
1

Sampling and Reconstruction of Visual
Appearance: From Denoising to View Synthesis

CSE 274 [Fall 2022], Lecture 4

Ravi Ramamoorthi
http://www.cs.ucsd.edu/~ravir

1

Motivation: Monte Carlo Path Tracing
§ Key application area for sampling/reconstruction

§ Core method to solve rendering equation

§ Widely used production+realtime (with denoising)

§ General solution to rendering, global illumination

§ Suitable for a variety of general scenes

§ Based on Monte Carlo methods

§ Enumerate all paths of light transport

§ We mostly treat this as a black box, but background
is still important

2

Monte Carlo Path Tracing

Big diffuse light source, 20 minutes

Jensen

3

Monte Carlo Path Tracing

1000 paths/pixel
Jensen

4

Monte Carlo Path Tracing

Advantages
§ Any type of geometry (procedural, curved, ...)
§ Any type of BRDF (specular, glossy, diffuse, ...)
§ Samples all types of paths (L(SD)*E)
§ Accuracy controlled at pixel level
§ Low memory consumption
§ Unbiased - error appears as noise in final image

Disadvantages (standard Monte Carlo problems)
§ Slow convergence (square root of number of samples)
§ Noise in final image

5

Monte Carlo Path Tracing

Integrate radiance
for each pixel
by sampling paths
randomly

Diffuse Surface

Eye

Light

x

Specular
Surface

Pixel

Lo(x,


w) = Le(x,


w)+ fr (x,

Ω
∫


′w ,

w)Li(x,


′w)(

′w •

n)d

w

6

2

Simple Monte Carlo Path Tracer

§ Step 1: Choose a ray (u,v,θ,ϕ) [per pixel]; assign weight = 1

§ Step 2: Trace ray to find intersection with nearest surface

§ Step 3: Randomly choose between emitted and reflected light
§ Step 3a: If emitted,

return weight’ * Le
§ Step 3b: If reflected,

weight’’ *= reflectance
Generate ray in random direction
Go to step 2

7

Sampling Techniques

Problem: how do we generate random points/directions
during path tracing and reduce variance?

§ Importance sampling (e.g. by BRDF)
§ Stratified sampling

Surface

Eye

x

8

Outline

§ Motivation and Basic Idea

§ Implementation of simple path tracer

§ Variance Reduction: Importance sampling

§ Other variance reduction methods

§ Specific 2D sampling techniques

9

Simplest Monte Carlo Path Tracer
For each pixel, cast n samples and average

§ Choose a ray with p=camera, d=(θ,ϕ) within pixel
§ Pixel color += (1/n) * TracePath(p, d)

TracePath(p, d) returns (r,g,b) [and calls itself recursively]:
§ Trace ray (p, d) to find nearest intersection p’
§ Select with probability (say) 50%:

§ Emitted:
return 2 * (Lered, Legreen, Leblue) // 2 = 1/(50%)

§ Reflected:
generate ray in random direction d’
return 2 * fr(d èd’) * (n�d’) * TracePath(p’, d’)

10

Simplest Monte Carlo Path Tracer
For each pixel, cast n samples and average over paths

§ Choose a ray with p=camera, d=(θ,ϕ) within pixel
§ Pixel color += (1/n) * TracePath(p, d)

TracePath(p, d) returns (r,g,b) [and calls itself recursively]:
§ Trace ray (p, d) to find nearest intersection p’
§ Select with probability (say) 50%:

§ Emitted:
return 2 * (Lered, Legreen, Leblue) // 2 = 1/(50%)

§ Reflected:
generate ray in random direction d’
return 2 * fr(d èd’) * (n�d’) * TracePath(p’, d’)

11

Simplest Monte Carlo Path Tracer
For each pixel, cast n samples and average

§ Choose a ray with p=camera, d=(θ,ϕ) within pixel
§ Pixel color += (1/n) * TracePath(p, d)

TracePath(p, d) returns (r,g,b) [and calls itself recursively]:
§ Trace ray (p, d) to find nearest intersection p’
§ Select with probability (say) 50%:

§ Emitted:
return 2 * (Lered, Legreen, Leblue) // 2 = 1/(50%)

§ Reflected:
generate ray in random direction d’
return 2 * fr(d èd’) * (n�d’) * TracePath(p’, d’)

Weight = 1/probability
Remember: unbiased
requires having f(x) / p(x)

12

3

Simplest Monte Carlo Path Tracer
For each pixel, cast n samples and average

§ Choose a ray with p=camera, d=(θ,ϕ) within pixel
§ Pixel color += (1/n) * TracePath(p, d)

TracePath(p, d) returns (r,g,b) [and calls itself recursively]:
§ Trace ray (p, d) to find nearest intersection p’
§ Select with probability (say) 50%:

§ Emitted:
return 2 * (Lered, Legreen, Leblue) // 2 = 1/(50%)

§ Reflected:
generate ray in random direction d’
return 2 * fr(d èd’) * (n�d’) * TracePath(p’, d’)

Path terminated when
Emission evaluated

13 14

Arnold Renderer (M. Fajardo)
§ Works well diffuse surfaces, hemispherical light

15

From UCB class many years ago

16

Advantages and Drawbacks

§ Advantage: general scenes, reflectance, so on
§ By contrast, standard recursive ray tracing only mirrors

§ This algorithm is unbiased, but horribly inefficient
§ Sample “emitted” 50% of the time, even if emitted=0
§ Reflect rays in random directions, even if mirror
§ If light source is small, rarely hit it

§ Goal: improve efficiency without introducing bias
§ Variance reduction using many of the methods

discussed for Monte Carlo integration last week
§ Subject of much interest in graphics in 90s till today

17

Outline

§ Motivation and Basic Idea

§ Implementation of simple path tracer

§ Variance Reduction: Importance sampling

§ Other variance reduction methods

§ Specific 2D sampling techniques

18

4

Importance Sampling
§ Pick paths based on energy or expected contribution

§ More samples for high-energy paths
§ Don’t pick low-energy paths

§ At “macro” level, use to select between reflected vs
emitted, or in casting more rays toward light sources

§ At “micro” level, importance sample the BRDF to pick
ray directions

§ Tons of papers in 90s on tricks to reduce variance in
Monte Carlo rendering

§ Importance sampling now standard in production. I
consulted on initial Pixar system for MU (2011).

19

Importance Sampling

Can pick paths however we want, but
contribution weighted by 1/probability
§ Already seen this division of 1/prob in weights to

emission, reflectance

f (x)dx
Ω
∫ = 1

N
Yi

i=1

N

∑

Yi =
f (xi)
p(xi)

x1 xN

E(f(x))

20

Simplest Monte Carlo Path Tracer
For each pixel, cast n samples and average

§ Choose a ray with p=camera, d=(θ,ϕ) within pixel
§ Pixel color += (1/n) * TracePath(p, d)

TracePath(p, d) returns (r,g,b) [and calls itself recursively]:
§ Trace ray (p, d) to find nearest intersection p’
§ Select with probability (say) 50%:

§ Emitted:
return 2 * (Lered, Legreen, Leblue) // 2 = 1/(50%)

§ Reflected:
generate ray in random direction d’
return 2 * fr(d èd’) * (n�d’) * TracePath(p’, d’)

21

Importance sample Emit vs Reflect

TracePath(p, d) returns (r,g,b) [and calls itself recursively]:
§ Trace ray (p, d) to find nearest intersection p’
§ If Le = (0,0,0) then pemit= 0 else pemit= 0.9 (say)
§ If random() < pemit then:

§ Emitted:
return (1/ pemit) * (Lered, Legreen, Leblue)

§ Else Reflected:
generate ray in random direction d’
return (1/(1- pemit)) * fr(d èd’) * (n�d’) * TracePath(p’, d’)

22

Importance sample Emit vs Reflect

TracePath(p, d) returns (r,g,b) [and calls itself recursively]:
§ Trace ray (p, d) to find nearest intersection p’
§ If Le = (0,0,0) then pemit= 0 else pemit= 0.9 (say)
§ If random() < pemit then:

§ Emitted:
return (1/ pemit) * (Lered, Legreen, Leblue)

§ Else Reflected:
generate ray in random direction d’
return (1/(1- pemit)) * fr(d èd’) * (n�d’) * TracePath(p’, d’)

Can never be 1 unless
Reflectance is 0

23

Outline

§ Motivation and Basic Idea

§ Implementation of simple path tracer

§ Variance Reduction: Importance sampling

§ Other variance reduction methods

§ Specific 2D sampling techniques

24

5

More variance reduction

§ Discussed “macro” importance sampling
§ Emitted vs reflected

§ How about “micro” importance sampling
§ Shoot rays towards light sources in scene
§ Distribute rays according to BRDF

25

§ Pick a light source

§ Trace a ray towards that light

§ Trace a ray anywhere except for that light
§ Rejection sampling

§ Divide by probabilities
§ 1/(solid angle of light) for ray to light source
§ (1 – the above) for non-light ray
§ Extra factor of 2 because shooting 2 rays

One Variation for Reflected Ray

26

Russian Roulette

§ Maintain current weight along path
(need another parameter to TracePath)

§ Terminate ray iff |weight| < const.

