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Appearance: From Denoising to View Synthesis

CSE 274 [Fall 2022], Lecture 6

Ravi Ramamoorthi
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Basics of Denoising, Frequency Analysis
Monte Carlo Rendering (biggest application)

§ Basic idea of denoising

§ Frequency analysis one key concept 

§ Presentation of key papers at next class

§ Relevant to other applications as well 
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Cook et al. [1984] results

depth of field
motion blur

soft shadows

glossy reflection
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Motivation

§ Distribution effects (depth of field, motion blur, global 
illumination, soft shadows) are slow.  Many dimensions sample

§ Ray Tracing physically accurate but slow, not real-time
§ Can we adaptively sample and filter for fast, real-time?
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Sample result

4 samples/pixel
(40.8 sec)

Path traced sceneFiltered result

4 samples/pixel
(48.9 sec)

[Kalantari et al. 2015]

using only post-process filter!scene by Jo Ann Elliott
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Adaptive sampling + reconstruction
n These algorithms use 2 kinds of noise reduction 

strategies, sometimes combined:
1. Adaptive sampling algorithms

§ Use information from renderer to position new 
samples better to reduce noise

2. Reconstruction (filtering) algorithms
§ Use information from renderer to remove MC 

noise directly

n Both methods have been explored in the past, 
but new algorithms make remarkable advances

6



2

Multi-Dimensional Adaptive Sampling
§ Hachisuka, Jarosz, … Zwicker, Jensen [MDAS 2008]

§ Scenes with motion blur, depth of field, soft shadows

§ Involves high-dimensional integral, converges slowly

§ Exploit high-dimensional info to sample adaptively

§ Sampling in 2D image plane or other dims inadequate
§ Need to consider full joint high-dimensional space
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Multi-Dimensional Adaptive Sampling

Motion Blur and Depth of Field 32 samples per pixel
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Resurgence (2008 - )
§ Eurographics 2015 STAR report by Zwicker et al. 

§ Papers below are key a-priori, frequency analysis methods
§ Many other approaches to be discussed in class

§ [Durand et al. 2005] Frequency analysis light transport
§ Key theoretical ideas, but not initially very practical 

§ [Chai et al. 2000] Plenoptic Sampling (wedge spectrum)

§ [Egan et al. 2009] First practical a-priori frequency method 
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Background: Fourier Analysis
Analysis in the frequency (not spatial) domain

§ Sum of sine waves, with possibly different offsets (phase)
§ Each wave different frequency, amplitude
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Fourier Transform

§ Tool for converting from spatial to frequency domain

§ Or vice versa

§ One of most important mathematical ideas

§ Computational algorithm: Fast Fourier Transform
§ One of 10 great algorithms scientific computing
§ Makes Fourier processing possible (images etc.)
§ Not discussed here, but look up if interested

  

f (x) =
u=−∞

+∞

∑ F(u)e2π iux

e2π iux = cos(2πux)+ i sin(2πux)

i = −1
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Fourier Transform

§ Simple case, function sum of sines, cosines

§ Continuous infinite case 
  

f (x) =
u=−∞

+∞

∑ F(u)e2π iux

F(u) = f (x)e−2π iux

0

1

∫ dx

  

Forward Transform:      F(u) = f (x)e−2π iux

−∞

∞

∫ dx

Inverse Transform:         f (x) =
−∞

+∞

∫ F(u)e2π iuxdu
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Fourier Transform

§ Simple case, function sum of sines, cosines

§ Discrete case 
  

f (x) =
u=−∞

+∞

∑ F(u)e2π iux

F(u) = f (x)e−2π iux

0

1

∫ dx

  

 F(u) = f (x) cos 2πux / N( ) − i sin 2πux / N( )⎡⎣ ⎤⎦
x=0

x=N−1

∑ , 0 ≤ u ≤ N −1

f (x) = 1
N

F(u) cos 2πux / N( ) + i sin 2πux / N( )⎡⎣ ⎤⎦
u=0

u=N−1

∑ , 0 ≤ x ≤ N −1
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Fourier Transform: Examples 1

  

f (x) =
u=−∞

+∞

∑ F(u)e2π iux

F(u) = f (x)e−2π iux

0

1

∫ dx

Single sine curve    
(+constant DC term)

14

Fourier Transform Examples 2

  

Forward Transform:      F(u) = f (x)e−2π iux

−∞

∞

∫ dx

Inverse Transform:         f (x) =
−∞

+∞

∫ F(u)e2π iuxdu
§ Common examples

  

δ (x − x0) e−2π iux0

1 δ (u)

e−ax2 π
ae−π 2u2 /a

  f (x) F(u)
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Fourier Transform Properties

  

Forward Transform:      F(u) = f (x)e−2π iux

−∞

∞

∫ dx

Inverse Transform:         f (x) =
−∞

+∞

∫ F(u)e2π iuxdu
§ Common properties

§ Linearity: 

§ Derivatives: [integrate by parts]

§ 2D Fourier Transform

§ Convolution (next)

  

F(f '(x)) = f '(x)e−2π iux

−∞

∞

∫ dx

= 2π iuF(u)

