Motivation: Monte Carlo Rendering

Sampling and Reconstruction of Visual Key application area for sampling/reconstruction
Appearance: From Denoising to View Synthesis

Modern methods for denoising now popular
CSE 274 [Fall 2022], Lecture 3 1-3 order of magnitude speedups in mature area

Ravi Ramamoorthi Denoising now standard in production rendering
http://www.cs.ucsd.edu/~ravir And in real-time, going down to 1spp

This, next week: Basic background in rendering

Reflection and Rendering Equations

Monte Carlo Integration

Path Tracing (Basic Monte Carlo rendering method)
Also the basics of CSE 168 (163)

Sian up (email me) re paper presentations

Illumination Models Caustics

Local lllumination Caustics: Focusing through specular surface
Light directly from light sources to surface (ST
No shadows (cast shadows are a global effect)

Global lllumination: multiple bounces (indirect light)
Hard and soft shadows
Reflections/refractions (already seen in ray tracing)
Diffuse and glossy interreflections (radiosity, caustics)

Some images courtesy Henrik Wann Jensen

Overview of lecture Outline

Theory for all global illumination methods (ray Reflectance Equation

tracing, path tracing, radiosity)
. i i . Global lllumination
We derive Rendering Equation [Kajiya 86] ; ;
Major theoretical development in field Rendering Equation
Unifying framework for all global illumination .
Introduced Path Tracing: core rendering method As a general Integral Equation and Operator

Discuss existing approaches as special cases Approximations (Ray Tracing, Radiosity)

Surface Parameterization (Standard Form)

Fairly theoretical lecture (but important). Not well covered in textbooks (though
see Eric Veach'’ s thesis). See reading if you are interested.




Reflection Equation

L (x0,)=L,(x0,)+L(x0)(x0,0 ) w,n)

Reflected Light ~ Emission  Incident BRDF Cosine of
(Output Image) Light (from Incident angle
light source)

Reflection Equation

Replace sum with integral
L(xm)=L(x0)+ 'f L.(x,»,)f(x,0,®,)cosbdw,
Q
Reflected Light Emission  Incident BRDF Cosine of

(Output Image) Light (from Incident angle
light source)

The Challenge

L (x@,)=L,(xo,)+ | L(xe)(xo,0)cos0da,

Computing reflectance equation requires
knowing the incoming radiance from surfaces

But determining incoming radiance requires
knowing the reflected radiance from surfaces

Reflection Equation

Sum over all light sources

L(x0,)=L(x0)+ z L.(x0,)f(x0,0, )o,n)
Reflected Light Emission  Incident BRDF Cosine of
(Output Image) Light (from Incident angle

light source)

Environment Maps
Light as a function of direction, from entire environmen
Captured by photographing a chrome steel or mirror sphere

Accurate only for one point, but distant lighting same at other
scene locations (

Blinn and Newell 1976, Miller and Hoffman, 1984
Later, Greene 86, Cabral et al. 87

Rendering Equation

Surfaces (interreflection)

L (xo,)=L,(xo,)+ j L (X, ~,)f(x,0,0,) cos6,do,

Reflected Light Emission  Reflected BRDF Cosine of
(Output Image) Light Incident angle
UNKNOWN KNOWN UNKNOWN KNOWN KNOWN



Outline

Reflectance Equation (review)

Global lllumination

Rendering Equation

As a general Integral Equation and Operator
Approximations (Ray Tracing, Radiosity)

Surface Parameterization (Standard Form)

Rendering Equation as Integral Equation

INCRORES L((.\—,(uy_)+J. L (x',—w)|f(x 0,)cos6 dw,

"

Reflected Light Emission ) Reflected BRDF Cosine of
(Output Image) Light Incident angle
UNKNOWN KNOWN UNKNOWN KNOWN KNOWN

Is a Fredholm Integral Equation of second kind
[extensively studied numerically] with canonical form

[(u)=e(u)+ J/(v)

Kernel of equation

Linear Operator Equation

l(u)= e(u)+J./(v)

Kernel of equation
Light Transport Operator

L =E+KL

Can be discretized to a simple matrix equation
[or system of simultaneous linear equations]
(L, E are vectors, K is the light transport matrix)

Rendering Equation (Kajiya 86)

[Figure 6. A sample image. All objects are neutral grey. Color on the objects
s due to caustics from the green glass balls and color bleeding from the base
polygon.

