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Sampling and Reconstruction of Visual 
Appearance: From Denoising to View Synthesis

CSE 274 [Fall 2022], Lecture 3

Ravi Ramamoorthi
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Motivation: Monte Carlo Rendering
§ Key application area for sampling/reconstruction

§ Modern methods for denoising now popular 

§ 1-3 order of magnitude speedups in mature area

§ Denoising now standard in production rendering
§ And in real-time, going down to 1spp

§ This, next week: Basic background in rendering 
§ Reflection and Rendering Equations 
§ Monte Carlo Integration 
§ Path Tracing (Basic Monte Carlo rendering method)
§ Also the basics of CSE 168 (163)

§ Sign up (email me) re paper presentations
2

Illumination Models
Local Illumination

§ Light directly from light sources to surface
§ No shadows (cast shadows are a global effect)

Global Illumination: multiple bounces (indirect light)
§ Hard and soft shadows
§ Reflections/refractions (already seen in ray tracing)
§ Diffuse and glossy interreflections (radiosity, caustics)

Some images courtesy Henrik Wann Jensen
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Caustics
Caustics: Focusing through specular surface

§ Major research effort in 80s, 90s till today
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Overview of lecture

§ Theory for all global illumination methods (ray 
tracing, path tracing, radiosity)

§ We derive Rendering Equation [Kajiya 86]
§ Major theoretical development in field
§ Unifying framework for all global illumination
§ Introduced Path Tracing: core rendering method

§ Discuss existing approaches as special cases

Fairly theoretical lecture (but important).  Not well covered in textbooks (though 
see Eric Veach’s thesis).  See reading if you are interested. 
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Outline

§ Reflectance Equation

§ Global Illumination

§ Rendering Equation

§ As a general Integral Equation and Operator

§ Approximations (Ray Tracing, Radiosity)

§ Surface Parameterization (Standard Form)
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Reflection Equation

 ω i rw

x

   Lr (x,ω r ) = Le(x,ω r )+ Li (x,ω i )f (x,ω i ,ω r )(ω i i n)
Reflected Light
(Output Image)

Emission Incident 
Light (from
light source)

BRDF Cosine of 
Incident angle
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Reflection Equation

 ω i rw

x

   Lr (x,ω r ) = Le(x,ω r )+∑ Li (x,ω i )f (x,ω i ,ω r )(ω i i n)
Reflected Light
(Output Image)

Emission Incident 
Light (from
light source)

BRDF Cosine of 
Incident angle

Sum over all light sources
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Reflection Equation

 ω i rw

x

( , ) ( , ) ( , ) ( , , ) cosr r e r i i i r iiL x L x L x df xw w w ww w q
W

= + ò
Reflected Light
(Output Image)

Emission Incident 
Light (from
light source)

BRDF Cosine of 
Incident angle

Replace sum with integral

idw

9

Environment Maps
§ Light as a function of direction, from entire environment

§ Captured by photographing a chrome steel or mirror sphere

§ Accurate only for one point, but distant lighting same at other 
scene locations (typically use only one env. map)

Blinn and Newell 1976, Miller and Hoffman, 1984
Later, Greene 86, Cabral et al. 87
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The Challenge

§ Computing reflectance equation requires 
knowing the incoming radiance from surfaces

§ But determining incoming radiance requires 
knowing the reflected radiance from surfaces

( , ) ( , ) ( , ) ( , , ) cosr r e r i i i r iiL x L x L x f x dw w w w w q w
W

= + ò
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Rendering Equation

 ω i rw

x

  
Lr (x,ω r ) = Le(x,ω r )+

Ω
∫ Lr ( ′x ,−ω i )f (x,ω i ,ω r ) cosθ idω i

Reflected Light
(Output Image)

Emission Reflected
Light

BRDF Cosine of 
Incident angle

idw

Surfaces (interreflection)

dA
 ′x

UNKNOWN UNKNOWNKNOWN KNOWN KNOWN
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Outline

§ Reflectance Equation (review)

§ Global Illumination

§ Rendering Equation

§ As a general Integral Equation and Operator

§ Approximations (Ray Tracing, Radiosity)