  F(af (x)+ bg(x)) = aF(f (x))+ bF(g(x))

  

Forward Transform:      F(u,v) =
−∞

∞

∫ f (x,y)e−2π iux

−∞

∞

∫ e−2π ivydxdy

Inverse Transform:         f (x,y) =
−∞

∞

∫ −∞

+∞

∫ F(u,v)e2π iuxe2π ivydudv
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Sampling Theorem, Bandlimiting
§ A signal can be reconstructed from its samples, 

if the original signal has no frequencies above 
half the sampling frequency – Shannon

§ The minimum sampling rate for a bandlimited 
function is called the Nyquist rate
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Sampling Theorem, Bandlimiting

§ A signal can be reconstructed from its samples, if 
the original signal has no frequencies above half 
the sampling frequency – Shannon

§ The minimum sampling rate for a bandlimited 
function is called the Nyquist rate

§ A signal is bandlimited if the highest frequency is 
bounded.  This frequency is called the bandwidth

§ In general, when we transform, we want to filter to 
bandlimit before sampling, to avoid aliasing
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Antialiasing

§ Sample at higher rate
§ Not always possible 
§ Real world: lines have infinitely high frequencies, 

can’t sample at high enough resolution

§ Prefilter to bandlimit signal
§ Low-pass filtering (blurring)
§ Trade blurriness for aliasing
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Ideal bandlimiting filter

§ Formal derivation is exercise

if full width fmax = 1
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Convolution 1
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Convolution 2
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Convolution 3
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Convolution 4

24
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Convolution 5
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Convolution in Frequency Domain

  

Forward Transform:      F(u) = f (x)e−2π iux

−∞

∞

∫ dx

Inverse Transform:         f (x) =
−∞

+∞

∫ F(u)e2π iuxdu
§ Convolution (f is signal ; g is filter [or vice versa])

§ Fourier analysis (frequency domain 
multiplication)

  

h(y) = f (x)g(y − x)dx =
−∞

+∞

∫ g(x)f (y − x)dx
−∞

+∞

∫
h = f * g or f ⊗ g

  H(u) = F(u)G(u)
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A Frequency Analysis 
of Light Transport

F. Durand, MIT CSAIL

N. Holzschuch, C. Soler, ARTIS/GRAVIR-IMAG INRIA

E. Chan, MIT CSAIL

F. Sillion, ARTIS/GRAVIR-IMAG INRIA
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Illumination effects

• Blurry reflections:

From [Ramamoorthi and Hanrahan 2001]
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Illumination effects

• Shadow boundaries:

© U. Assarsson 2005.

Point light source Area light source
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Problem statement

• How does light interaction in a scene explain 
the frequency content?

• Theoretical framework:
– Understand the frequency spectrum of the 

radiance function

– From the equations of light transport

30



6

Unified framework:

• Spatial frequency 
(e.g. shadows, textures)

• Angular frequency 
(e.g. blurry highlight)
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Local light field

• 4D light field, around a central ray

Central ray
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Local light field

• 4D light field, around a central ray

• We study its spectrum during transport
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Local light field

• 4D light field, around a central ray

• We study its spectrum during transport
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Local light field

• 4D light field, around a central ray

• We study its spectrum during transport
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Local light field parameterization

• Space and angle

space
angle

Central ray

36
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Local light field representation

• Density plot:

Space

A
ng

le
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Local light field
Fourier spectrum
• We are interested in the Fourier spectrum of 

the local light field

• Also represented as a density plot
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Local light field 
Fourier spectrum

Spatial frequency

A
ng

ul
ar

 fr
eq

ue
nc

y
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Fourier analysis 101

• Spectrum corresponds to blurriness:
– Sharpest feature has size ~ 1/Fmax

• Convolution theorem:
– Multiplication of functions: spectrum is convolved

– Convolution of functions: spectrum is multiplied

• Classical spectra: 
– Box becomes sinc
– Dirac becomes constant
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Transport
• Shear: x’ = x - v d

Ray space

v 
(a

ng
le

)

x (space)

Ray space

v 
(a

ng
le

)

x (space)

d

vd
v

x

x’’
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Transport in Fourier space
• Shear in primal: x’ = x - v d

• Shear in Fourier, along the other dimension
Ray space Ray space

Fourier space

WW
v 

(a
ng

le
)

WWx (space)

Fourier space

WW
v 

(a
ng

le
)

WWx (space)
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Transport becomes Shear

• This is consistent with light field spectra
[Chai et al. 00, Isaksen et al. 00]

From [Chai et al. 2000]
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BRDF integration

• Ray-space: convolution
– Outgoing light: 

convolution of incoming light and BRDF

– For rotationally-invariant BRDFs

• Fourier domain: multiplication
– Outgoing spectrum:  multiplication of incoming 

spectrum and BRDF spectrum
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Adaptive shading sampling

• Per-pixel prediction of max. frequency (bandwidth)
– Based on curvature, BRDF, distance to occluder, etc.

