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Abstract

Monte Carlo integration is firmly established as the basis for most practical realistic image synthesis algorithms
because of its flexibility and generality. However, the visual quality of rendered images often suffers from estimator
variance, which appears as visually distracting noise. Adaptive sampling and reconstruction algorithms reduce
variance by controlling the sampling density and aggregating samples in a reconstruction step, possibly over large
image regions. In this paper we survey recent advances in this area. We distinguish between “a priori” methods
that analyze the light transport equations and derive sampling rates and reconstruction filters from this analysis,
and “a posteriori” methods that apply statistical techniques to sets of samples to drive the adaptive sampling
and reconstruction process. They typically estimate the errors of several reconstruction filters, and select the best
filter locally to minimize error. We discuss advantages and disadvantages of recent state-of-the-art techniques, and
provide visual and quantitative comparisons. Some of these techniques are proving useful in real-world applications,
and we aim to provide an overview for practitioners and researchers to assess these approaches. In addition, we
discuss directions for potential further improvements.

Categories and Subject Descriptors (according to ACM CCS): 1.3.3 [Computer Graphics]: Picture/Image Generation—

STAR — State of The Art Report

Display algorithms

Today, Monte Carlo methods are widely accepted as the
most practical methods for realistic image synthesis. The ren-
dering equation [Kaj86] formulates this problem as an in-
tegral over all light paths that connect any point on a light
source to a point on an image sensor. Monte Carlo methods
estimate this integral by randomly sampling light paths and
accumulating their image contributions. Even simple Monte
Carlo rendering algorithms come with a number of very de-
sirable properties: they are consistent, which means that as
the number of sampled paths increases, the estimated image
converges to the correct solution; some algorithms, like (bidi-
rectional) path tracing, are also unbiased, that is, the expected
value of the estimated image corresponds to the correct solu-
tion and the error consists only of variance; and finally, they
are applicable to most scene configurations that are relevant
in practice.
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On the other hand, because only a limited number of ran-
dom light paths can be sampled to compute each image,
all Monte Carlo methods suffer from variance in the esti-
mated pixel values, which appears as image noise. Unfor-
tunately, computation times to obtain visually satisfactory
results without noticeable noise are often in the minutes and
hours. Therefore, researchers have proposed a wide variety
of noise or variance reduction strategies over the years, from
different path sampling strategies (importance sampling, bidi-
rectional techniques, Metropolis sampling) to statistical tech-
niques (quasi-Monte Carlo sampling using low-discrepancy
sequences, density estimation, control variates), or signal pro-
cessing methods (frequency analysis, non-linear filtering),
to name the most prominent ones. In this paper, we sur-
vey recent advances in adaptive sampling and reconstruction,
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which have proven very effective at reducing the computa-
tional cost of Monte Carlo techniques in practice.

The amount of variance generally varies greatly between
local regions of rendered images. Adaptive sampling refers
to techniques that control sampling densities based on pre-
viously acquired samples, in contrast to sampling predeter-
mined target densities, to distribute samples according to
the local amount of variance. Adaptive reconstruction com-
putes output pixel values using locally defined reconstruc-
tion filters. These filters reduce variance by sharing informa-
tion between pixels, and by aggregating samples over larger
image regions, while trying to avoid blurriness. Adaptive
sampling generally requires an adaptive reconstruction step,
while adaptive reconstruction may also be performed without
adaptive sampling. A common strategy is to sample and re-
construct iteratively, where the estimated reconstruction error
determines sampling densities in the next step.

Pioneering efforts in adaptive sampling and reconstruction
occurred almost simultaneously with the development of the
first Monte Carlo algorithms. For example, Mitchell [Mit87]
proposed a two-step approach to adaptively sample the im-
age plane considering a contrast metric inspired by hu-
man perception, and he developed a reconstruction filter to
deal with the nonuniform sample distributions. Parker and
Sloan [PS89] and Guo [Guo98] sample the image plane us-
ing progressive refinement, and both apply polynomial re-
construction filters. Ward et al.’s irradiance caching algo-
rithm [WRCS8S] sparsely and adaptively samples irradiance
in the image plane in a greedy fashion, and uses a custom
tailored reconstruction strategy to interpolate irradiance at
each pixel. Inspired by these works, other researchers have
considered more advanced perceptual error estimates [BM9S,
RPG99], or alternative reconstruction strategies such as splat-
ting [RW94] and anisotropic diffusion [McC99]. Despite
these early successes, recent advances in adaptive sampling
and reconstruction have been significant, reducing the num-
ber of samples often by orders of magnitudes without sacri-
ficing quality compared to these earlier methods.

As a starting point that sparked these advances, we would
like to single out two papers that represent trends in what we
call “a priori” and “a posteriori” techniques emerging in their
aftermath. Durand et al. [DHS*05] embarked on the project
to develop a local frequency analysis of light transport. This
revived the idea to enhance samples with information ob-
tained from a local, analytic analysis of the light transport
equations, and use this to control sampling and reconstruc-
tion. A single sample enhanced with such information could
a priori, without considering other samples, determine the
local sampling density or support of a reconstruction filter.
Hence, for the purpose of organizing our survey, we use the
term ““a priori” to characterize methods following this pattern.
A priori methods are not restricted to frequency analysis, but
may rely on other information such as derivatives. A key
idea in a priori methods is also to perform the analysis in

a higher dimensional domain, which was first proposed by
Mitchell [Mit91].

On the other hand, Overbeck et al. [ODR09] estimate the
error of a 2D wavelet approximation of the rendered image
after distributing an initial set of samples, and then they iter-
atively add more samples. Here, sample densities and recon-
struction filters are derived a posteriori from the statistics of
a set of samples. Hence, we call such methods “a posteriori”.
While this strategy goes back to the earliest adaptive sam-
pling techniques [Mit87], Overbeck’s approach combines it
with more powerful reconstruction filters, which was a cru-
cial step paving the way for further advances.

We review developments in adaptive sampling and recon-
struction roughly starting with the aforementioned works that
arguably initiated a revival of this area. We broadly group ap-
proaches into “a priori” (Section 1) and “a posteriori” (Sec-
tion 2), although some techniques employ a combination of
both strategies. Finally, we discuss strengths, weaknesses,
and practicability of these techniques, for example in pro-
duction rendering (Section 3).

1. A Priori Methods

A priori methods enhance Monte Carlo samples with infor-
mation derived from an analytical analysis of the light trans-
port equations. To evaluate this analysis in practice, they of-
ten require access to additional scene information including
local 3D geometry or analytic BRDF models. They then con-
struct adaptive reconstruction filters based on this informa-
tion. To ensure that the analysis remains tractable, most a
priori methods focus on a restricted set of effects, such as
depth of field, motion blur, soft shadows, or diffuse indirect
illumination, and some combinations thereof. We organize
our review according to the type of analysis of each method,
where we distinguish three main types: local frequency anal-
ysis (Section 1.1), light field structure analysis (Section 1.2),
and derivative analysis (Section 1.3).

1.1. Local Frequency Analysis

Adaptive techniques based on frequency analysis leverage
classical signal processing theory [OS09] to determine local
sampling rates and reconstruction filters. Nyquist’s sampling
theorem states that, for a bandlimited signal, a sampling rate
of at least twice the signal bandwidth ensures that the sig-
nal can be perfectly reconstructed from the samples without
aliasing. A key idea is to determine bandlimits locally and
apply the sampling theorem to obtain nonuniform, locally
optimal sampling densities. Nyquist’s sampling theorem can
also be leveraged to solve the adaptive reconstruction part:
reconstruction filters should simply match the local sampling
densities, that is, their spectral support should extract exactly
the central replica of the sampled signal. The most common
application of this theory in computer graphics is in texture
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filtering, and the work reviewed here was also inspired by the
pioneering contribution by Heckbert [Hec86] in this area.

In geometrical optics, the light energy in a scene is de-
scribed by its radiance distribution. Restricted to rays inci-
dent or reflected from surfaces, radiance distributions can
be represented by 4D functions in the spatio-angular do-
main called light fields [LH96]. The frequency analysis
of light fields has been studied for image based render-
ing [CTCS00], computational cameras [LHG*09], and light
field displays [ZMDP06, WLHR11]. Durand et al. [DHS*05]
embarked on the project to conduct a local frequency anal-
ysis of light fields in the neighborhood of individual rays,
and study the effects of light transport phenomena such as
transport along the ray, reflection on curved surfaces, and oc-
clusion. We show part of this analysis schematically in 2D
flatland in Figure 1, where each ray is given by a position
x and direction v. Determining local frequency spectra un-
der various light transport effects would make it possible to
derive adaptive sampling rates of rays.

A key question for practical applications is how to rep-
resent the local spectra. One option is to estimate only the
bandwidths of the spectra, since this is sufficient to determine
sampling rates via the Nyquist theorem. Below we will also
discuss additional strategies that have been explored. Note
that light field spectra are 4D functions in the spatio-angular
domain, hence sampling densities and reconstruction filters
are most naturally defined in a 4D space. For practical imple-
mentation, however, it can be more efficient to work in 2D
image space by projecting from 4D to 2D.