Linear Operator Theory

Linear operators act on functions like matrices act

on vectors or discrete representations

— P Mis a linear operator.
@) (M °/ )(M) f and h are functions of u

- . . a and b are scalars
Basic linearity relations hold ¢ ;4 g are functions

Mo(af +bg)=a(Mo f)+b(Mog)

Examples in¢lude integration and differentiation
(K o f)(u) = ];k(u,v)f( v)dv

(Do £ o
(Do f )(u) = E(u)

Solving the Rendering Equation
Too hard for analytic solution, numerical methods

Approximations, that compute different terms,
accuracies of the rendering equation

Two basic approaches are ray tracing, radiosity. More
formally, Monte Carlo and Finite Element. Today
Monte Carlo path tracing is core rendering method

Monte Carlo techniques sample light paths, form
statistical estimate (example, path tracing)

Finite Element methods discretize to matrix equation




Solving the Rendering Equation

General linear operator solution. Within raytracing:
General class numerical Monte Carlo methods
Approximate set of all paths of light in scene

L=E+KL

IL-KL=E

(I-K)L=E
L=(I-K)'E
Binomial Theorem

L=(I+K+K*+K®+..)E

L=E+KE+K?’E+KE +...

Term n corresponds to n bounces of light

Ray Tracing
L=I:I+KE+K2E+K3E+...

Emission directly
From light sources

Direct lllumination
on surfaces

Global lllumination

OpenGL Shad|ng (One bounce indirect)

[Mirrors, Refraction]

(Two bounce indirect)
[Caustics etc]
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Outline

Reflectance Equation (review)

Global lllumination

Rendering Equation

As a general Integral Equation and Operator
Approximations (Ray Tracing, Radiosity)

Surface Parameterization (Standard Form)

Ray Tracing

L:I:I+KE+K2E+K3E+...

Emission directly
From light sources

Direct lllumination
on surfaces

Global lllumination
(One bounce indirect)
[Mirrors, Refraction]

(Two bounce indirect)
[Caustics etc]

Successive Approximation

KoKoL, KoKoKolL,

L +KoL, L +-K* L +-K'oL,
CS348B Lecture 13 Pat Hanrahan, Spring 2009
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Rendering Equation
Surfaces (interreflection)

®, ~x'—x

L. (X',—o,)f(X,0,0,)cosOdw,

L(xo,)=L(xo,)+ ][

Q
Reflected Light Emission  Reflected BRDF Cosine of
(Output Image) Light Incident angle
UNKNOWN KNOWN UNKNOWN KNOWN KNOWN




Change of Variables Change of Variables

L,(x,nJ,):Le(x,(u,)JrI L(X',—o,)f(x, o, , L,(x,(u,):Le(x,nJ,)+j L.(X',—)f(X, 0,0,

Q Q
Integral over angles sometimes insufficient. Write integral in Integral over angles sometimes insufficient. Write integral in
terms of surface radiance only (change of variables) terms of surface radiance only (change of variables)

L(xm,)=L(x0)+ J. L.(X',—w,)f(x,0;,,)

all x' visible to x

Rendering Equation: Standard Form Summary

L(x,o)=L(Xx,0)+| L(X,—0)f(x0,0 , ..
o) =Lxe) ;[ o %0, ! Theory for all global illumination methods (ray
Integral over angles sometimes insufficient. Write integral in tracing, path tracing, raleSlty)

terms of surface radiance only (change of variables) We derive Rendering Equation [Kajlya 86]
Major theoretical development in field