– No spectrum computed, just estimate max frequency

Per-pixel bandwidth criterion
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Adaptive shading sampling

• Per-pixel prediction of max. frequency (bandwidth)
– Based on curvature, BRDF, distance to occluder, etc.

– No spectrum computed, just estimate max frequency

Shading samples
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Uniform sampling

20,000 samples

47

Adaptive sampling

20,000 samples

48
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Plenoptic Sampling

§ Plenoptic Sampling.  Chai, Tong, Chan, Shum 00

§ Signal-processing on light field

§ Minimal sampling rate for antialiased rendering

§ Relates to depth range, Fourier analysis

§ Fourier spectra derived for 2D light fields for 
simplicity.  Same ideas extend to 4D

§ Key paper in many newer methods on sheared and 
axis-aligned filtering for adaptive sampling
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Siggraph’2000, July 27, 2000

A Geometrical Intuition

Zmin

Zopt

Camera i Camera i+1
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Siggraph’2000, July 27, 2000

A Geometrical Intuition

Zmin

Zopt

Camera i Camera i+1

Disparity Error 
<

1 Pixel

Rendering 
Camera
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Siggraph’2000, July 27, 2000

A Constant Plane

Z

vt

t

v

Z1

WWt

WWv

Z1
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Siggraph’2000, July 27, 2000

Two Constant Planes

Z

vt Z1
Z2

t

v

WWt

WWv

Z1
Z2
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Siggraph’2000, July 27, 2000

Between Two Planes

Z

vt

t

v

Z1

WWt

WWv

Z1

Z2

Z2
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Siggraph’2000, July 27, 2000

Between Two Planes

Z

vt

t

v

Z1

WWt

WWv

Z1

Z2

Z2
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Siggraph’2000, July 27, 2000

Light Field Reconstruction
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Siggraph’2000, July 27, 2000

Minimum Sampling Curve

Joint Image 
and

Geometry Space

Minimum Sampling 
Curve

Number of Depth Layers
1 2 3 6 12 Accurate 

Depth

Number of Images

2x2

8x8

4x4

16x16

32x32
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Frequency Analysis and 
Sheared Reconstruction for 
Rendering Motion Blur

Kevin Egan

Yu-Ting Tseng

Nicolas Holzschuch

Frédo Durand

Ravi Ramamoorthi

Columbia University

Columbia University

INRIA -- LJK

MIT CSAIL

University of California, Berkeley
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Observation
• Motion blur is expensive

• Motion blur removes spatial complexity
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Basic Example
• Object not moving

x

y

SPACE

f(x, y) f(x, t)

Space-time 
graph

TI
M

E

60
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Basic Example

x

y t

x

f(x, t)

• Low velocity,  t ε [ 0.0, 1.0 ]

f(x, y)
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Basic Example

x

y t

x

f(x, t)

• High velocity,  t ε [ 0.0, 1.0 ]

f(x, y)
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Shear in Space-Time

x

y t

x

f(x, t)

• Object moving with low velocity

f(x, y)

shear
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Shear in Space-Time

x

y t

x

• Object moving with high velocity

f(x, y) f(x, t)

64

Shear in Space-Time
• Object moving away from camera

x

y t

x

f(x, y) f(x, t)
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Basic Example
• Applying shutter blurs across time

x

y t

x

f(x, y) f(x, t)

66
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Basic Example – Fourier Domain
• Fourier spectrum, zero velocity 

t

x

f(x, t) F(Ωx, Ωt)
texture 

bandwidth

Ωt

Ωx
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Basic Example – Fourier Domain
• Low velocity, small shear in both domains

f(x, t) F(Ωx, Ωt)

t

x

slope = 
-speed

Ωt

Ωx
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Basic Example – Fourier Domain
• Large shear

f(x, t) F(Ωx, Ωt)

t

x Ωt

Ωx
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Basic Example – Fourier Domain
• Non-linear motion, wedge shaped spectra

f(x, t)

Ωt

Ωx

F(Ωx, Ωt)

t

x

shutter 
bandlimits in 

time

-min 
speed

-max speed
shutter applies blur 

across time
indirectly 

bandlimits in 
space
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Sampling in Fourier Domain

Ωt

Ωxt

x
+

• Sampling produces replicas in Fourier domain

• Sparse sampling produces dense replicas

Fourier DomainPrimal Domain
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Standard Reconstruction Filtering
• Standard filter, dense sampling (slow)

Ωt

no aliasing

Ωx

Fourier Domain
replicas
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Standard Reconstruction Filter
• Standard filter, sparse sampling (fast)

Ωt

Fourier Domain

aliasing

Ωx
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Sheared Reconstruction Filter
• Our sheared filter, sparse sampling (fast)

Ωt

Ωx

No aliasing!

Fourier Domain
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Sheared Reconstruction Filter
• Compact shape in Fourier = wide in primal

t

x

Primal Domain

Ωt

Ωx

Fourier Domain
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Car Scene

Stratified Sampling
4 samples per pixel

Our Method,
4 samples per pixel
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Teapot Scene
Our Method

8 samples / pix

motion blurred 
reflection

77

Ballerina Video
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