§ Surface Parameterization (Standard Form)
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Rendering Equation (Kajiya 86)
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Rendering Equation as Integral Equation

Reflected Light
(Output Image)

Emission Reflected
Light

BRDF Cosine of 
Incident angle

UNKNOWN UNKNOWNKNOWN KNOWN KNOWN

  
l(u) = e(u)+ l(v)∫ K(u,v)dv

Is a Fredholm Integral Equation of second kind 
[extensively studied numerically] with canonical form

  
Lr (x,ω r ) = Le(x,ω r )+

Ω
∫ Lr ( ′x ,−ω i ) f (x,ω i ,ω r ) cosθ idω i

Kernel of equation
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Linear Operator Theory
§ Linear operators act on functions like matrices act 

on vectors or discrete representations 

§ Basic linearity relations hold

§ Examples include integration and differentiation

( )( ) ( )h u M f u= !
M is a linear operator.
f and h are functions of u

( ) ( ) ( )M af bg a M f b M g+ = +! ! !

a and b are scalars
f and g are functions 

( )

( )

( ) ( , ) ( )

( ) ( )

K f u k u v f v dv

fD f u u
u

=

¶
=
¶

ò!

!
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Linear Operator Equation

( ) ( )( ) ( , )l u e u K u dvl v v= + ò
Kernel of equation
Light Transport Operator

 L = E +KL
Can be discretized to a simple matrix equation
[or system of simultaneous linear equations] 
(L, E are vectors, K is the light transport matrix)
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Solving the Rendering Equation
§ Too hard for analytic solution, numerical methods

§ Approximations, that compute different terms, 
accuracies of the rendering equation

§ Two basic approaches are ray tracing, radiosity.  More 
formally, Monte Carlo and Finite Element.  Today 
Monte Carlo path tracing is core rendering method

§ Monte Carlo techniques sample light paths, form 
statistical estimate (example, path tracing)

§ Finite Element methods discretize to matrix equation

18



4

Solving the Rendering Equation
§ General linear operator solution.  Within raytracing:
§ General class numerical Monte Carlo methods
§ Approximate set of all paths of light in scene

 L = E +KL
 IL −KL = E
  (I −K)L = E

  L = (I −K)−1E
Binomial Theorem

  L = (I +K +K 2 +K 3 + ...)E
  L = E +KE +K 2E +K 3E + ...

Term n corresponds to n bounces of light
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Ray Tracing

  L = E +KE +K 2E +K 3E + ...
Emission directly
From light sources

Direct Illumination
on surfaces

Global Illumination
(One bounce indirect)
[Mirrors, Refraction]

(Two bounce indirect) 
[Caustics etc]
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Ray Tracing

  L = E +KE +K 2E +K 3E + ...
Emission directly
From light sources

Direct Illumination
on surfaces

Global Illumination
(One bounce indirect)
[Mirrors, Refraction]

(Two bounce indirect) 
[Caustics etc]

OpenGL Shading
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Outline

§ Reflectance Equation (review)

§ Global Illumination

§ Rendering Equation

§ As a general Integral Equation and Operator

§ Approximations (Ray Tracing, Radiosity)

§ Surface Parameterization (Standard Form)
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Rendering Equation

iw rw

x

( , ) ( , , ) c( , ) ( , ) ose r i rr r i ir iL x L xL x f x dw w ww q ww
W

= + ¢ -ò
Reflected Light
(Output Image)

Emission Reflected
Light

BRDF Cosine of 
Incident angle

idw

Surfaces (interreflection)

dA
x¢

UNKNOWN UNKNOWNKNOWN KNOWN KNOWN

i x xw ¢-!
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Change of Variables

Integral over angles sometimes insufficient.  Write integral in 
terms of surface radiance only (change of variables)

( , ) ( , ) ( , ) ( , , ) cosr r e r r i i r i iL x L x L x df xw w w w w wq
W

¢= + -ò

x

x¢

dA¢

iw

iw-

iq

oq

idw
2

cos
| |

o
i
dAd
x x

qw
¢

=
¢-
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Change of Variables

Integral over angles sometimes insufficient.  Write integral in 
terms of surface radiance only (change of variables)