L(x,0,)=L(x0,)+ L.(X',—w,)f(x, 0,0, = . . .
Axo)=Lxe) (X' )i Unifying framework for all global illumination

all x' visible to x

Domain integral awkward. Introduce binary visibility fn V Discuss existing approaches as Special cases
Lxo)=Lxa)+ [ L(X,-0)(xo,0)60xXV(xX)dA

all surfaces x’
dA'cos 6,
Same as equation 2.52 Cohen Wallace. It swaps primed da (T
And unprimed, omits angular args of BRDF, - sign. ‘ X=X
Same as equation above 19.3 in Shirley, except he has

e ) ; ; cos 6, cosO,
no emission, slightly diff. notation G(x, ,\”) — G(.\". X)= o

Motivation: Monte Carlo Integration Example: Soft Shadows

Rendering = integration E(x)= J. L.(x,w)cosOdw
Reflectance equation: Integrate over incident illumination 2

Rendering equation: Integral equation Challenges

Many sophisticated shading effects involve integrals ; . m Visibility and blockers
Antialiasing ! m Varying light distribution
Soft shadows = : m Complex source geometry
Indirect illumination Ars
Caustics

Most Sampling/Reconstruction treats actual rendering
as a black box. But still helpful to know some basics

Source: Agrawala. Ramamoorthi, Heirich, Moll, 2000




Monte Carlo
Algorithms based on statistical sampling and
random numbers

Coined in the beginning of 1940s. Originally used
for neutron transport, nuclear simulations
Von Neumann, Ulam, Metropolis, ...

Canonical example: 1D integral done numerically
Choose a set of random points to evaluate function, and
then average (expectation or statistical average)

Integration in 1D

1

[f(x)ax=?

Slide courtesy of
Peter Shirley

Or we can average

[Fx)dx = E(F(x))

E(f(x))

Slide courtesy of
Peter Shirley

Monte Carlo Algorithms

Advantages
Robust for complex integrals in computer graphics
(irregular domains, shadow discontinuities and so on)
Efficient for high dimensional integrals (common in
graphics: time, light source directions, and so on)
Quite simple to implement
Work for general scenes, surfaces
Easy to reason about (but care taken re statistical bias)

Disadvantages
Noisy
Slow (many samples needed for convergence)
Not used if alternative analytic approaches exist (but
those are rare)

We can approximate

Standard integration methods like trapezoidal
rule and Simpsons rule

Advantages:
« Converges fast for smooth integrands
* Deterministic

Disadvantages:
« Exponential complexity in many dimensions
1 « Not rapid convergence for discontinuities

Slide courtesy of
Peter Shirley

Estimating the average

j;f(x)dx: %gf(xl.)

Monte Carlo methods (random choose
samples)
E(f(X) ) Advantages:
* Robust for discontinuities
« Converges reasonably for large
dimensions
« Can handle complex geometry, integrals
« Relatively simple to implement, reason
about

Slide courtesy of
Peter Shirley



Other Domains Multidimensional Domains

by Same ideas apply for integration over ...
N f(x) Pixel areas
- Surfaces »

Projected areas _1
Diréctions Eye UG,[Y f(x)dx = N ; f(x,)
Camera apertures 3
Time
Paths

Surface
Slide courtesy of
Peter Shirley

Random Variables Expected Value

Describes possible outcomes of an experiment Expectation Discrete:

In discrete case, e.g. value of a dice roll [x = 1-6]

Continuous:  E(f)= j.p(x)f(x) dx

Probability p associated with each x (1/6 for dice)
Continuous case is obvious extension For Dice example:
11

E(x)=Y —x =

(1+2+3+4+5+6)=35
=6 ' 6

Continuous Probability Distributions

Sampling Techniques
PDF p(x) Uniform

Problem: how do we generate random
p(x)=0 points/directions during path tracing?