§ Be sure to weight by 1/probability

27 28

29

Monte Carlo Extensions

Unbiased
§ Bidirectional path tracing
§ Metropolis light transport

Biased, but consistent
§ Noise filtering
§ Adaptive sampling
§ Irradiance caching

30

6

Monte Carlo Extensions

Unbiased
§ Bidirectional path tracing
§ Metropolis light transport

Biased, but consistent
§ Noise filtering
§ Adaptive sampling
§ Irradiance caching

Unfiltered

Filtered Jensen

31

Monte Carlo Extensions

Unbiased
§ Bidirectional path tracing
§ Metropolis light transport

Biased, but consistent
§ Noise filtering
§ Adaptive sampling
§ Irradiance caching

Adaptive

Fixed

Ohbuchi

32

Monte Carlo Extensions

Unbiased
§ Bidirectional path tracing
§ Metropolis light transport

Biased, but consistent
§ Noise filtering
§ Adaptive sampling
§ Irradiance caching

Jensen

33

Irradiance Caching Example
Final Image

Sample Locations

34

D. Mitchell 95, Consequences of stratified sampling in graphics

35

Comparison of simple patterns

Ground Truth Uniform Random Stratified

Latin Hypercube Quasi Monte Carlo

16 samples for area light, 4 samples per pixel, total 64 samples

Figures courtesy Tianyu Liu
If interested, see my recent paper “A Theory of Monte Carlo Visibility Sampling”

36

7

Bidirectional Path Tracing
Path pyramid (k = l + e = total number of bounces)

37

Comparison

38

Outline

§ Motivation and Basic Idea

§ Implementation of simple path tracer

§ Variance Reduction: Importance sampling

§ Other variance reduction methods

§ Specific 2D sampling techniques

39

2D Sampling: Motivation

§ Final step in sending reflected ray: sample 2D domain

§ According to projected solid angle

§ Or BRDF

§ Or area on light source

§ Or sampling of a triangle on geometry

§ Etc.

40

Sampling Upper Hemisphere

§ Uniform directional sampling: how to generate
random ray on a hemisphere?

§ Option #1: rejection sampling
§ Generate random numbers (x,y,z), with x,y,z in –1..1
§ If x2+y2+z2 > 1, reject
§ Normalize (x,y,z)
§ If pointing into surface (ray dot n < 0), flip

41

Sampling Upper Hemisphere

§ Option #2: inversion method
§ In polar coords, density must be proportional to sin θ

(remember d(solid angle) = sin θ dθ dϕ)
§ Integrate, invert è cos-1

§ So, recipe is
§ Generate ϕ in 0..2π
§ Generate z in 0..1
§ Let θ = cos-1 z
§ (x,y,z) = (sin θ cos ϕ, sin θ sin ϕ, cos θ)

42

8

43

BRDF Importance Sampling

§ Better than uniform sampling: importance sampling

§ Because you divide by probability, ideally
probability proportional to fr * cos θi

44

BRDF Importance Sampling

§ For cosine-weighted Lambertian:
§ Density = cos θ sin θ
§ Integrate, invert è cos-1(sqrt)

§ So, recipe is:
§ Generate ϕ in 0..2π
§ Generate z in 0..1
§ Let θ = cos-1 (sqrt(z))

45

BRDF Importance Sampling

§ Phong BRDF: fr ~ cosnα where α is angle
between outgoing ray and ideal mirror direction

§ Constant scale = ks(n+2)/(2π)

§ Can’t sample this times cos θi
§ Can only sample BRDF itself, then multiply by cos θi
§ That’s OK – still better than random sampling

46

BRDF Importance Sampling

§ Recipe for sampling specular term:
§ Generate z in 0..1
§ Let α = cos-1 (z1/(n+1))
§ Generate ϕα in 0..2π
§ This gives direction w.r.t. ideal mirror direction

§ Convert to (x,y,z), then rotate such that z points
along mirror dir.

47

Mies House: Swimming Pool

48

9

Optional Path Tracing Assignment

§ If you have not taken CSE 168 or done path tracer

§ Follow CSE 168 on UCSD online, build path tracer

§ Includes guide for raytracing if not already done

§ For your benefit only, optional do not turn in (since
many people wanted it for knowledge)

§ You can use it in final project, but don’t need to,
and may be better off using off-the-shelf renderer

§ If you do use it in final project, document it

§ Again, it is optional and not directly graded

49

Summary

§ Monte Carlo methods robust and simple (at least
until nitty gritty details) for global illumination

§ Must handle many variance reduction methods in
practice

§ Importance sampling, Bidirectional path tracing,
Russian roulette etc.

§ Rich field with many papers, systems researched
over last 30 years

§ For rest of the course, we largely take this as a
black box, focusing on sampling and reconstruction

50

