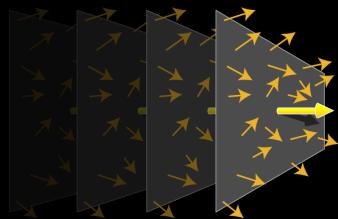
- 4D light field, around a *central ray*
- We study its spectrum during transport



34

Local light field

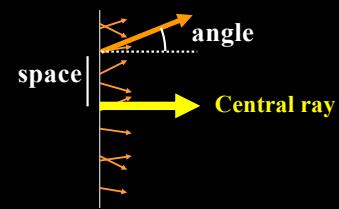
- 4D light field, around a *central ray*
- We study its spectrum during transport



35

Local light field parameterization

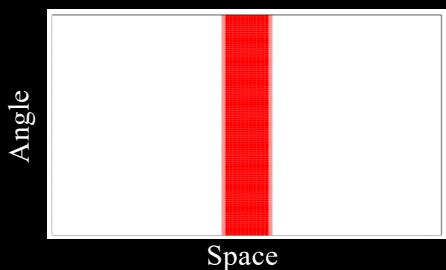
- Space and angle



36

Local light field representation

- Density plot:



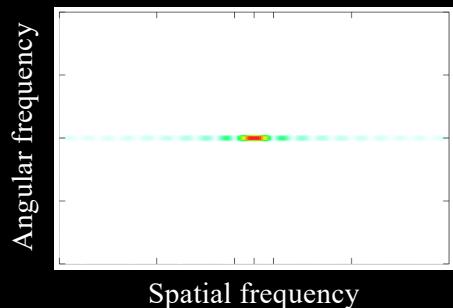
37

Local light field Fourier spectrum

- We are interested in the Fourier spectrum of the local light field
- Also represented as a density plot

38

Local light field Fourier spectrum



39

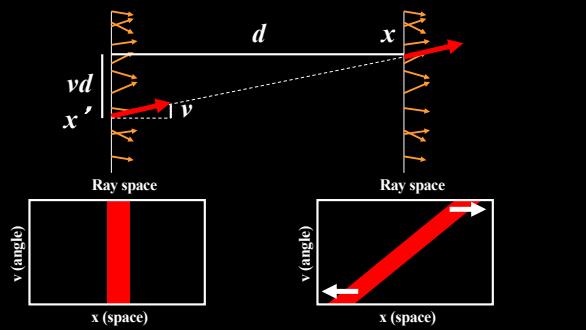
Fourier analysis 101

- Spectrum corresponds to blurriness:
 - Sharpest feature has size $\sim 1/F_{\max}$
- Convolution theorem:
 - Multiplication of functions: spectrum is convolved
 - Convolution of functions: spectrum is multiplied
- Classical spectra:
 - Box becomes sinc
 - Dirac becomes constant

40

Transport

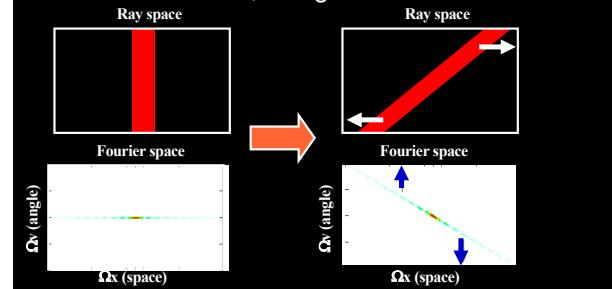
- Shear: $x' = x - v d$



41

Transport in Fourier space

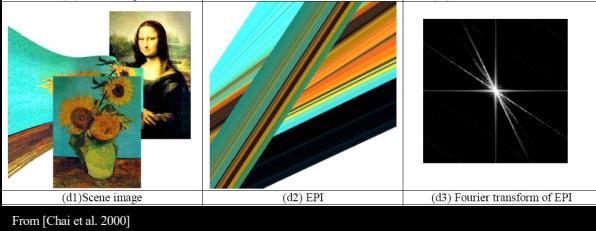
- Shear in primal: $x' = x - v d$
- Shear in Fourier, along the other dimension