Non-rectilinear domains
CDF P(x) Importance (BRDF)

. Stratified
P(x)= _[p(x)a’x
P(x)= i))r(X< x) P)=1

B
Pria <X < f)= j p(x)dx

a

= P(p)-P(@)

CS348B Lecture 6 Pat Hanrahan, Spring 2004

0

0 |

Surface




Generating Random Points

Uniform distribution:
Use random number generator

-

Probability

Common Operations

Want to sample probability distributions
Draw samples distributed according to probability

Com

Cumulative
Probability

Useful for integration, picking important regions, etc.

mon distributions
Disk or circle

Uniform
Upper hemisphere for visibility

Area luminaire
Complex lighting like an environment map

Complex reflectance like a BRDF

Generating Random Points

Generating Random Points

Specific probability distribution:

Function inversion
Rejection
Metropolis

RN

Probability

Sampling Continuous Distributions

Cumulative probability distribution function

P(x)=Pr(X < x)

Construction of samples
Solve for X=P-(U)

Must know:
1. The integral of p(x)

2. The inverse function P/(x)

X

Pat Hanrahan, Spring 2004

CS348B Lecture 6

Example: Power Function

Assume
p(x)=(n+1)x"

P(x)=x""

X~px)y=X=P'(U)= H\.,L_

Trick
Y =max(U,.U,.,---,U.U, )

ntl
Pr(Y <x)= ]_[ Pr(U<x)=x""
il

CS348B Lecture 6

Pat Hanrahan, Spring 2004



Sampling a Circle

z 1 22 2
re 27
drd0 = [rdr jd9=[7]’ o ==
0

0 0

P 0)drd0 =L rdr d0 = p(r.0) =L
Va v

p(r,0)= p(r)p(0)

P({‘}):T

I
’lf 0=2rU,
PO) =50 _/
d

pr)=2r =0,

P(r) =1

CS348B Lecture 6 Pat Hanrahan, Spring 2004
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Rejection Sampling

>
=
o
©
Q
[
=
o

Sampling a Circle: Rejection

do {
X=1-2*U,

Y=1-2+U,
‘/ while( X%+ Y2 >1 )

May be used to pick random 2D directions

Circle techniques may also be applied to the sphere

CS348B Lecture 6 Pat Hanrahan, Spring 2004

Sampling a Circle

WRONG 3 Equi-Areal RIGHT = Equi-Areal

€S348B Lecture 6 Pat Hanrahan, Spring 2004

Rejection Methods

1= 1J‘f(x)dx

= H dx dy

y<f(x)

Algorithm
Pick U, and U,

Accept U, if U, < f(U))

Wasteful? Efficiency = Area / Area of rectangle

C€S348B Lecture 6 Pat Hanrahan, Spring 2004

More formally

Definite integral I(f)= J.f(x) dx
Expectation of /' E[f]= J‘f(x)p(x)dx

Random variables X, ~ p(x)
Y= f(X)

1 N
Estimator F, = —ZX
‘ N i=l




Unbiased Estimator

Properties

E[Y Y]=2 EIY]

ElaY]= aE[Y]

Assume uniform probability
distribution for now

CS348B Lecture 6 Pat Hanrahan, Spring 2004

Direct Lighting - Area Sampling

E(x) = [L(x.0)cos0dew = L, (') (x, x’)%dy
Q A X—X

’

Ray direction  @'=x—x

Sample X’ uniformly by 4

cosé cos &

Y=L (x,0)V(xx)———7=
s

i

JO —visible
11 visible
CS348B Lecture 6 Pat Hanrahan, Spring 2004

Importance Sampling

This is still unbiased

E[Y]= j Y (x)p(x)dx

_fx)
E(f(x) - ip(x) s
= [f(x)dx

for all N

Direct Lighting - Directional Sampling

E(x)= IL(x, w)cosBdw
Q

Ray intersection x (X, ®)

Sample @ uniformly by Q
Y, = L(x"(x,0,),~®,) cos O 27

C€S348B Lecture 6 Pat Hanrahan, Spring 2004

Importance Sampling

Put more samples where f(x) is bigger

Importance Sampling

Zero variance if p(x) ~ f(x)

Less variance with better
importance sampling

10



Stratified Sampling

Estimate subdomains separately

Exf(x)

More Information

Veach PhD thesis chapter (linked to from
website)

Course Notes (links from website)
Mathematical Models for Computer Graphics, Stanford, Fall 1997
State of the Art in Monte Carlo Methods for Realistic Image Synthesis,
Course 29, SIGGRAPH 2001

Stratified Sampling

Less overall variance if less variance

in subdomains

Exf(x)

1 M
Var[FN]:W;NiVar[F,]

11