Durand et al. [DHS*05] demonstrate a proof-of-concept
algorithm for adaptive sampling of glossy reflection under
environment illumination and partial occlusion. They derive
approximate, local 2D bandwidths of the image signal and
distribute samples accordingly. They reconstruct the image
by adjusting the spatial support of a cross-bilateral filter ac-
cording to the bandwidth estimates. Bagher et al. [BSS™13a]
extend this approach to measured BRDFs using wavelets
to estimate local bandwidths of illumination, textures, and
BRDFs.

A key insight of Durand et al.’s work is that effects includ-
ing diffuse emission and reflection, transport in free space,
and occlusion lead to light fields composed of locally lin-
ear structures as can be seen in Figure 1. The slopes of
these structures are linked to distances to diffuse emitters
and reflectors, distances of transport, and distances to occlud-
ers, respectively. The corresponding frequency spectra have
wedge-like shapes with slopes perpendicular to the slopes
in the spatio-angular domain. A series of consecutive works
exploits this observation by deriving bandwidths of sheared
filters that cover these wedges, as shown in Figure 2.

Egan et al. [ETH*09] added motion blur to the frequency
analysis, while including the effects of shading, occlusion,
and cast shadows. They show that these effects locally de-
termine an “effective velocity”, and the light field energy is
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Figure 1: Frequency analysis of light fields under diffuse
emission, transport, and occlusion. A source (Step 1) of size
L emits light uniformly over directions, hence the light field is
constant over v, and non-zero only for positions |x| < L/2. In
the frequency domain, this is a sinc over spatial frequencies
Qy. Transport to the occluder (Step 2) corresponds to moving
the x axis to the occluder plane. This results in a shear along
X in the spatio-angular domain, because the directions of rays
(their v coordinates) stay constant. Their new x coordinates,
on the other hand, change proportionally to their direction v.
In the frequency domain, this causes a related shear along the
other axis (angular frequencies Q). Finally, occlusion (Step
3) is a multiplication with a binary function in the spatial
domain, and a convolution in the frequency domain. Figure
adapted from Durand et al. [DHS*05].

mostly contained in a wedge in the frequency domain defined
by the minimum and maximum velocities. This analysis is
similar to the work by Chai et al. [CTCS00] who first de-
scribed such wedge spectra in the context of light field ren-
dering. It is also related to early work by Shinya et al. [Shi93]
who derived spatio-temporal filters using motion vectors at
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Figure 2: Linear structures in light fields, caused by dif-
fuse emission and reflection, transport, occlusion, and linear
motion, lead to wedge-like frequency spectra. They can be
packed densely in the frequency domain (left), corresponding
to sparse sampling. Reconstruction employs sheared filters
(middle) that extract the central wedge (right). This figure is
adapted from Egan et al.’s work on motion blur [ETH"09],
illustrating spectra over a spatio-temporal domain (x,t).

the sub-pixel level to anti-alias animation sequences. Egan
et al. derive sparse sampling rates for the wedge spectras
that are guaranteed to avoid aliasing, and construct matching
sheared 3D spatio-temporal filters to reconstruct the signal
as shown in Figure 2. In practice, they approximate the ideal
sheared box filters with truncated Gaussians.

Subsequently, they also studied soft shadows from planar
area light sources [EHDR11] following a similar approach.
They derive wedge spectra for occluders, where the shape of
the wedge depends on the range of occluder depths, trans-
form the spectra to the frequency space of the receiver, and
derive a sheared reconstruction filter on the receiver that
avoids aliasing. In a practical algorithm, they uniformly but
sparsely sample occlusions across the image and determine
4D sheared filters at each sample in a first pass. In a second
pass, they use the 4D sheared filters to reconstruct soft shad-
ows at each pixel from the sparse samples. Finally, Egan et
al. [EDR11] analyzed distant illumination under occlusion
and including low-frequency BRDFs, and they derive local
bandwidths and 4D sheared filters similarly as above. Also
the algorithmic implementation follows the same two step
approach with sparse, uniform initial sampling followed by
reconstruction using the sheared filters.

Mehta et al. [MWRI12] observed that the 4D sheared fil-
tering approach developed in previous methods [ETH*09,
EHDRI11,EDR11] adds minutes of overhead to the rendering
time. In addition, the two step algorithm requires additional
storage for the initial samples. Instead, they propose a method
suitable for real-time rendering of soft shadows based on axis-
aligned 2D filtering in image space as shown in Figure 3, and
without additional storage requirements. Using similar anal-
ysis as above, they derive sampling rates and filter sizes to
adaptively sample and reconstruct, but with axis aligned fil-
ters directly in 2D image space. Their method also converges
to reference Monte Carlo solutions as sampling rates increase
beyond the minimum required by the analytical analysis.
Later, they extended this approach to include diffuse indi-
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Figure 3: Mehta et al. [MWRI12, MWRD13, MYRDI14] use
axis aligned filters with bandwidths (Q,’; , QI) in (x,y) image
space (left, red rectangle) to reconstruct the wedge spectra
(light blue). Axis aligned filters can be packed less tightly
(right) than sheared filters (Figure 2), implying higher sam-
pling rates, but they can be implemented very efficiently.

rect illumination [MWRD13]. Most recently they developed
a method to combine primary (depth of field) and secondary
effects (soft shadows, diffuse and moderately glossy indirect
illumination) in a single framework [MYRD14], again us-
ing image space adaptive sampling and axis-aligned filtering.
Their method requires little computation and incurs no stor-
age overhead, yet it achieves impressive results as shown in
Figure 4. In their paper, they demonstrate up to 30 x sampling
rate reduction compared to equal quality noise-free MC.

Soler et al. also analyzed depth of field [SSD*(09] using
the same frequency domain machinery [DHS*05] to model
transport, occlusion, and aperture effects of local light field
spectra around a ray. In contrast to the methods described
above, they do not represent the spectra using bandlimits and
sheared filters, but by sampling the local power spectra and
transforming the samples according to the effects of transport,
occlusion, and lens aperture. They then derive bandwidths in
the image and on the lens aperture to determine image and
aperture sampling densities. They reconstruct the image by
collecting the k-nearest samples at each pixel.

Beyond bandlimits in combination with sheared filters, and
sampled spectra, Belcour et al. [BSS™13b] propose a third
alternative to represent local light field spectra. They use co-
variance matrices that define multi-dimensional Gaussians,
which may be degenerate if the matrices are rank deficient.
Various light transport effects (transport in free space, occlu-
sion, reflection, etc.) are modeled as operators applied to the
multi-dimensional Gaussians, which boil down to simple ma-
nipulations of the covariance matrices. The unique feature of
this technique is that different light transport and lens effects
(motion blur, depth of field) are easily combined by concate-
nating these operators. In a proof-of-concept implementation,
they propose to propagate covariance spectra along sampled
paths, project and accumulate them in image space, and deter-
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Figure 4: This figure is adapted from Mehta et al. [MYRD14],
who handle primary (depth of field) and secondary effects
(soft shadows, indirect illumination) in a single framework.
The approach relies on fast, axis aligned filtering in image
space. We report the number of rays (that is, ray segments)
per pixel (rpp) and show an equal time comparison (on the
GPU) to stratified Monte Carlo rendering.

mine sampling rates and reconstruction filters based on this
information. Subsequently, Munkberg et al. [MVH™ 14] built
on Belcour et al.’s light field operators to develop real-time
capable filters for motion blur and depth of field. The key
idea in their work is to split samples into image plane tiles
and partition each tile into depth layers. Then they filter each
layer separately with an appropriate filter derived using the
light field operators.

We summarize the methods based on local frequency anal-
ysis of light fields in Table 1. A limitation of most meth-
ods is that they analyze only a single or a limited combina-
tion of effects, and they require specialized algorithms for
each. The work by Mehta et al.’s [MYRD14] and Belcour et
al. [BSS™13b] are the most general ones, supporting depth
of field, soft shadows, and diffuse and slightly glossy indi-
rect illumination. Mehta et al. provides lower computational
overhead and higher quality at similar sampling rates than
Belcour et al. On the other hand, Belcour et al.’s approach is
more easily extendable to additional effects including motion
blur and participating media [BBS14] by deriving appropri-
ate operators on covariance matrices for these effects. The
covariance matrix operators have also been adapted to real-
time filtering as well [MVH" 14].

1.2. Light Field Structure Analysis

It is not surprising that light field structures as discussed in
the previous section and shown in Figure 1 may be exploited
for rendering without resorting to a frequency analysis. Lehti-
nen et al. [LAC*11] proposed a method that starts with a
sparse set of “fat” samples that contain, in addition to radi-
ance, auxiliary information such as positions, normals, veloc-

(© The Eurographics Association 2014.