42

Transport becomes Shear

- This is consistent with light field spectra [Chai et al. 00, Isaksen et al. 00]



From [Chai et al. 2000]

43

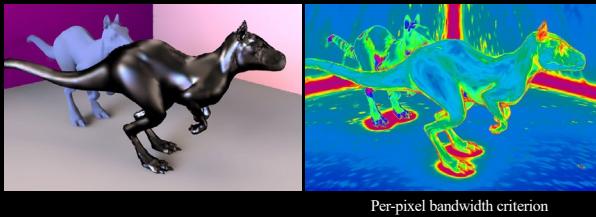
BRDF integration

- Ray-space: **convolution**
 - Outgoing light: convolution of incoming light and BRDF
 - For rotationally-invariant BRDFs
- Fourier domain: **multiplication**
 - Outgoing spectrum: multiplication of incoming spectrum and BRDF spectrum

44

Adaptive shading sampling

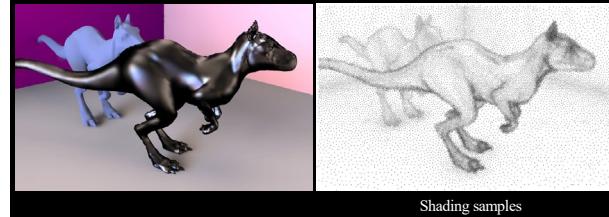
- Per-pixel prediction of max. frequency (bandwidth)
 - Based on curvature, BRDF, distance to occluder, etc.
 - No spectrum computed, just estimate max frequency



45

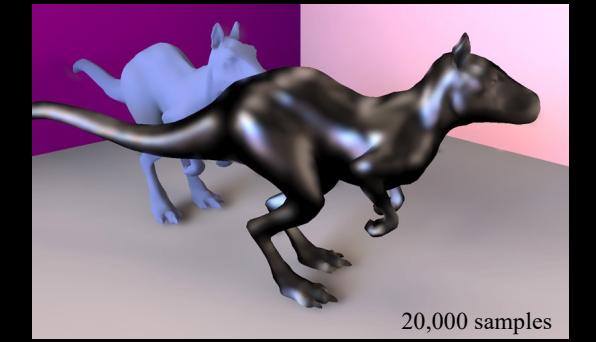
Adaptive shading sampling

- Per-pixel prediction of max. frequency (bandwidth)
 - Based on curvature, BRDF, distance to occluder, etc.
 - No spectrum computed, just estimate max frequency



46

Uniform sampling



20,000 samples

47

Adaptive sampling

20,000 samples

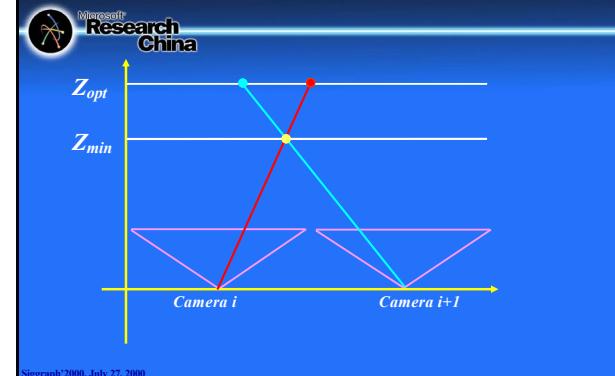
48

Plenoptic Sampling

- Plenoptic Sampling. Chai, Tong, Chan, Shum 00
- Signal-processing on light field
- Minimal sampling rate for antialiased rendering
- Relates to depth range, Fourier analysis
- Fourier spectra derived for 2D light fields for simplicity. Same ideas extend to 4D
- Key paper in many newer methods on sheared and axis-aligned filtering for adaptive sampling

