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Applications: Sampling/Reconstruction
§ Monte Carlo Rendering

§ Light Transport Acquisition

§ Light Fields and Computational Photography

§ View synthesis

§ Animation/Simulation (not covered in course)

§ Brief overview of these applications today, and 
opportunities/history for sampling/reconstruction
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Motivation

§ Distribution effects (depth of field, motion blur, global 
illumination, soft shadows) are slow.  Many dimensions sample

§ Ray Tracing physically accurate but slow, not real-time
§ Can we adaptively sample and filter for fast, real-time?
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Monte Carlo Path Tracing

1000 paths/pixel
Jensen
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Sampling and Reconstruction

§ Monte Carlo is noisy at low sample counts

§ Can we reduce time/samples by smart adaptive 
sampling and smart filtering/reconstruction?

§ General area of Monte Carlo denoising 

§ Long history [Mitchell 91, Guo 98]
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History

§ Adaptive sampling old technique Mitchell et al. 87, 91,…

§ But not very widely used… artifacts, can miss features

§ After seminal papers in 87-91, not much follow on
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Directional Coherence Maps
§ Allocate samples to edges (Guo 98)  Most of variance at 

those edges in the image
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Directional Coherence Maps (Guo 98)

Guo 98
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Resurgence (2008 - )

§ Eurographics 2015 STAR report by Zwicker et al. [former 
UCSD faculty, now at Maryland]

§ [Durand et al. 2005] Frequency analysis light transport.  
Proposed use for adaptive sampling.  Not very practical
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Multi-Dimensional Adaptive Sampling
§ Hachisuka, Jarosz, … Zwicker, Jensen [MDAS 2008]

§ Scenes with motion blur, depth of field, soft shadows

§ Involves high-dimensional integral, converges slowly

§ Exploit high-dimensional info to sample adaptively

§ Sampling in 2D image plane or other dims inadequate
§ Need to consider full joint high-dimensional space
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Multidimensional Adaptive Sampling
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Multidimensional Adaptive Sampling
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Multi-Dimensional Adaptive Sampling

Motion Blur and Depth of Field 32 samples per pixel

13

A-Priori Methods

§ Egan et al. 2009: Frequency Analysis and Sheared 
Filtering for Motion Blur; first deep use frequency anal. 
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A-Posteriori Methods
§ Adaptive Wavelet Rendering (Overbeck et al. 2009)

§ Handle general effects.  Sample and denoise

§ Many more sophisticated methods available now; used 
in almost every major production rendering software

Bako et al. 17
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Adaptive Wavelet Rendering

Overbeck et al 09
General high-D 
effects.  Simple
and fast (renders 
Into wavelet dom)

FF VIDEO
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Real-Time

§ Axis-Aligned Filtering (Mehta et al. 12,13,14)

§ Optix plus image-space filtering

§ Newer extensions to sheared filtering

§ Most recent work (NVIDIA) is fully general, 1 sample per 
pixel, using modern machine learning methods (similar 
ideas relevant in offline rendering as well)

§ Huge impact in real-time, video games, essential in 
modern real-time rendering based on deep learning
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Real-Time MAAF Video

Recurrent Autoencoder Video (Chaitanya et al. 17)
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Applications: Sampling/Reconstruction
§ Monte Carlo Rendering 

§ Light Transport Acquisition

§ Light Fields and Computational Photography

§ View synthesis

§ Animation/Simulation (not covered in course)

§ Brief overview of these applications today, and 
opportunities/history for sampling/reconstruction
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Acquiring Reflectance Field of Human 
Face [Debevec et al. SIGGRAPH 00]

Illuminate subject from many incident directions

20

Example Images
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Motivation: Image-based Relighting

Sample Lighting Directions
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Motivation: Image-based Relighting

Sample Lighting Directions
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Motivation: Image-based Relighting

Sample Lighting Directions
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Motivation: Image-based Relighting

