Sampling and Reconstruction of Visual
Appearance: From Denoising to View Synthesis

CSE 274 [Fall 2022], Lecture 4

Ravi Ramamoorthi
http://www.cs.ucsd.edu/~ravir

Monte Carlo Path Tracing

Monte Carlo Path Tracing

Advantages
Any type of geometry (procedural, curved, ...)
Any type of BRDF (specular, glossy, diffuse, ...)
Samples all types of paths (L(SD)*E)
Accuracy controlled at pixel level
Low memory consumption
Unbiased - error appears as noise in final image

Disadvantages (standard Monte Carlo problems)
Slow convergence (square root of number of samples)
Noise in final image

Motivation: Monte Carlo Path Tracing

Key application area for sampling/reconstruction
Core method to solve rendering equation

Widely used production+realtime (with denoising)
General solution to rendering, global illumination
Suitable for a variety of general scenes

Based on Monte Carlo methods

Enumerate all paths of light transport

We mostly treat this as a black box, but background
is still important

Monte Carlo Path Tracing

Monte Carlo Path Tracing

Integrate radiance Specular
for each pixel Surface

by sampling paths
randomly

Diffuse Surface

Ly (x0) = L (X W8)+ [£.(, W/ W)L, (,W)(W" @ 7))l

Simple Monte Carlo Path Tracer

Step 1: Choose a ray (u,v,0,¢) [per pixel]; assign weight = 1
Step 2: Trace ray to find intersection with nearest surface

Step 3: Randomly choose between emitted and reflected light
Step 3a: If emitted,
return weight” * Le
Step 3b: If reflected,
weight’’ *= reflectance
Generate ray in random direction
Go to step 2

Outline

Motivation and Basic Idea
Implementation of simple path tracer
Variance Reduction: Importance sampling
Other variance reduction methods

Specific 2D sampling techniques

Simplest Monte Carlo Path Tracer

For each pixel,
Choose a ray with p=camera, d=(6,$) within pixel
Pixel color +=

TracePath(p, d) returns (r,g,b) [and calls itself recursively]:
Trace ray (p, d) to find nearest intersection p *
Select with probability (say) 50%:

Emitted:

return 2 * (Lereq, L€green, Lebiue) // 2 = 1/(50%)
Reflected:

generate ray in random direction d”

return 2 * f(d 2d”) * (ned) * TracePath(p’, d”)

Sampling Techniques

Problem: how do we generate random points/directions

during path tracing and reduce variance?

Importance sampling (e.g. by BRDF)

Stratified sampling
Eye

O,

Surface

Simplest Monte Carlo Path Tracer

For each pixel, cast n samples and average
Choose a ray with p=camera, d=(0,¢) within pixel
Pixel color += (1/n) * TracePath(p, d)

TracePath(p, d) returns (r,g,b) [and calls itself recursively]:
Trace ray (p, d) to find nearest intersection p *
Select with probability (say) 50%:

Emitted:

return 2 * (Lered, Legreen, Lebiue) // 2 = 1/(50%)
Reflected:

generate ray in random direction d”

return 2 * f(d d’) * (n*d’) * TracePath(p’, d”)

Simplest Monte Carlo Path Tracer

For each pixel, cast n samples and average
Choose a ray with p=camera, d=(6,$) within pixel
Pixel color += (1/n) * TracePath(p, d)

TracePath(p, d) returns (r,g,b) [and calls itself recursively]:
Trace ray (p, d) to find nearest intergecti '
Select with probability (say) Weight = 1/probability

Remember: unbiased
Emitted: requires having f(x) / p(x)

return 2 * (Lered, Legreen, Lebive) // 2 = 1/(50%)
Reflected:

generate ray in random direction d”

return 2 * f(d d’) * (n*d’) * TracePath(p’, d”)

Simplest Monte Carlo Path Tracer

For each pixel, cast n samples and average
Choose a ray with p=camera, d=(8,$) within pixel
Pixel color += (1/n) * TracePath(p, d)

TracePath(p, d) returns (r,g,b) [and calls itself recursively]:
Trace ray (p, d) to find nearest intersection p *

Select with probability (say) 50%:
Emitted:

return 2 * (Leed, Legreen, Lebive) // 2 = 1/(50%
Reflected: Path terminated when
N I q Al Emission evaluated
generate ray in random direction d

return 2 * f(d >d’) * (n*d’) * TracePath(p’, d”)

13

Arnold Renderer (M. Fajardo)

Works well diffuse surfaces, hemispherical light

Advantages and Drawbacks

Advantage: general scenes, reflectance, so on
By contrast, standard recursive ray tracing only mirrors