( , ) ( , ) ( , ) ( , , ) cosr r e r r i i r i iL x L x L x df xw w w w w wq
W

¢= + -ò

2

cos
| |

o
i
dAd
x x

qw
¢

=
¢-

all visible
2

 to 

cos cos( , ) ( , ) ( , ) ( , , )
| |

i o
r r e r r i i r

x x

L x L x L x f x
x

d
x

Aq q
w w w w w

¢

¢= + -
¢-

¢ò

2

cos cos( , ) ( , )
| |

i oG x x G x x
x x
q q¢ ¢= =

¢-
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Rendering Equation: Standard Form

Integral over angles sometimes insufficient.  Write integral in 
terms of surface radiance only (change of variables)

Domain integral awkward.  Introduce binary visibility fn V

( , ) ( , ) ( , ) ( , , ) cosr r e r r i i r i iL x L x L x df xw w w w w wq
W

¢= + -ò

2

cos
| |

o
i
dAd
x x

qw
¢

=
¢-

all visible
2

 to 

cos cos( , ) ( , ) ( , ) ( , , )
| |

i o
r r e r r i i r

x x

L x L x L x f x
x

d
x

Aq q
w w w w w

¢

¢= + -
¢-

¢ò

2

cos cos( , ) ( , )
| |

i oG x x G x x
x x
q q¢ ¢= =

¢-

all surfaces 

( , ) ( , ) ( , ) ( , , ) ( , ) ( , )r r e r r
x

i i rL x L x L x f x G x dAx x V xw w w w w
¢

¢ ¢ ¢= + - ¢ò

Same as equation 2.52 Cohen Wallace. It swaps primed
And unprimed, omits angular args of BRDF, - sign.
Same as equation above 19.3 in Shirley, except he has 
no emission, slightly diff. notation
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Summary

§ Theory for all global illumination methods (ray 
tracing, path tracing, radiosity)

§ We derive Rendering Equation [Kajiya 86]
§ Major theoretical development in field
§ Unifying framework for all global illumination

§ Discuss existing approaches as special cases
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Motivation: Monte Carlo Integration

Rendering = integration
§ Reflectance equation: Integrate over incident illumination
§ Rendering equation: Integral equation

Many sophisticated shading effects involve integrals
§ Antialiasing
§ Soft shadows
§ Indirect illumination
§ Caustics

Most Sampling/Reconstruction treats actual rendering 
as a black box.  But still helpful to know some basics
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Example: Soft Shadows

30
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Monte Carlo

§ Algorithms based on statistical sampling and 
random numbers

§ Coined in the beginning of 1940s.  Originally used 
for neutron transport, nuclear simulations
§ Von Neumann, Ulam, Metropolis, …

§ Canonical example: 1D integral done numerically
§ Choose a set of random points to evaluate function, and 

then average (expectation or statistical average)
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Monte Carlo Algorithms

Advantages
§ Robust for complex integrals in computer graphics 

(irregular domains, shadow discontinuities and so on)
§ Efficient for high dimensional integrals (common in 

graphics: time, light source directions, and so on)
§ Quite simple to implement
§ Work for general scenes, surfaces
§ Easy to reason about (but care taken re statistical bias)

Disadvantages
§ Noisy
§ Slow (many samples needed for convergence) 
§ Not used if alternative analytic approaches exist (but 

those are rare)

32

Integration in 1D

x=1

f(x)

  
f (x)dx =

0

1

∫ ?