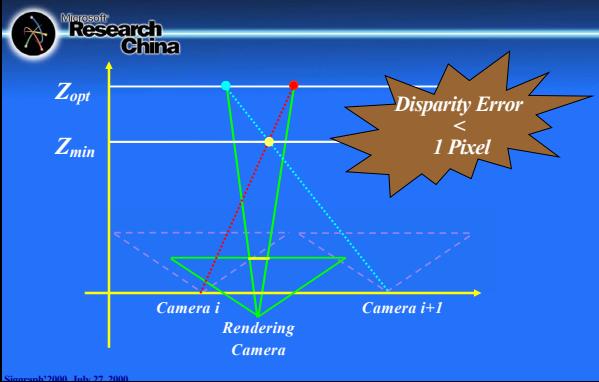
49

A Geometrical Intuition



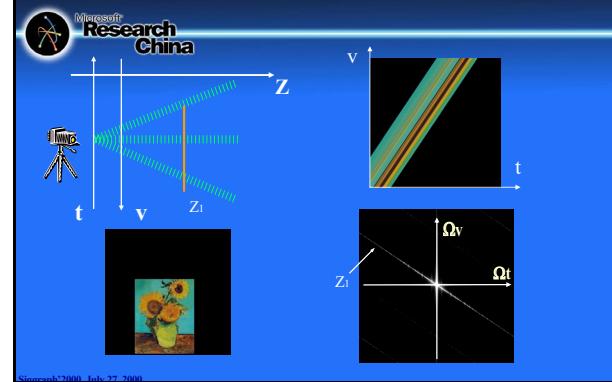
50

A Geometrical Intuition



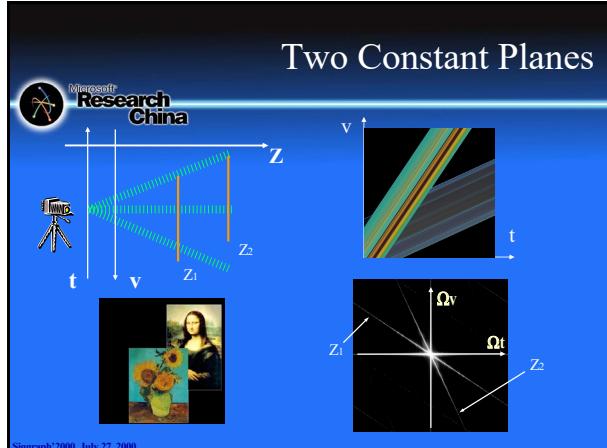
51

A Constant Plane



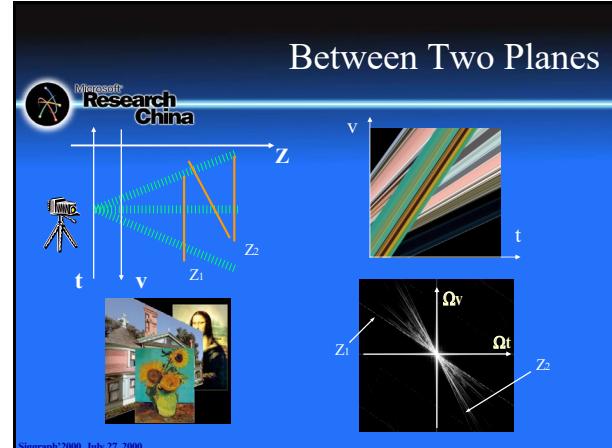
52

Two Constant Planes

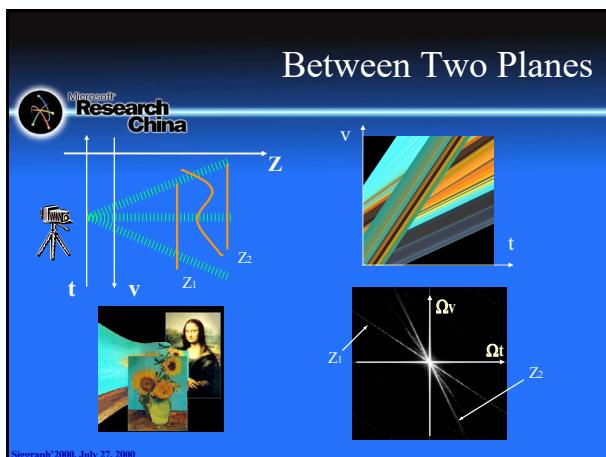


53

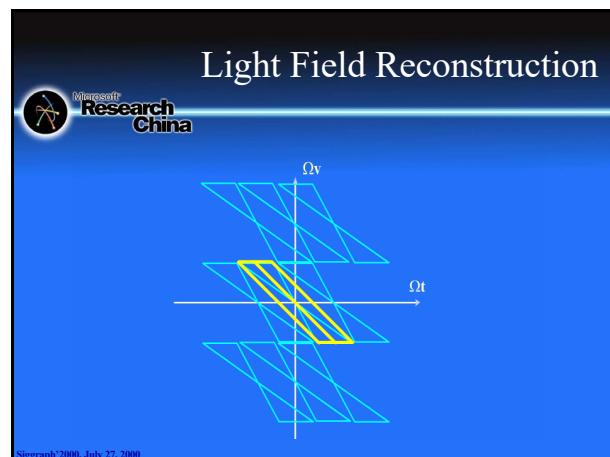