This algorithm is unbiased, but horribly inefficient
Sample “emitted” 50% of the time, even if emitted=0
Reflect rays in random directions, even if mirror
If light source is small, rarely hit it

Goal: improve efficiency without introducing bias
Variance reduction using many of the methods
discussed for Monte Carlo integration last week
Subject of much interest in graphics in 90s till today

Path Tracing

CS348B Lecture 14 10 paths / pixel Pat Hanrahan, Spring 2009

14

From UCB class many years ago

)

\

Outline

Motivation and Basic Idea

Implementation of simple path tracer
Variance Reduction: Importance sampling
Other variance reduction methods

Specific 2D sampling techniques

Importance Sampling

Pick paths based on energy or expected contribution
More samples for high-energy paths
Don’ t pick low-energy paths

At “macro” level, use to select between reflected vs
emitted, or in casting more rays toward light sources

At “micro” level, importance sample the BRDF to pick
ray directions

Tons of papers in 90s on tricks to reduce variance in
Monte Carlo rendering

Importance sampling now standard in production. |
consulted on initial Pixar system for MU (2011).

Simplest Monte Carlo Path Tracer

For each pixel, cast n samples and average
Choose a ray with p=camera, d=(6,$) within pixel
Pixel color += (1/n) * TracePath(p, d)

TracePath(p, d) returns (r,g,b) [and calls itself recursively]:
Trace ray (p, d) to find nearest intersection p *
Select with probability (say) 50%:

Emitted:

return 2 * (Lered, Legreen, Lebiue) // 2 = 1/(50%)
Reflected:

generate ray in random direction d

return 2 * f(d >d’) * (n*d’) * TracePath(p’, d”)

Importance sample Emit vs Reflect

TracePath(p, d) returns (r,g,b) [and calls itself recursively]:
Trace ray (p, d) to find nearest intersection p *

Can never be 1 unless
Emitted: Reflectance is 0
return () " (Lered, Legreen, Lebiue)

Reflected:
generate ray in random direction d”

return () * f{d >d’) * (n*d’) * TracePath(p’, d’)

Importance Sampling

Can pick paths however we want, but

contribution weighted by 1/probability
Already seen this division of 1/prob in weights to
emission, reflectance

E(f(x))

Importance sample Emit vs Reflect

TracePath(p, d) returns (r,g,b) [and calls itself recursively]:
Trace ray (p, d) to find nearest intersection p *

Emitted:
return () ™ (Lered, Legreen LEbiue)
Reflected:
generate ray in random direction d”
return ()) * f{d >d’) * (n*d’) * TracePath(p’, d”)

Outline

Motivation and Basic Idea

Implementation of simple path tracer
Variance Reduction: Importance sampling
Other variance reduction methods

Specific 2D sampling techniques

27

More variance reduction

Discussed “macro” importance sampling
Emitted vs reflected

How about “micro” importance sampling
Shoot rays towards light sources in scene
Distribute rays according to BRDF

Russian Roulette

Maintain current weight along path
(need another parameter to TracePath)

Terminate ray iff |weight| < const.

Be sure to weight by 1/probability

One Variation for Reflected Ray

Pick a light source
Trace a ray towards that light

Trace a ray anywhere except for that light
Rejection sampling

Divide by probabilities
1/(solid angle of light) for ray to light source
(1 — the above) for non-light ray
Extra factor of 2 because shooting 2 rays

Russian Roulette

Terminate photon with probability p
Adjust weight of the result by 1/(1-p)

E(X)
E(X)=p~0+(l-p>l(_—p=E<X)
Intuition:
Reflecting from a surface with R=.5
100 incoming photons with power 2 W
1. Reflect 100 photons with power 1 W

2 Reflect 50 photons with power 2 W

CS348B Lecture 14 Pat Hanrahan, Spring 2009

Path Tracing: Include Direct Lighting

Step 1. Choose a camera ray r given the
(x,y,u,v,t) sample
weight = 1;
L=0
Step 2. Find ray-surface intersection
Step 3.
L += weight * Lr(light sources)
weight *= reflectance(r)
Choose new ray r’ ~ BRDF pdf(r)

to Step 2.