Table 1: Summary of the main characteristics of methods
based on local frequency analysis of light fields. In the “Ef-
fects” column, “D” stands for direct, “I1” for indirect illu-
mination (an additional “(G)” identifies methods that also
support glossy surfaces), “MB” for motion blur, “SS” for soft
shadows, “AO” for ambient occlusion, “DOF” for depth of
field, and “PM” for participating media. In the “Rep.” col-
umn we note the main representation of the local spectra
that are used for analysis, where “Bandlim.” stands for ban-
dlimits of ideal (sheared) filters, “Sampled” indicates a sam-
pled representation of the spectra, and “Covar.” denotes a
multidimensional Gaussian approximation using covariance
matrices. In the “Rec.” column we list reconstruction strate-
gies, where “IS” stands for image space, “ISL” for image
space with depth layers, “HD” for high dimensional space,
“xb” for cross-bilateral, “AA” for axis-aligned, “aniso.” for
anisotropic, “knn” for averaging the k-nearest samples, and
“V?” for 3D volume. For high dimensional reconstructions, the
dimensionality depends on the effects being considered.

Method Effects Rep. Rec.

[DHS*05] D(G) Bandlim. xb IS
[BSS*13a] D(G) Bandlim. xb IS

[ETH*09] MB Bandlim. aniso. HD
[EHDRI11] SS Bandlim. aniso. HD
[EDR11] AO Bandlim. aniso. HD
[MWR12] SS Bandlim. AAIS
[MWRD13] II(G) Bandlim. AAIS
[MYRDI14] II(G),SS,DOF Bandlim. AAIS
[SSD*09] DOF Sampled knn IS
[BSS*13b]  II(G),SS,DOFMB Covar. aniso. IS
[BBS14] PM Covar. aniso. IS & V
[MVH*14] DOF, MB Covar. aniso. ISL

ities, etc., and uses these samples for densely reconstructing
the temporal light field. The upsampled light field is then in-
tegrated by brute force, yielding pictures of far higher quality
than those obtained from naive reconstruction.

The key idea in the technique is treating the samples as
3D scene points, and reprojecting them for novel viewpoints
across the lens, sub-frame times in the shutter interval, and
light source positions, using the auxiliary information gath-
ered during the initial sampling. In effect, they employ an
analytic geometric model that accurately describes the local
light field structures along which the integrand is almost con-
stant, an effect that is crucial also in the algorithms based
on frequency analysis (Section 1.1). Reprojection allows the
reuse of the initial samples along the predicted trajectories
as shown in Figure 5, effectively multiplying the per-pixel
sample rates by a large factor. An important component is
a technique to detect occlusions and robustly determine the
visibility of reprojected samples.

The algorithm handles combinations of motion blur, depth
of field, and soft shadows with excellent results at very low
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Figure 5: Lehtinen et al. [LAC* 11] analyze light field struc-
tures at a sparse set of initial samples. They upsample by
reprojecting along the light field structures, achieving high
quality reconstruction using very sparse initial sampling. The
example here uses only one initial sample per pixel (1spp).

initial sampling densities. The authors later extended this
approach to the reconstruction of diffuse indirect illumina-
tion [LALD12] following a similar strategy. They also gener-
alize their method to glossy materials, where the reprojection
is restricted according to the bandwidth of the material re-
flectance; however, the computational cost of this extension
is significant.

1.3. Derivative Analysis

A basic intuition why derivative analysis is useful for adap-
tive sampling and reconstruction is that small gradients indi-
cate locally constant functions, allowing for low sample rates
and large reconstruction filters, and vice versa. Gradient in-
formation may be used not only to determine the support size
of reconstruction filters, but also their anisotropic shapes. Ir-
radiance caching [WRC88] is a highly practical realization of
this basic intuition, designed specifically for evaluating irra-
diance due to indirect illumination. It computes high quality
irradiance samples at sparse locations in the image plane, and
estimates an upper bound on the irradiance gradients to con-
trol the density of irradiance samples as well as the support
of the reconstruction filters.

Since its introduction irradiance caching has been continu-
ously refined. Ward and Heckbert derived a more accurate es-
timate for irradiance gradients that they used to get smoother
and more accurate reconstruction using linear extrapolation
with Taylor series [WH92]. Kfivanek et al. extended it to
handle low-frequency glossy materials [KGPBOS] by stor-
ing, and differentiating [KGBPOS5], incident radiance using

Bounded Gradient

Occlusion Hessian

Scene Hessian w/o occlusions Occlusion Hessian

500 Records 1K Records 2K Records 4K Records

Figure 6: lllustration of the benefit of occlusion Hessians
(from Schwarzhaupt et al. [SJJ12]). We visualize indirect
irradiance on the top left. Occlusion Hessians (top right)
adapt the distribution of irradiance samples on the ground
plane to indirect shadows cast by an occluder. They lead to
more accurate reconstructions in particular with few irra-
diance samples (“records”). The Cornell box compares re-
sults obtained by a first-derivative approach (bounded split-
sphere [WRCS88], middle row) to using occlusion-aware Hes-
sians (bottom row) at varying sample counts.

spherical harmonics to preserve some directional information.
Jarosz et al. extended the method to handle participating me-
dia [JDZJ08,JZJ08].

While most irradiance caching variants were developed
with an eye towards practical applicability, Ramamoorthi et
al. [RMBO07] conducted a more comprehensive and thorough
first-order analysis of lighting, shading, and shadows in direct
illumination. As a proof-of-concept, they also describe an
adaptive sampling algorithm based on gradient magnitudes.
Jarosz et al. [JSKJ12] recently extended Ramamoorthi et al.’s
work by performing a second-order analysis of indirect illu-
mination. Interestingly, there is a close connection between
second order derivatives and Gaussian approximations of lo-
cal frequency spectra as discussed by Belcour et al. [BBS14].
By leveraging the resulting second-order derivatives, Jarosz
et al. proposed a Hessian-based irradiance extrapolation for
increased accuracy in the Taylor expansion. Schwarzhaupt et
al. [SJJ12] improved upon this further. A key contribution is
their second-order analysis of occlusions, visualized in Fig-
ure 6. Their approach leads to significant improvements in
particular with sparse irradiance samples. Despite these im-
provements, irradiance caching remains a specialized method
targeted at handling indirect illumination constrained to dif-
fuse or moderately glossy materials.

(© The Eurographics Association 2014.
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Figure 7: The generic template followed by many techniques
discussed in Section 2. Typically, the iteration terminates
when a given sample budget is exhausted. This figure is
adapted from Rousselle et al. [RKZ11].

2. A Posteriori Methods

Instead of analyzing the light transport equations to derive
local signal properties analytically, like a priori methods, a
posteriori techniques statistically analyze sets of samples ac-
quired using a Monte Carlo renderer with little additional in-
formation. At the minimum these methods require local, usu-
ally per-pixel, estimates of variance. We illustrate the generic
template followed by many methods in this section in Fig-
ure 7. A key idea in most techniques is to use a family of
reconstruction filters and develop error estimates for the fil-
ter outputs, usually using a mean squared error metric (MSE).
In general, MSE can be expressed as a sum of squared bias
and variance, where bias corresponds to blurriness, and vari-
ance is residual noise from the input Monte Carlo samples.
A family of filters should provide a trade-off between bias
and variance, and the goal is to locally select the best filter
that optimally balances bias and variance to minimize MSE.
In addition, the local error estimates also make it possible to
control sampling densities. We organize our survey according
to the types of filters that are used, distinguishing multiscale
filters (Section 2.1), filters designed for generic image denois-
ing (Section 2.2), and filters derived from auxiliary features
(Section 2.3). Most approaches rely on image space filtering
because of its simplicity and efficiency.

(© The Eurographics Association 2014.

A notable exception is the work by Hachisuka et
al. [HIW™*08], where they store samples in multidimensional
path space, which may include effects such as motion blur,
depth of field, and soft shadows. They estimate the local inte-
gration error incurred by an initial set of samples, and adap-
tively distribute more samples where the error is highest in
the multidimensional space. This work inspired many of the
techniques from Section 1 that also work in a higher dimen-
sional space. In contrast, however, Hachisuka et al.’s method
is agnostic of the underlying rendering effects. As a conse-
quence, it cannot match the quality of specialized techniques.
On the other hand, this should in principle make it easier to
apply the approach to arbitrary combinations of effects, but
developing efficient algorithms with higher dimensional path
spaces is challenging.

2.1. Multiscale Filters

A family of filters obtained by scaling the support of a basis
filter provides a natural trade-off between bias and variance.
Overbeck et al. [ODR09] proposed an algorithm following
the strategy outlined in Figure 7 using Daubechies wavelets.
They perform wavelet analysis of the rendered image and an-
alyze its error using Mitchell’s contrast metric [Mit87]. They
perform wavelet shrinkage [DJ94], that is, they subtract a
noise estimate from individual wavelet coefficients, to mini-
mize the error metric. In addition, they use the error metric to
adaptively distribute samples in the image plane focusing on
regions with high error. Rousselle et al. [RKZ11] observed
that critically sampled wavelets lead to ringing artifacts when
used for denoising. They obtain higher filtering quality us-
ing Gaussian filters at several scales. They perform an MSE
analysis by estimating bias and variance separately, and they
locally select the scale that minimizes the error. We visualize
their approach in Figure 8.