Between Two Planes



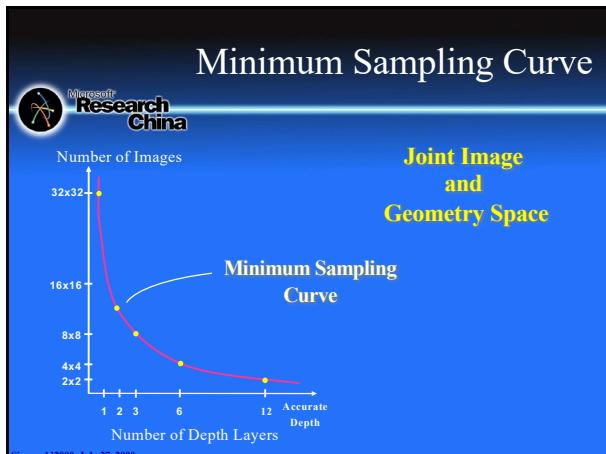
54



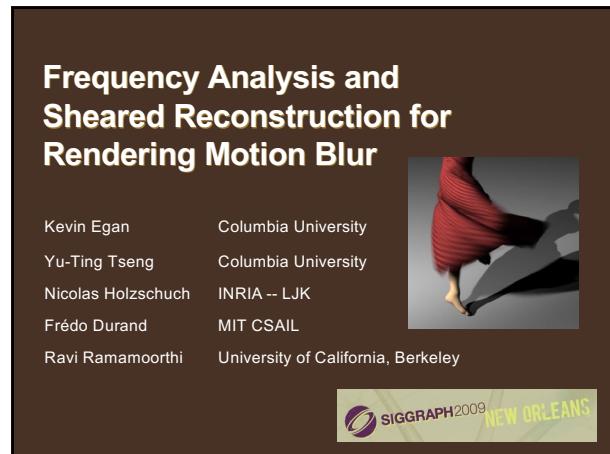
55



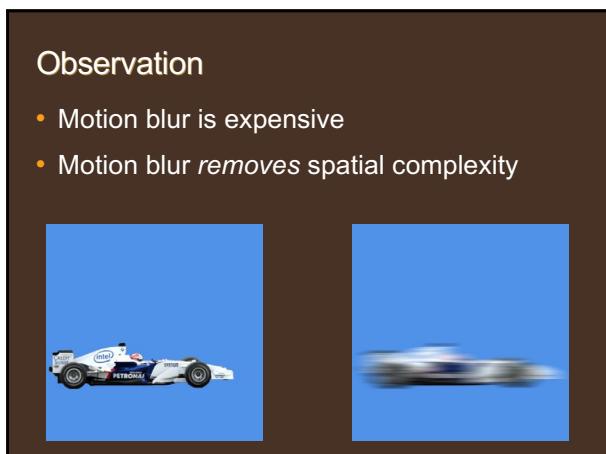
56



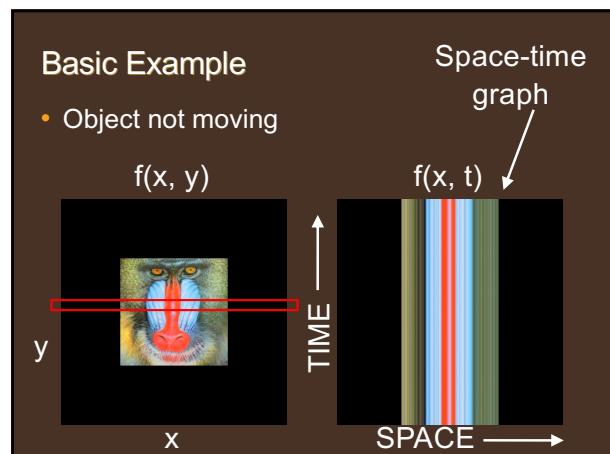
57



58



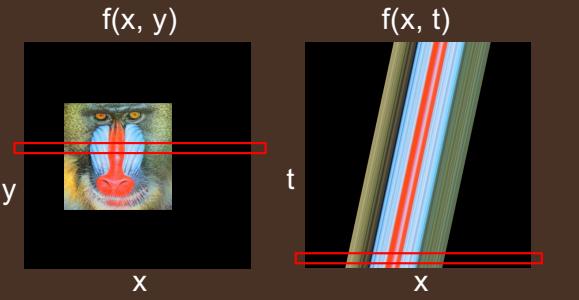
59



60

Basic Example

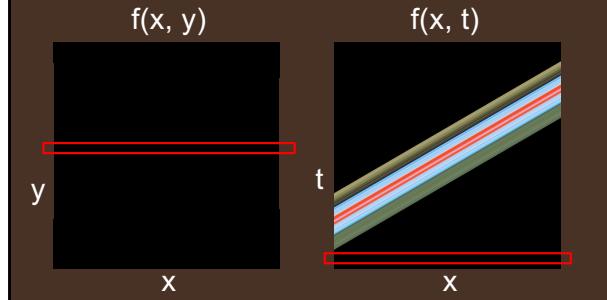
- Low velocity, $t \in [0.0, 1.0]$



61