Go
CS348B Lecture 14 Pat Hanrahan, Spring 2009

29

28

Monte Carlo Extensions

Unbiased
Bidirectional path tracing
Metropolis light transport

Biased, but consistent
Noise filtering

Adaptive sampling
Irradiance caching

Monte Carlo Extensions

Unbiased
Bidirectional path tracing
Metropolis light transport

Biased, but consistent

Noise filtering .
Adaptive sampling Unfiltered
Irradiance caching

Filtered

Monte Carlo Extensions

Unbiased
Bidirectional path tracing
Metropolis light transport

Biased, but consistent
Noise filtering
Adaptive sampling
Irradiance caching

Stratified Sampling

Stratified sampling like jittered sampling

Allocate samples per region

m

: L
N3N F-L3NE

i-1

New variance | @
VIF,1= 72 NVIF]

i=l

Thus, if the variance in regions is less than
the overall variance, there will be a
reduction in resulting variance

For example: An edge through a pixel

1 & VIR
UG

i=1
CS348B Lecture 9 Pat Hanrahan, Spring 2002

D. Mitchell 95, Consequences of stratified sampling in graphics

Monte Carlo Extensions

Unbiased
Bidirectional path tracing
Metropolis light transport

Biased, but consistent

Noise filtering
Adaptive sampling
Irradiance caching

Adaptive Ohbuchi

Irradiance Caching Example

Final Image

Sample Locations

Comparison of simple patterns

L) -

Latin Hypercube

Ground Truth Uniform Random Stratified

16 samples for area light, 4 samples per pixel, total 64 samples

If interested, see my recent paper “A Theory of Mont /isibility Sampling”

Figures courtesy Tianyu Liu

Bidirectional Path Tracing

Path pyramid (k = | + e = total number of bounces)

Outline

Motivation and Basic Idea
Implementation of simple path tracer
Variance Reduction: Importance sampling
Other variance reduction methods

Specific 2D sampling techniques

Sampling Upper Hemisphere

Uniform directional sampling: how to generate
random ray on a hemisphere?

Option #1: rejection sampling
Generate random numbers (x,y,z), with x,y,z in —1..1
If x2+y2+z2 > 1, reject
Normalize (x,y,z)
If pointing into surface (ray dot n < 0), flip

Comparison

Bidirectional path tracing Path tracing

From Veach and Guibas

2D Sampling: Motivation

Final step in sending reflected ray: sample 2D domain
According to projected solid angle

Or BRDF

Or area on light source

Or sampling of a triangle on geometry

Etc.

Sampling Upper Hemisphere

Option #2: inversion method
In polar coords, density must be proportional to sin 6
(remember d(solid angle) = sin 6 d6 dg)
Integrate, invert = cos-!

So, recipe is
Generate ¢ in 0..21
Generate zin 0..1
Let 6 = cos 'z
(x,y,z) = (sin 6 cos ¢, sin 6 sin ¢, cos 6)

Sampling Projected Solid Angle

Generate cosine weighted distribution

CS348B Lecture 6 Pat Hanrahan, Spring 2004

BRDF Importance Sampling

For cosine-weighted Lambertian:
Density = cos 6 sin 6
Integrate, invert = cos-1(sqrt)

So, recipe is:
Generate ¢ in 0.2
Generate zin 0..1
Let 8 = cos' (sqrt(z))

BRDF Importance Sampling

Recipe for sampling specular term:
Generate zin 0..1
Let a = cos (z/(n+1)
Generate ¢, in 0..2m
This gives direction w.r.t. ideal mirror direction

Convert to (x,y,z), then rotate such that z points
along mirror dir.

BRDF Importance Sampling

Better than uniform sampling: importance sampling

Because you divide by probability, ideally
probability proportional to . * cos 6;

BRDF Importance Sampling
Phong BRDF: f; ~ cos”"a where «a is angle
between outgoing ray and ideal mirror direction

Constant scale = ks(n+2)/(2m)

Can’ t sample this times cos 6;
Can only sample BRDF itself, then muiltiply by cos 6;
That’ s OK — still better than random sampling

Mies House: Swimming Pool

Optional Path Tracing Assignment

If you have not taken CSE 168 or done path tracer
Follow CSE 168 on UCSD online, build path tracer
Includes guide for raytracing if not already done

For your benefit only, optional do not turn in (since
many people wanted it for knowledge)

You can use it in final project, but don’t need to,
and may be better off using off-the-shelf renderer

If you do use it in final project, document it

Again, it is optional and not directly graded

Summary
Monte Carlo methods robust and simple (at least
until nitty gritty details) for global illumination

Must handle many variance reduction methods in
practice

Importance sampling, Bidirectional path tracing,
Russian roulette etc.

Rich field with many papers, systems researched
over last 30 years

For rest of the course, we largely take this as a
black box, focusing on sampling and reconstruction