The main advantage of such multiscale filters is that they
are very efficient to compute, facilitating potential real-time
applications. For example, Dammertz et al. [DSHL10] use
wavelets for real-time filtering. On the other hand, families
of filters parameterized by a single scale parameter require
small scales to filter complex image structures without intro-
ducing blurriness. While including parameters to describe
anisotropy should be possible, this may not be enough to
reach the quality of methods that enable even more complex
filter shapes, as described in the following sections.

2.2. Leveraging Image Denoising Filters

Image denoising filters developed by the image processing
community to restore images corrupted by spatially uniform
noise have recently achieved impressive results [DFKEOQ7,
BCMO5,EA06]. Hence, it seems promising to leverage these
methods for adaptive sampling and reconstruction in Monte
Carlo rendering.

Patch-based techniques compute denoising filters by as-
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Figure 8: Visualization of Gaussian filter scales (top left),
brighter levels indicating larger filters. Adaptive sampling
(top right, brighter means more samples) places more sam-
ples where filters are small or where there is more noise due
to defocus or soft shadow effects. The bottom row shows an
equal time quality comparison to naive random sampling.

sessing the similarity of local image patches. They are cur-
rently among the most successful filters for generic image
denoising. A key idea is that similar patches may be used
for denoising within large neighborhoods, even globally over
the whole image, without introducing blurriness. This justi-
fies the term “non-local”. The non-local means (NL-means)
filter [BCMO0S5] embodies the simplest implementation of the
strategy. It generalizes bilateral filtering [TM98], which Xu
and Pattanaik [XP05] used for denoising in Monte Carlo ren-
dering. Instead of weighting a neighboring pixel based on
the difference of its value to the center pixel, NL-means de-
termines the weight based on the similarity of small patches
around the neighbor pixel and the center. Compared to bilat-
eral filtering, NL-means is a much more effective denoising
filter, since the filter weights are more robust to noise in the in-
put. Rousselle et al. [RKZ12] exploit NL-means filtering for
adaptive rendering, and modity it to cope with non-uniform
noise levels. Unfortunately, a full error analysis of NL-means
is challenging because the filter itself depends on the noisy
input. Instead, Rousselle et al. only consider variance and
neglect bias. They estimate output variance simply using the
per-pixel difference of two independent filtered images. The
per-pixel variance estimate then drives adaptive sampling.

Delbracio et al. [DMB*14] propose a similar non-local
denoising approach. Instead of comparing patch similarity
based on pixel values, however, they gather histograms of

Reference 4spp

Freq. analysis & sheared filter RNGD with BM3D

Figure 9: A scene with motion blur and soft shadows (top
left: reference, to right: 4spp). The figure compares the
sheared filter for motion blur derived from a frequency anal-
ysis [ETH*09] (bottom left) to adaptive reconstruction using
generic image denoising filters [KS13] (RNGD, bottom right).
Both use four samples per pixel (top right) as input.

sampled values at each pixel, and assess patch similarity
based on the differences of these histograms measured by the
x2 distance. In addition, they propose a multiscale approach
to remove low frequency noise. They demonstrate that their
approach improves upon NL-means filtering.

Kalantari and Sen [KS13] propose a generic method (Re-
moving Noise With General Denoising, “RNGD” in the fol-
lowing, see Table 2 for a list of acronyms) that is designed
to operate with any denoising method for globally uniform
noise, such as BM3D [DFKEQ7], assuming that it has a pa-
rameter to adjust the filter to the global noise level. First, they
propose a novel per-pixel variance estimate using the me-
dian absolute deviation [DJ94]. Then, to deal with spatially
nonuniform variance in Monte Carlo rendering, they propose
to denoise the complete rendered images several times, each
time setting a different noise level. Finally, they compose the
result image by selecting pixels from the filter outputs with
appropriate noise levels.

The techniques discussed here significantly improve the
output quality compared to simple multiscale filters. We show
an example result in Figure 9. The methods mentioned here
and in the previous subsection all come with the advantage
that they require minimal changes to an existing renderer. Be-
sides noisy renderings they only need per pixel statistics such
as contrast [ODRO09] or variance [RKZ12, KS13] estimates,
or pixel histograms [DMB* 14] as inputs.

2.3. Filters using Auxiliary Features

Besides noisy images, it is easy to save auxiliary image fea-
tures such as per-pixel normals, depth, or diffuse reflectance
from most Monte Carlo rendering systems. The feature im-
ages contain rich information about image structures that
can be exploited to design adaptive filters that preserve these
structures. An early approach by McCool [McC99] used

(© The Eurographics Association 2014.
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Low Discrepancy Reference RPF SURE RDFC
8spp, 15s 64k spp 8spp, 270s 8spp, 188s 8spp, 57s

Figure 10: Comparison of RPF [SD12] (main image) with
SURE [LWC12] and RDFC [RMZ13] (in close-ups) at a low,
equal sampling rate (8spp). RPF is most effective at such low
sampling rates.

depth and normal information to control anisotropic diffu-
sion. More recently, researchers explored the cross-bilateral
filter [ED04, PSA*04]. Here, the core idea is to derive the
weight with which a neighbor contributes to the filter output
at a center pixel from the pairwise feature differences.

Sen and Darabi [SD12] observed that the relation between
the feature differences and filter weights should depend on
the degree to which the feature determines the true pixel
value. After all, certain features are highly dependent on the
random parameters of the Monte Carlo process and are there-
fore not reliable for filtering. They propose to measure this
dependency by computing the mutual information between
sample features and the random parameters used to compute
them. Their approach (Random Parameter Filtering, or “RPF”
in the following, see also Table 2) naturally handles noisy
features, which occur when rendering effects such as motion
blur or depth of field.

A disadvantage of this approach is that the complexity of
the algorithm depends on the number of samples and can
become expensive for more than a few dozen samples. In

(© The Eurographics Association 2014.

addition, while RPF is based on useful intuition about the
influence that features should have on the filter, it does not
try to minimize the output error directly, and methods based
on explicit error estimation have proven superior at high sam-
pling rates. However, at low sampling rates (e.g., less than
16spp), the ability of RPF to detect noisy features can yield
improvements over other methods (see Figure 10). Park et
al. [PMKY 13] subsequently proposed a modification of RPF
whose complexity is independent of the number of samples
without significant quality degradation.

Li et al. [LWCI12] first introduced Stein’s unbiased risk
estimator (SURE) to adaptive sampling and reconstruction
in rendering. SURE is a general technique to estimate
the accuracy of a statistical estimator. Van De Ville and
Kocher [VDVKO9] applied it to estimate global parameters
in NL-means image denoising, and Li et al. showed how
to leverage it to obtain local, unbiased MSE estimates of
cross-bilateral filters. They use a set of cross-bilateral fil-
ters with spatial support windows of varying sizes, and se-
lect the best size at each pixel by picking the filter leading to
the smallest estimate of MSE using SURE. Their approach
(“SURE” in the following, see also Table 2) typically out-
performs RPF presumably because it selects filters accord-
ing to an actual error estimate. In Figure 11 we show an
equal-sample comparison between SURE, the axis-aligned
filtering technique based on a priori frequency analysis by
Mehta et al. [MYRD14], and the approach by Kalantari and
Sen (RNGD) using BM3D. While Mehta et al. use GPU
raytracing, the other methods are implemented on top of
PBRT [PH10]. The filtering overhead of SURE and RNGD
is on the order of 30-40 seconds. The methods perform simi-
larly at a fixed sampling rate, where SURE and RNGD tend
to overblur, and Mehta has some residual noise.

Rousselle et al. [RMZ13] also build on SURE error es-
timation and cross-bilateral filtering. Instead of minimizing
error by varying the spatial filter support, they carefully de-
sign three filters with the same support, but differing in their
other parameters. One filter is tuned to be most sensitive to
the noisy color information and disregards the features, one
disregards color and is determined purely by the features,
and the third is in between. These three filters lead to fewer
outliers in the error estimate, since error estimation of small
filters, such as in Li et al. [LWC12], is very sensitive to noise.
In addition, they propose a feature prefiltering step to deal
with noisy features and introduce two new features to better
represent soft shadows due to direct illumination and caustics.
Figure 12 shows the improvements of their approach (Robust
Denoising using Feature and Color Information, “RDFC” in
the following, see also 2) over Li et al. (SURE).