Basic Example

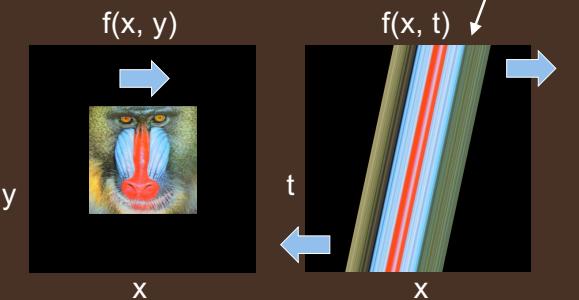
- High velocity, $t \in [0.0, 1.0]$



62

Shear in Space-Time

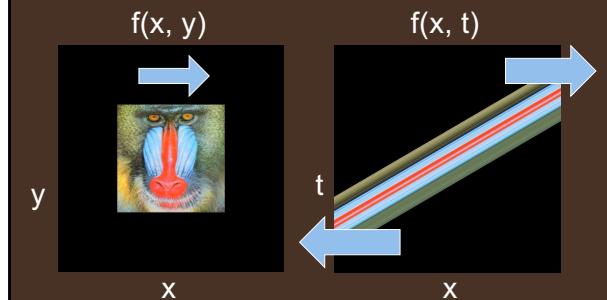
- Object moving with low velocity



63

Shear in Space-Time

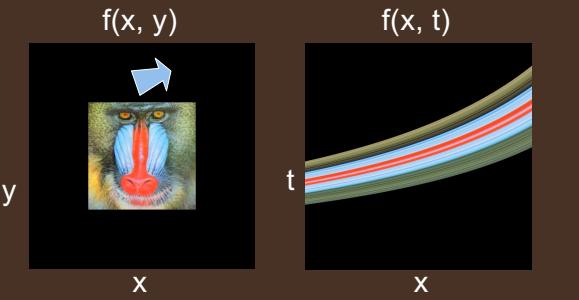
- Object moving with high velocity



64

Shear in Space-Time

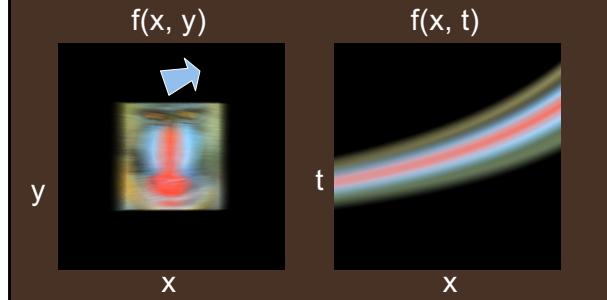