Slide courtesy of 
Peter Shirley
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We can approximate 

x=1

f(x) g(x)

  
f (x)dx ≈

0

1

∫ g(x)dx
0

1

∫

Slide courtesy of 
Peter Shirley

Standard integration methods like trapezoidal
rule and Simpsons rule

Advantages: 
• Converges fast for smooth integrands
• Deterministic

Disadvantages:
• Exponential complexity in many dimensions
• Not rapid convergence for discontinuities
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Or we can average

x=1

f(x)
E(f(x))

  
f (x)dx

0

1

∫ = E(f (x))

Slide courtesy of 
Peter Shirley
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Estimating the average

x1

f(x)

xN

  
f (x)dx

0

1

∫ = 1
N

f (xi )
i=1

N

∑

E(f(x))

Slide courtesy of 
Peter Shirley

Monte Carlo methods (random choose 
samples)

Advantages: 
• Robust for discontinuities
• Converges reasonably for large 
dimensions
• Can handle complex geometry, integrals
• Relatively simple to implement, reason 
about

36
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Other Domains

x=b

f(x)
< f >ab

x=a

  
f (x)dx

a

b

∫ = b − a
N

f (xi )
i=1

N

∑

Slide courtesy of 
Peter Shirley
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Multidimensional Domains

Same ideas apply for integration over …
§ Pixel areas
§ Surfaces
§ Projected areas
§ Directions
§ Camera apertures
§ Time
§ Paths

  
f (x)dx

UGLY
∫ = 1

N
f (xi )

i=1

N

∑

Surface

Eye

Pixel

x
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Random Variables

§ Describes possible outcomes of an experiment

§ In discrete case, e.g. value of a dice roll [x = 1-6]

§ Probability p associated with each x (1/6 for dice)

§ Continuous case is obvious extension 
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Expected Value

§ Expectation

§ For Dice example: 
  

Discrete: E(f ) = pi
i=1

n

∑ f (xi )

Continuous: E(f ) = p(x)f (x) dx
0

1

∫

  
E(x) = 1

6i=1

n

∑ xi =
1
6

1+ 2+ 3 + 4 + 5 + 6( ) = 3.5

40
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Sampling Techniques

Problem: how do we generate random 
points/directions during path tracing?
§ Non-rectilinear domains
§ Importance (BRDF)
§ Stratified

Surface

Eye

x

42
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Generating Random Points

Uniform distribution:
§ Use random number generator

Pr
ob

ab
ilit

y

0

1

W
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Generating Random Points

Specific probability distribution:
§ Function inversion
§ Rejection
§ Metropolis

Pr
ob

ab
ilit

y

0

1

W
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Common Operations

Want to sample probability distributions
§ Draw samples distributed according to probability
§ Useful for integration, picking important regions, etc.

Common distributions
§ Disk or circle
§ Uniform
§ Upper hemisphere for visibility
§ Area luminaire
§ Complex lighting like an environment map
§ Complex reflectance like a BRDF
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Generating Random Points

Cu
m

ul
at

ive
Pr

ob
ab

ilit
y

0

1

W
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49 50

Rejection Sampling

Pr
ob

ab
ilit

y

0

1

W

x

x

x

x x

x
x

x

x x
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More formally
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Importance Sampling

Put more samples where f(x) is bigger

  

f (x)dx
Ω
∫ = 1

N
Yi

i=1

N

∑

Yi =
f (xi )
p(xi )

x1 xN

E(f(x))
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Importance Sampling

§ This is still unbiased

x1 xN

E(f(x))

  

E Yi
⎡⎣ ⎤⎦ = Y(x)p(x)dx

Ω
∫

= f (x)
p(x)

p(x)dx
Ω
∫

= f (x)dx
Ω
∫

for all N
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Importance Sampling

§ Zero variance if p(x) ~ f(x)

x1 xN

E(f(x))

Less variance with better
importance sampling

  

p(x) = cf (x)

Yi =
f (xi )
p(xi )

= 1
c

Var(Y ) = 0

60
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Stratified Sampling

§ Estimate subdomains separately

x1 xN

Ek(f(x))

Arvo

61

Stratified Sampling

§ Less overall variance if less variance 
in subdomains

  
Var FN⎡⎣ ⎤⎦ =

1
N2 NiVar Fi⎡⎣ ⎤⎦

k=1

M

∑

x1 xN

Ek(f(x))
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More Information

§ Veach PhD thesis chapter (linked to from 
website)

§ Course Notes (links from website)
§ Mathematical Models for Computer Graphics, Stanford, Fall 1997
§ State of the Art in Monte Carlo Methods for Realistic Image Synthesis, 

Course 29, SIGGRAPH 2001
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