Similar to the bilateral filter, the guided filter [HST10] can
be applied for edge preserving image denoising. Given a de-
noising window, the ground truth image is locally approxi-
mated as a linear function of a guide image. The two coef-
ficients of the linear function are estimated by minimizing
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GPU, naive
6.3s, 229rpp

Mehta, GPU SURE, PBRT RNGD, PBRT
6.4s, 192rpp  200rpp, 4min  200rpp, 4min

Reference

Figure 11: An equal-sample comparison in terms of ray seg-
ments per pixel (rpp) of Mehta et al.’s approach [MYRD14]
based on a priori frequency analysis for soft shadows, indirect
illumination, and depth of field (main image), with a poste-
riori techniques (in close-ups) by Li et al. [LWCI2] (SURE)
and Kalantari and Sen [KS13] (RNGD).

the L, error between the linearly transformed guide and the
noisy input image. Bauszat et al. [BEM11] applied the guided
filter to reduce noise generated by Monte Carlo rendering
while preserving edges by using geometric features as guide
images. Recently, Moon et al. [MCY14] also used a linear
model to approximate the ground truth function locally, but in
addition they weigh the error of each pixel individually based
on the features (“LWR” for Local Weighted Regression, see
also Table 2). They introduce an MSE estimate by analyzing
bias and variance separately, and they optimize the parame-
ters used to determine the weights to minimize the MSE at
each pixel. Finally, they deal with noisy features by perform-
ing dimensionality reduction via a truncated SVD (Singular
Value Decomposition), and their optimization is solved on
the local features with a reduced dimensionality. As shown
in Figure 13, their approach achieves high-quality rendering
results even in nonlinear functions such as glossy highlights
and defocused areas thanks to the automatic parameter selec-
tion and the truncated SVD, respectively.

Low discrepancy
36spp, 55s

Reference, RDFC SURE,
64k spp 32spp, 57s 32spp, 67s

Figure 12: Equal-time comparison of Rousselle et
al. [RMZ13] (RDFC, main image) and Li et al. [LWCI2]
(SURE, in close-ups). RDFC is more robust to noisy error
estimates, and it includes a feature to capture soft shadows
from direct illumination, which leads to significant quality
improvements.

The methods discussed so far in this section use fea-
tures that are obtained directly as byproducts of usual Monte
Carlo rendering. As an interesting alternative, Moon et
al. [MJL*13] proposed a new feature, a virtual flash image,
which serves as an edge-stopping function. The virtual flash
image is motivated by flash photography [ED04, PSA*04]
where a flash image provides high-frequency information
of the noisy input image taken without a flash. To emulate
the flash image in rendering, they put an additional light
source on the viewing position and construct the virtual im-
age through an actual shading. This simple idea provides a
means to capture a wide set of edges such as reflected and
refracted edges with little computational overhead since it is
performed by reusing a subset of light paths. Furthermore,
they define homogeneous pixels as neighboring pixels whose
sample means are within a confidence interval of the true
mean at the center pixel. By restricting the denoising to ho-
mogeneous pixels, they preserve additional edges (e.g., caus-
tics) that the flash image does not include, and they obtain
consistent denoising results that converge to the ground truth.

Table 2 summarizes the main characteristics of the a pos-
teriori methods cited in this section. This table does not list
the light transport effects supported, since all cited methods
are generic (though some, like Dammertz et al. [DSHL10],
give bad results if their assumption of noise free features
is violated). A commonality of all methods discussed here
is that they reconstruct pixel values by building (locally
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LD, 32spp SURE, 22spp
79s 79s
LWR, 16spp Reference,
78s 16k spp

(] ]

LD, 39spp RPF, 16spp LWR, 16spp
66s 66s

Reference,
64k spp

Figure 13: Moon et al. [MCY14] (LWR, main images) use
weighted local regression to estimate the denoised output.
At equal render times, LWR shows better results on a vari-
ety of rendering effects compared to naive low-discrepancy
sampling (LD), Li et al. [LWCI12] (SURE), and Sen and
Darabi [SDI12] (RPF;, all in close-ups). This figure is mod-
ified from Moon et al. [MCY14].

adaptive) weighted averages of complete Monte Carlo path
samples. While this is particularly simple, it could be fur-
ther generalized to aggregating partial paths that do not
immediately connect a light source and the image sensor.
For example, photon mapping [JenO1] and its generaliza-
tions [KDB14,HPJ12,GKDS12] aggregate several “light sub-
paths” (partial paths connected to light sources) when con-
necting to individual “eye subpaths” (partial paths connected
to the image sensor). The lightcuts algorithm builds adaptive
hierarchies of light subpaths, and connects these to individ-
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Table 2: Summary of the main characteristics of the a posteri-
ori methods cited. In the “ASR” column, “S” stands for adap-
tive sampling, and “R” for adaptive reconstruction. Methods
performing both (“SR”) also support iteratively adjusting
the sampling density and adding more samples. The “Met-
ric” column indicates the error metric used to guide adaptive
sampling or reconstruction. If it is empty the method does not
adapt to any error estimate. In the “Reconstruction” column,
an additional “*” identifies methods that leverage informa-
tion contained in feature buffers. The last column “Acr.” lists
acronyms that we use in the comparison figures this paper.

Method ASR  Metric Reconstr. Acr.
[Mit87] S Contrast uniform -
[RW94] R Variance splatting -
[BM9S] S Perceptual uniform -
[McC99] R Variance aniso. dift.* -
[RPG99] S Perceptual uniform -
[FP04] S Perceptual uniform -
[XPO5] R - bilateral -
[ODRO09] SR Contrast wavelet -
[DSHL10] R - wavelet™ -
[BEM11] R - local regr.* -
[RKZ11] SR MSE (bias, var.) Gaussian -
[RKZ12] SR Variance NL-means -
[SD12] R Mutual inf. bilateral™ RPF
[LWC12] SR MSE (SURE) bilateral SURE
[KS13] SR Variance gen. denoising RNGD
[RMZ13] SR MSE (SURE) bilateral® RDFC
[DMB*14] R x> NL-means -
[MCY14] SR  MSE (bias, var.) local regr.” LWR

ual [WFA*05] or groups of eye subpaths [WABG06] while
respecting a desired error bound. It may be interesting to in-
vestigate extensions of the algorithms summarized here to
operate on light subpaths also, instead of requiring complete
path samples.

There is also room to explore between the extremes of
working in 2D image space, like most methods discussed
here, and the full high-dimensional path space [HIW™*08].
For example, deCoro et al. [DWR10] represent samples in a
joint image and color space to detect and reject outlier sam-
ples in this 5D space. Finally, while all reconstruction meth-
ods discussed here are driven (implicitly) by (weighted) L,
errors, one could generalize this to formulations inspired by
total variation methods or compressive sensing. They rely on
sparse error norms that have proven to provide visually more
convincing results, for example, in image restoration [PF14].
While some methods based on compressive sensing have
been proposed for rendering [SD11, HWRH13], it is likely
that the full potential of these techniques has not been real-
ized yet.
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3. Discussion and Conclusions

We have discussed recent advances in adaptive sampling
and reconstruction for Monte Carlo, broadly categorizing ap-
proaches into two groups, a priori and a posteriori. A priori
methods attempt to leverage information obtained from an
analytic analysis of the light transport equations. We have
distinguished three strategies, local frequency analysis, light
field structure analysis, and derivative analysis. Frequency
analysis methods are attractive because they build on the
solid foundation of the Nyquist sampling theorem to derive
sampling rates and reconstruction filters. The derived fil-
ters have relatively simple shapes, however, such as sheared
anisotropic filters approximated by Gaussians. Hence high
frequency effects may require small filters (in the spatial do-
main) and high sampling rates. On the other hand, fast axis-
aligned filters are showing promise for real-time applications.
Instead of filtering, the approaches using light field structure
analysis that we discussed upsample the light field by extrap-
olating new samples from a sparse initial set. Because of the
explicit visibility determination, this leads to more complex
support shapes of the extrapolated samples, and excellent re-
sults at very low initial sampling densities. As a downside,
the methods require the storage of all initial samples, and
reconstruction overhead is higher. A challenge for all these
techniques is to combine the analysis of all relevant effects,
from motion blur to glossy indirect illumination, into one
framework. Currently, Belcour et al.’s light transport opera-
tors on covariance matrices achieve this, but this approach is
also limited by simple Gaussian filter shapes. Finally, deriva-
tive analysis is mostly used in irradiance caching techniques,
and recent advances using higher order analysis have further
advanced the approximation quality for a given computa-
tional budget. While irradiance caching is highly successful
in practice, it remains limited to sampling and reconstructing
diffuse or moderately glossy indirect illumination.