Sample Lighting Directions

Relight

16 Samples
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Motivation: Image-based Relighting

Sample Lighting Directions

Relight

16 Samples
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Motivation: Image-based Relighting

Sample Lighting Directions

Relight

64 Samples
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Motivation: Image-based Relighting

Sample Lighting Directions

Relight

256 Samples
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Motivation: Image-based Relighting

Sample Lighting Directions

Relight

256 Samples
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Motivation: Image-based Relighting

Sample Lighting Directions

Relight

256 Samples
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Motivation: Image-based Relighting

Sample Lighting Directions

Relight

4096 Samples
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Motivation: Image-based Relighting

Sample Lighting Directions

Relight

+10000 Samples
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Motivation: Image-based Relighting

Sample Lighting Directions

Relight

+10000 Samples

Brute Force Capture 
Practically Impossible
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Compressible / Sparseness

ψ ψ

5% Largest Coeff.All Coefficients
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Compressible / Sparseness
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Compressive Sensing: A Brief Introduction
• Sparsity / Compressibility: 

– Signals can be represented as a few non-zero coefficients in an 
appropriately-chosen basis, e.g., wavelet, gradient, PCA.

• For sparse signals, acquire measurements (condensed 
representations of the signals) with random projections.

[Candes et al., 06][Donoho, 06]…

=X

Measurement Ensemble
m×n,  where m<n

Measurements
m×1

Signal
n×1

bA
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Resolution

1000 Measurements
128 x 128 Lighting Resolution
128 Haar Wavelet Coefficients
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Resolution

1000 Measurements
128 x 128 Lighting Resolution
128 Haar Wavelet Coefficients
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Results

Reference 1000 Measurement
128 x 128 Lighting Resolution
128 Haar Wavelet Coefficients
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1000 Measurement
128 x 128 Lighting Resolution
128 Haar Wavelet Coefficients

Results

Reference
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1000 Measurement
128 x 128 Lighting Resolution
128 Haar Wavelet Coefficients

Reference

Results

0.04
0.06
0.09
0.13
0.17
0.25
0.30
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Applications: Sampling/Reconstruction
§ Monte Carlo Rendering 

§ Light Transport Acquisition

§ Light Fields and Computational Photography

§ View Synthesis

§ Animation/Simulation (not covered in course)

§ Brief overview of these applications today, and 
opportunities/history for sampling/reconstruction
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Lytro Camera
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Light fields

Viewpoint ChangeRefocusing
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Recent Light Field Cameras

Google VR light field camera

Pelican Light

Lytro IllumRayTrix
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Recent Light Field Cameras
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Kalantari et al.

Resolution trade-off

Limited resolution

High angular

Low spatial
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Kalantari et al.

Solution: angular super-resolution

Sparse Input Views
Synthesized Views
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Straightforward solution
n Model the process with a single CNN

CNN
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Single CNN’s result
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High-level idea
n Follow the pipeline of existing techniques 

and break the process into two components
Goesele et al. [2010]; Chaurasia et al. [2013]

n Disparity estimator
n Color predictor

n Model the components using learning
n Train both models simultaneously

View Synthesis
Disparity Color
Estimator PredictorCNN CNN
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Kalantari et al.

Our result
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4D RGBD Light Fields from 2D Image

Srinivasan et al. ICCV 17
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Applications: Sampling/Reconstruction
§ Monte Carlo Rendering 

§ Light Transport Acquisition

§ Light Fields and Computational Photography

§ View Synthesis

§ Animation/Simulation (not covered in course)

§ Brief overview of these applications today, and 
opportunities/history for sampling/reconstruction
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Light Fields with 4000x fewer views
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NEURAL RADIANCE FIELDS
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Summary
§ Brief overview of applications, some algorithms

§ Will cover in greater detail in rest of course

§ Biggest practical progress in Monte Carlo 
rendering: order of magnitude speedups 

§ Widely used in production, also in real-time 

§ Very relevant in light transport acquisition

§ Sampling/Reconstruction key for light fields

§ View Synthesis other major focus, huge explosion

§ Many other applications: PRT, Animation, etc. 
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