- Object moving away from camera



65

Basic Example

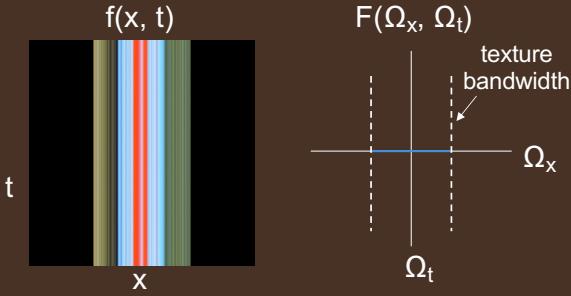
- Applying shutter blurs across time



66

Basic Example – Fourier Domain

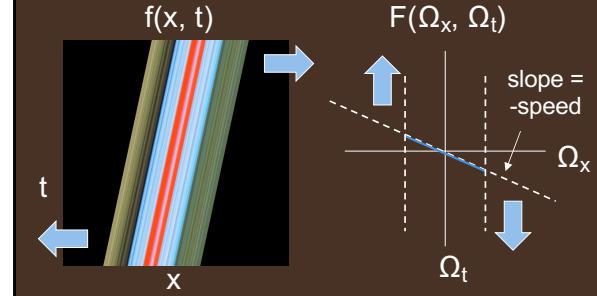
- Fourier spectrum, zero velocity



67

Basic Example – Fourier Domain

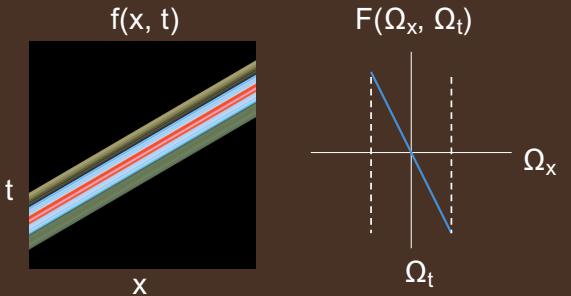
- Low velocity, small shear in both domains