A posteriori methods forego analytic analysis for statis-
tical error estimation based on acquired samples. They are
typically ignorant of the underlying rendering effects and
applicable to arbitrary combinations of light transport phe-
nomena. A key property of these methods is also that they
rely on heuristically defined filters, such as cross-bilateral
filters using auxiliary features, which can have arbitrary sup-
port shapes and extend over large image areas. Hence, these
methods can be effective at removing noise even in image re-
gions with intricate structures. In addition, many methods are
consistent because their filters are eventually restricted by the
empirical variance of rendered pixel means, which vanishes
with increasing sample counts. It is also relatively straight-
forward in practice to modify existing renderers to support a
posteriori adaptive sampling and reconstruction, since the re-
quired information such as feature images or pixel variances
are available as a byproduct of conventional rendering. As
a disadvantage, the most sophisticated reconstruction filters,
like local weighted regression or methods requiring several

passes of cross-bilateral filtering, are still too expensive for
real-time applications even using GPU implementations.

The techniques discussed in this report may well have an
impact on CG movie production. Until recently, rasterization-
based pipelines, such as Pixar’s REYES architecture, have
been the norm, with the notable exception of Blue Sky Stu-
dios, which used ray tracing on all of its productions. How-
ever, we are currently seeing an industry-wide shift to phys-
ically based Monte Carlo rendering, spearheaded by Solid
Angle’s Arnold renderer that is now used in a wide array of
productions. Pixar is introducing a new Monte Carlo render-
ing pipeline, RIS, in its RenderMan software. Walt Disney
Animation Studios (WDAS) developed its own Monte Carlo
renderer, Hyperion, and Weta Digital recently introduced its
renderer, Manuka. These renderers come in addition to ex-
isting ones, such as Mental Ray from Mental Images (now
NVIDIA) and V-Ray from Chaos Group, both of which are
readily integrated in professional production tools. With this
shift to Monte Carlo rendering comes a strong interest for
robust adaptive rendering solutions, and denoising in particu-
lar. For example, Anderson and Meyer from Pixar proposed
a statistical technique based on PCA to denoise animation
sequences [MAOQ6]. Goddard, from Image Engine, recently
presented the denoising technique they developed for the pro-
duction of Elysium [God14]. WDAS also used denoising in
the production of Big Hero 6, which proved to be crucial for
reaching production deadlines, and Pixar is currently investi-
gating various denoising alternatives for its own productions.
These production environments bring new constraints and
demands that stretch the capabilities of existing methods and
will hopefully foster new research.

Although some of the methods described in this survey
have been extended to filter animation sequences, we believe
this is the area that provides biggest potential for further
quality improvements. It would also be tempting to try to
combine the advantages of a priori methods, like taking ad-
vantage of sheared structures in light fields, and a posteri-
ori techniques, like the complex filter shapes. Methods for
real-time rendering still lag the quality of off-line methods,
and more effort should be spent on trying to close this gap.
Finally, there is a variety of techniques and methodologies
that remain largely unexplored in the context covered by this
survey, including the use of data-driven and learning-based
approaches, or general frameworks for sparse sampling and
reconstruction based on work in compressive sensing and
matrix completion. From a more theoretical perspective, an
important open question is also whether lower bounds on the
number of samples can formally be proved.
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Appendix

Code for the following methods is available online (retrieved
February 2015):

e Hachisuka et al. [HIW*08]: http://www.ci.i.

u-tokyo.ac.jp/~hachisuka/mdas.zip

e Egan et al. [ETH*09]: http://www.cs.columbia.

edu/cg/mb/
e Overbeck et al. [ODRO09]:
columbia.edu/~rso02102/AWR/

e Lehtinen et al. [LAC*11]: http://groups.csail.

mit.edu/graphics/tlfr/

e Rousselle et al. [RKZ11]: http://www.cgg.unibe.

ch/downloads/asr—auxiliary.zip/at_
download/file

e Lehtinen et al. [LALDI2]: http://groups.csail.

mit.edu/graphics/ilfr/

e Lietal. [LWCI2]: http://www.cmlab.csie.ntu.

edu.tw/project/sbf/

e Mehta et al. [MWR12]:
graphics.berkeley.edu/papers/
UdayMehta-AAF-2012-12/index.html

http://

e Rousselle et al. [RKZ12]: http://www.cgg.unibe.

ch/downloads/nlm-code-data.zip/at_
download/file

e Kalantari and Sen [KS13]:
ece.ucsb.edu/~psen/PaperPages/
RemovingMCNoiseStuff/RemovingMCNoise_
v1.0.zip

e Moon et al. [MJL*13]: http://sglab.kaist.ac.

kr/VFL/

e Rousselle et al. [RMZ13]: http://www.cgg.unibe.

ch/downloads/pg2013_code_data.zip/at_
download/file

e Moon et al. [MCY14]: http://sglab.kaist.ac.

kr/WLR/

e Munkberg et al. [MVH*14]: http://fileadmin.cs.

lth.se/graphics/research/papers/2014/
reconbd/

(© The Eurographics Association 2014.

http://wwwl.cs.

http://www.

References

[BBS14] BELCOUR L., BALA K., SOLER C.: A local fre-
quency analysis of light scattering and absorption. ACM Trans.
Graph. 33,5 (Aug. 2014). 5,6

[BCMO5] BUADES A., COLL B., MOREL J.-M.: A review
of image denoising algorithms, with a new one. Multiscale Mod-
eling & Simulation 4, 2 (2005), 490-530. 7, 8

[BEM11] BAUSZAT P., EISEMANN M., MAGNOR M.:
Guided image filtering for interactive high-quality global illumi-
nation. Computer Graphics Forum 30, 4 (2011), 1361-1368. 10,
11

[BM98] BOLIN M. R., MEYER G. W.: A perceptually based
adaptive sampling algorithm. In Proceedings of the 25th Annual
Conference on Computer Graphics and Interactive Techniques
(1998), SIGGRAPH 98, ACM, pp. 299-309. 2, 11

[BSS*13a] BAGHER M., SOLER C., SUBR K., BELCOUR
L., HOLZSCHUCH N.: Interactive rendering of acquired ma-
terials on dynamic geometry using frequency analysis. Visualiza-
tion and Computer Graphics, IEEE Transactions on 19, 5 (May
2013), 749-761. 3,5

[BSS*13b] BELCOUR L., SOoLER C., SUBR K.,
HoLzsCcHUCH N., DURAND F.: 5d covariance trac-
ing for efficient defocus and motion blur. ACM Trans. Graph. 32,
3 (July 2013), 31:1-31:18. 4,5

[CTCS00] CHAIJ.-X., TONG X., CHAN S.-C., SHUM
H.-Y.: Plenoptic sampling. In Proceedings of the 27th Annual
Conference on Computer Graphics and Interactive Techniques
(2000), SIGGRAPH 00, ACM, pp. 307-318. 3

[DFKEO7] DaBov K., For A., KATKOVNIK V.,
EGIAZARIAN K.: Image denoising by sparse 3-d transform-
domain collaborative filtering. Image Processing, IEEE
Transactions on 16, 8 (2007), 2080-2095. 7, 8

[DHS*05] DURAND F., HOLZSCHUCH N., SOLER C.,
CHAN E., SILLION F. X.: A frequency analysis of light
transport. ACM Trans. Graph. 24, 3 (July 2005), 1115-1126. 2,
3,4,5

[DJ94] DoNOHO D. L., JOHNSTONE I. M.: Ideal spatial
adaptation by wavelet shrinkage. Biometrika 81, 3 (1994), 425—
455. 17,8

[DMB*14] DELBRACIO M., MUSE P., BUADES A.,
CHAUVIER J., PHELPS N., MOREL J.-M.: Boosting
Monte Carlo rendering by ray histogram fusion. ACM Trans.
Graph. 33, 1 (Feb. 2014), 8:1-8:15. 8, 11

[DSHL10] DAMMERTZ H., SEwTZ D., HANIKA J.,
LENSCH H. P. A.: Edge-avoiding a-trous wavelet transform
for fast global illumination filtering. In Proceedings of the Con-
ference on High Performance Graphics (2010), HPG ’10, Euro-
graphics Association, pp. 67-75. 7, 10, 11

[DWR10] DECORO C., WEYRICH T., RUSINKIEWICZ
S.: Density-based outlier rejection in monte carlo rendering.
Computer Graphics Forum 29, 7 (2010), 2119-2125. 11

[EAO6] ELAD M., AHARON M.: Image denoising via sparse
and redundant representations over learned dictionaries. Image
Processing, IEEE Transactions on 15, 12 (Dec 2006), 3736-3745.
7

[EDO4] EISEMANN E., DURAND F.: Flash photography en-
hancement via intrinsic relighting. ACM Trans. Graph. 23, 3
(Aug. 2004), 673-678. 9, 10

[EDR11] EGAN K., DURAND F., RAMAMOORTHI R.:
Practical filtering for efficient ray-traced directional occlusion.
ACM Trans. Graph. 30, 6 (Dec. 2011), 180:1-180:10. 4, 5


http://www.ci.i.u-tokyo.ac.jp/~hachisuka/mdas.zip
http://www.ci.i.u-tokyo.ac.jp/~hachisuka/mdas.zip
http://www.cs.columbia.edu/cg/mb/
http://www.cs.columbia.edu/cg/mb/
http://www1.cs.columbia.edu/~rso2102/AWR/
http://www1.cs.columbia.edu/~rso2102/AWR/
http://groups.csail.mit.edu/graphics/tlfr/
http://groups.csail.mit.edu/graphics/tlfr/
http://www.cgg.unibe.ch/downloads/asr-auxiliary.zip/at_download/file
http://www.cgg.unibe.ch/downloads/asr-auxiliary.zip/at_download/file
http://www.cgg.unibe.ch/downloads/asr-auxiliary.zip/at_download/file
http://groups.csail.mit.edu/graphics/ilfr/
http://groups.csail.mit.edu/graphics/ilfr/
http://www.cmlab.csie.ntu.edu.tw/project/sbf/
http://www.cmlab.csie.ntu.edu.tw/project/sbf/
http://graphics.berkeley.edu/papers/UdayMehta-AAF-2012-12/index.html
http://graphics.berkeley.edu/papers/UdayMehta-AAF-2012-12/index.html
http://graphics.berkeley.edu/papers/UdayMehta-AAF-2012-12/index.html
http://www.cgg.unibe.ch/downloads/nlm-code-data.zip/at_download/file
http://www.cgg.unibe.ch/downloads/nlm-code-data.zip/at_download/file
http://www.cgg.unibe.ch/downloads/nlm-code-data.zip/at_download/file
http://www.ece.ucsb.edu/~psen/PaperPages/RemovingMCNoiseStuff/RemovingMCNoise_v1.0.zip
http://www.ece.ucsb.edu/~psen/PaperPages/RemovingMCNoiseStuff/RemovingMCNoise_v1.0.zip
http://www.ece.ucsb.edu/~psen/PaperPages/RemovingMCNoiseStuff/RemovingMCNoise_v1.0.zip
http://www.ece.ucsb.edu/~psen/PaperPages/RemovingMCNoiseStuff/RemovingMCNoise_v1.0.zip
http://sglab.kaist.ac.kr/VFL/
http://sglab.kaist.ac.kr/VFL/
http://www.cgg.unibe.ch/downloads/pg2013_code_data.zip/at_download/file
http://www.cgg.unibe.ch/downloads/pg2013_code_data.zip/at_download/file
http://www.cgg.unibe.ch/downloads/pg2013_code_data.zip/at_download/file
http://sglab.kaist.ac.kr/WLR/
http://sglab.kaist.ac.kr/WLR/
http://fileadmin.cs.lth.se/graphics/research/papers/2014/recon5d/
http://fileadmin.cs.lth.se/graphics/research/papers/2014/recon5d/
http://fileadmin.cs.lth.se/graphics/research/papers/2014/recon5d/

Zwicker et al. / Recent Advances in Adaptive Sampling and Reconstruction for Monte Carlo Rendering

[EHDRI1] EGAN K., HECHT F., DURAND F., RA-
MAMOORTHI R.: Frequency analysis and sheared filtering
for shadow light fields of complex occluders. ACM Trans. Graph.
30, 2 (Apr. 2011), 9:1-9:13. 4, 5

[ETH*09] EGAN K., TSENG Y.-T., HOLZSCHUCH N.,
DURAND F., RAMAMOORTHI R.: Frequency analysis and
sheared reconstruction for rendering motion blur. ACM Trans.
Graph. 28, 3 (July 2009), 93:1-93:13. 3,4, 5,8, 13

[FPO4] FARRUGIA J.-P., PEROCHE B.: A progressive ren-
dering algorithm using an adaptive perceptually based image met-
ric. Computer Graphics Forum 23, 3 (Sept. 2004), 605-614. 11

[GKDS12] GEORGIEV I., KRIVANEK J., DAVIDOVIC T.,
SLUSALLEK P.: Light transport simulation with vertex con-
nection and merging. ACM Trans. Graph. 31, 6 (Nov. 2012),
192:1-192:10. 11

[Godl4] GODDARD L.: Silencing the noise on Elysium. In
ACM SIGGRAPH 2014 Talks (New York, NY, USA, 2014), SIG-
GRAPH 14, ACM, pp. 38:1-38:1. 12

[Guo98] GuoO B.: Progressive radiance evaluation using direc-
tional coherence maps. In Proceedings of the 25th Annual Confer-
ence on Computer Graphics and Interactive Techniques (1998),
SIGGRAPH ’98, ACM, pp. 255-266. 2

[Hec86] HECKBERT P.: Fundamentals of Texture Mapping and
Image Warping. Master’s thesis, UC Berkeley, June 1986. 3

[HIW*08] HACHISUKA T., JAROSZ W., WEISTROFFER
R. P., DALE K., HUMPHREYS G., ZWICKER M.,
JENSEN H. W.: Multidimensional adaptive sampling and re-
construction for ray tracing. ACM Trans. Graph. 27, 3 (Aug.
2008), 33:1-33:10. 7, 11, 13

[HPJ12] HACHISUKA T., PANTALEONI J., JENSEN
H. W.: A path space extension for robust light transport sim-
ulation. ACM Trans. Graph. 31, 6 (Nov. 2012), 191:1-191:10.
11

[HST10] HE K., SUNJ., TANG X.: Guided image filtering.
In Proceedings of the 11th European Conference on Computer
Vision: Part I (Berlin, Heidelberg, 2010), ECCV’10, Springer-
Verlag, pp. 1-14. 9

[HWRHI13] HEIDE F., WETZSTEIN G., RASKAR R.,
HEIDRICH W.: Adaptive image synthesis for compressive dis-
plays. ACM Trans. Graph. 32, 4 (July 2013), 132:1-132:12. 11

[JDZJO8] JArROSzZ W., DONNER C., ZWICKER M.,
JENSEN H. W.: Radiance caching for participating media.
ACM Trans. Graph. 27, 1 (Mar. 2008). 6

[JenO1] JENSEN H. W.: Realistic Image Synthesis Using Pho-
ton Mapping. A. K. Peters, Ltd., Natick, MA, USA, 2001. 11

[JSKJ12] JAROSZ W., SCHONEFELD V., KOBBELT L.,
JENSEN H. W.: Theory, analysis and applications of 2D global
illumination. ACM Trans. Graph. 31,5 (Sept. 2012), 125:1—
125:21. 6

[JZJ08] JAROSZ W., ZWICKER M., JENSEN H. W.: Irra-
diance gradients in the presence of participating media and oc-
clusions. Computer Graphics Forum (Proc. EGSR) 27, 4 (June
2008), 1087-1096. 6

[Kaj86] KAJ1YA J. T.: The rendering equation. SIGGRAPH
Comput. Graph. 20, 4 (Aug. 1986), 143-150. 1

[KDB14] KELLER A., DAHM K., BINDER N.: Path space
filtering. In ACM SIGGRAPH 2014 Talks (2014), SIGGRAPH
14, pp. 68:1-68:1. 11

[KGBP05] KRIVANEK J., GAUTRON P., BOUATOUCH
K., PATTANAIK S.: Improved radiance gradient computa-
tion. In Proceedings of the 21st Spring Conference on Computer
Graphics (2005), SCCG ’05, pp. 155-159. 6

[KGPB05] KRIVANEK J., GAUTRON P., PATTANAIK S.,
BouAToUCH K.: Radiance caching for efficient global illumi-
nation computation. Visualization and Computer Graphics, IEEE
Transactions on 11, 5 (2005), 550-561. 6

[KS13] KALANTARI N. K., SEN P.: Removing the noise in
Monte Carlo rendering with general image denoising algorithms.
Computer Graphics Forum 32,2 (2013), 93-102. 8, 10, 11, 13

[LAC*11] LEHTINEN J., AILA T., CHEN J., LAINE S.,
DURAND F.: Temporal light field reconstruction for rendering
distribution effects. ACM Trans. Graph. 30, 4 (July 2011), 55:1-
55:12. 5,6, 13

[LALDI2] LEHTINEN J., AILA T., LAINE S., DURAND
F.: Reconstructing the indirect light field for global illumination.
ACM Trans. Graph. 31, 4 (July 2012), 51:1-51:10. 6, 13

[LH96] LEvVOY M., HANRAHAN P.: Light field rendering. In
Proceedings of the 23rd Annual Conference on Computer Graph-
ics and Interactive Techniques (1996), SIGGRAPH 96, ACM,
pp-31-42. 3

[LHG*09] LEVIN A., HASINOFF S. W., GREEN P., DU-
RAND F., FREEMAN W. T.: 4d frequency analysis of compu-
tational cameras for depth of field extension. ACM Trans. Graph.
28, 3 (July 2009), 97:1-97:14. 3

[LWCI12] L1 T.-M., WU Y.-T., CHUANG Y.-Y.: Sure-
based optimization for adaptive sampling and reconstruction.
ACM Trans. Graph. 31,6 (Nov. 2012), 194:1-194:9. 9, 10, 11, 13