68

Basic Example – Fourier Domain

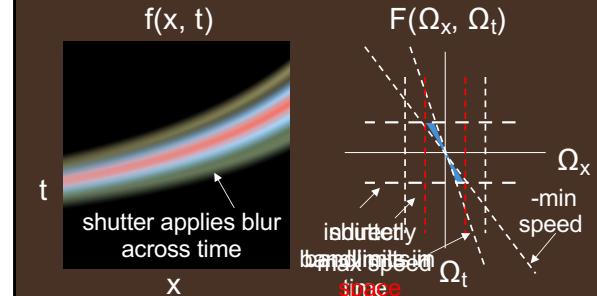
- Large shear



69

Basic Example – Fourier Domain

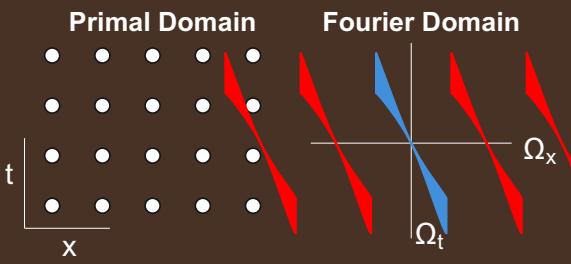
- Non-linear motion, wedge shaped spectra



70

Sampling in Fourier Domain

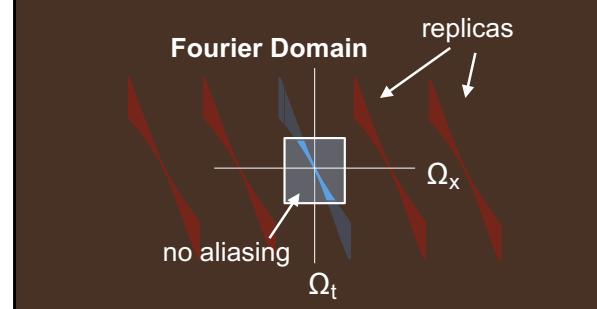
- Sampling produces **replicas** in Fourier domain
- Sparse sampling produces dense replicas



71

Standard Reconstruction Filtering

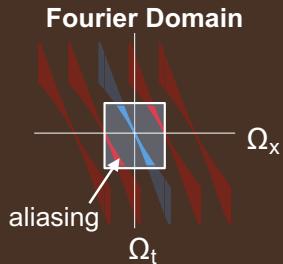
- Standard filter, dense sampling (slow)



72

Standard Reconstruction Filter

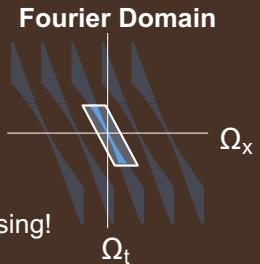
- Standard filter, sparse sampling (fast)



73

Sheared Reconstruction Filter

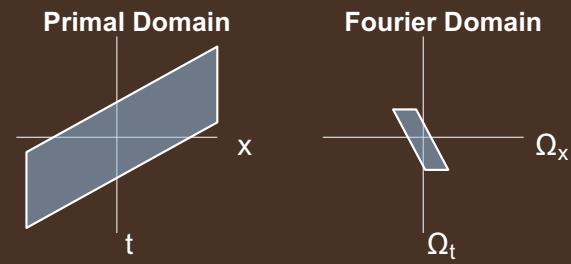
- Our sheared filter, sparse sampling (fast)



74

Sheared Reconstruction Filter

- Compact shape in Fourier = wide in primal



75

Car Scene

Our Method,
4 samples per pixel

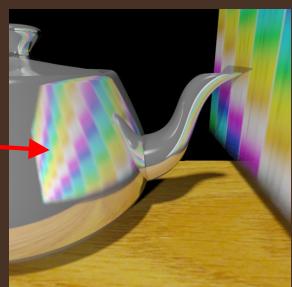
Stratified Sampling
4 samples per pixel

76

Teapot Scene

Our Method
8 samples / pix

motion blurred
reflection



77

Ballerina Video

Ballerina sequence
(8 samples/pixel)

Note smooth motion-blur
of dress and shadows

Frequency Analysis
and Sheared Reconstruction
for Rendering Motion Blur

ID: 0034

78