[MAO6] MEYER M., ANDERSON J.: Statistical acceleration
for animated global illumination. ACM Trans. Graph. 25, 3 (July
2006), 1075-1080. 12

[McC99] McCooL M. D.: Anisotropic diffusion for Monte
Carlo noise reduction. ACM Trans. Graph. 18, 2 (Apr. 1999),
171-194. 2,8, 11

[MCY14] MooON B., CARR N., YOON S.-E.: Adaptive
rendering based on weighted local regression. ACM Trans. Graph.
33,5 (Sept. 2014), 170:1-170:14. 10, 11, 13

[Mit87] MITCHELL D. P.: Generating antialiased images at
low sampling densities. SIGGRAPH Comput. Graph. 21, 4 (Aug.
1987), 65-72. 2,7, 11

[Mit91] MITCHELL D. P.: Spectrally optimal sampling for
distribution ray tracing. SIGGRAPH Comput. Graph. 25, 4 (July
1991), 157-164. 2

[MJL*13] MooN B., Jun J. Y., LEE J., KiMm K.,
HACHISUKA T., YOON S.-E.: Robust image denoising us-
ing a virtual flash image for Monte Carlo ray tracing. Computer
Graphics Forum 32, 1 (2013), 139-151. 10, 13

[MVH*14] MUNKBERG J., VAIDYANATHAN K., HAS-
SELGREN J., CLARBERG P., AKENINE-MOLLER T.:
Layered reconstruction for defocus and motion blur. Computer
Graphics Forum 33,4 (2014), 81-92. 5, 13

[MWRI12] MEHTA S. U., WANG B., RAMAMOORTHI R.:
Axis-aligned filtering for interactive sampled soft shadows. ACM
Trans. Graph. 31, 6 (Nov. 2012), 163:1-163:10. 4, 5, 13

[MWRDI13] MEHTA S. U., WANG B., RAMAMOORTHI
R., DURAND F.: Axis-aligned filtering for interactive
physically-based diffuse indirect lighting. ACM Trans. Graph.
32,4 (July 2013), 96:1-96:12. 4,5

[IMYRD14] MEHTA S. U., YAO J., RAMAMOORTHI R.,
DURAND F.: Factored axis-aligned filtering for rendering mul-
tiple distribution effects. ACM Trans. Graph. 33, 4 (July 2014),
57:1-57:12. 4,5,9, 10

[ODR09] OVERBECK R. S., DONNER C., RAMAMOOR-
THI R.: Adaptive wavelet rendering. ACM Trans. Graph. 28, 5
(Dec. 2009), 140:1-140:12. 2,7, 8, 11, 13

(© The Eurographics Association 2014.



Zwicker et al. / Recent Advances in Adaptive Sampling and Reconstruction for Monte Carlo Rendering

[0OS09] OPPENHEIM A. V., SCHAFER R. W.: Discrete-
Time Signal Processing, 3rd ed. Prentice Hall, 2009. 2

[PF14] PERRONE D., FAVARO P.: Total variation blind de-
convolution: The devil is in the details. In Computer Vision and
Pattern Recognition (CVPR), 2014 IEEE Conference on (June
2014), pp. 2909-2916. 11

[PHIO] PHARR M., HUMPHREYS G.: Physically Based Ren-
dering: From Theory To Implementation, 2nd ed. Morgan Kauf-
mann Publishers Inc., San Francisco, CA, USA, 2010. 9

[PMKY13] PARK H., MooN B., KiM S., YOON S.-E.:
P-RPF: Pixel-based random parameter filtering for Monte Carlo
rendering. In Computer-Aided Design and Computer Graphics
(CAD/Graphics), 2013 International Conference on (Nov 2013),
pp- 123-130. 9

[PS89] PAINTER J., SLOAN K.: Antialiased ray tracing by
adaptive progressive refinement. SSIGGRAPH Comput. Graph. 23,
3 (July 1989), 281-288. 2

[PSA*04] PETSCHNIGG G., SZELISKI R., AGRAWALA
M., COHEN M., HoPPE H., ToYAMA K.: Digital pho-
tography with flash and no-flash image pairs. ACM Trans. Graph.
23, 3 (Aug. 2004), 664-672. 9, 10

[RKZ11] ROUSSELLE F., KNAUS C., ZWICKER M.:
Adaptive sampling and reconstruction using greedy error mini-
mization. ACM Trans. Graph. 30, 6 (Dec. 2011), 159:1-159:12.
7,11,13

[RKZ12] ROUSSELLE F., KNAUS C., ZWICKER M.:
Adaptive rendering with non-local means filtering. ACM Trans.
Graph. 31, 6 (Nov. 2012), 195:1-195:11. 8, 11, 13

[RMB07] RAMAMOORTHI R., MAHAJAN D., BEL-
HUMEUR P.: A first-order analysis of lighting, shading, and
shadows. ACM Trans. Graph. 26, 1 (Jan. 2007). 6

[RMZ13] ROUSSELLE F., MANZI M., ZWICKER M.: Ro-
bust denoising using feature and color information. Computer
Graphics Forum 32,7 (2013), 121-130. 9, 10, 11, 13

[RPG99] RAMASUBRAMANIAN M., PATTANAIK S. N.,
GREENBERG D. P.: A perceptually based physical error met-
ric for realistic image synthesis. In Proceedings of the 26th
Annual Conference on Computer Graphics and Interactive Tech-
niques (1999), SIGGRAPH 99, ACM, pp. 73-82. 2, 11

[RW94] RUSHMEIER H. E., WARD G. J.: Energy preserv-
ing non-linear filters. In Proceedings of the 21st annual confer-
ence on Computer graphics and interactive techniques (1994),
SIGGRAPH 94, ACM, pp. 131-138. 2, 11

[SD11] SEN P., DARABI S.: Compressive rendering: A ren-
dering application of compressed sensing. Visualization and Com-
puter Graphics, IEEE Transactions on 17, 4 (April 2011), 487-
499. 11

[SD12] SEN P., DARABI S.: On filtering the noise from the
random parameters in Monte Carlo rendering. ACM Trans. Graph.
31,3 (June 2012), 18:1-18:15. 9, 11

[Shi93] SHINYA M.: Spatial anti-aliasing for animation se-
quences with spatio-temporal filtering. In Proceedings of the
20th Annual Conference on Computer Graphics and Interactive
Techniques (1993), SIGGRAPH 93, ACM, pp. 289-296. 3

[SJJ12] SCHWARZHAUPT J., JENSEN H. W., JAROSZ
W.: Practical Hessian-based error control for irradiance caching.
ACM Trans. Graph. 31, 6 (Nov. 2012), 193:1-193:10. 6

[SSD*09] SoLER C., SUBR K., DURAND F.,
HoLzSCHUCH N., SILLION F.: Fourier depth of
field. ACM Trans. Graph. 28, 2 (May 2009), 18:1-18:12. 4, 5

(© The Eurographics Association 2014.

[TM98] TomAsI1 C., MANDUCHI R.: Bilateral filtering for
gray and color images. In Computer Vision, 1998. Sixth Interna-
tional Conference on (1998), pp. 839-846. 8

[VDVK09] VAN DE VILLE D., KOCHER M.: Sure-based
non-local means. Signal Processing Letters, IEEE 16, 11 (2009),
973-976. 9

[WABG0O6] WALTER B., ARBREE A., BALA K., GREEN-
BERG D. P.: Multidimensional lightcuts. ACM Trans. Graph.
25,3 (2006), 1081-1088. 11

[WFA*05] WALTER B., FERNANDEZ S., ARBREE A.,
BALA K., DONIKIAN M., GREENBERG D. P.: Light-
cuts: a scalable approach to illumination. ACM Trans. Graph. 24,
3 (2005), 1098-1107. 11

[WH92] WARD G. J., HECKBERT P.: Irradiance gradients.
In Third Eurographics Workshop on Rendering (1992), vol. 8598,
Alan Chalmers and Derek Paddon. 6

[WLHR11] WETZSTEIN G., LANMAN D., HEIDRICH
W., RASKAR R.: Layered 3d: Tomographic image synthesis
for attenuation-based light field and high dynamic range displays.
ACM Trans. Graph. 30, 4 (July 2011), 95:1-95:12. 3

[WRC88] WARD G. J., RUBINSTEIN F. M., CLEAR
R. D.: A ray tracing solution for diffuse interreflection. SIG-
GRAPH Comput. Graph. 22, 4 (June 1988), 85-92. 2, 6

[XP05] XU R., PATTANAIK S.: A novel Monte Carlo noise
reduction operator. Computer Graphics and Applications, IEEE
25,2(2005), 31-35. 8, 11

[ZMDP06] ZWICKER M., MATUSIK W., DURAND F.,
PFISTER H.: Antialiasing for Automultiscopic 3D Displays.
In Proceedings of Eurographics Symposium on Rendering (2006),
pp- 73-82. 3



