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Abstract
We present a signal-processing framework for light transport. We
study the frequency content of radiance and how it is altered by
phenomena such as shading, occlusion, and transport. This extends
previous work that considered either spatial or angular dimensions,
and it offers a comprehensive treatment of both space and angle.

We show that occlusion, a multiplication in the primal, amounts
in the Fourier domain to a convolution by the spectrum of the
blocker. Propagation corresponds to a shear in the space-angle fre-
quency domain, while reflection on curved objects performs a dif-
ferent shear along the angular frequency axis. As shown by previ-
ous work, reflection is a convolution in the primal and therefore a
multiplication in the Fourier domain. Our work shows how the spa-
tial components of lighting are affected by this angular convolution.

Our framework predicts the characteristics of interactions such
as caustics and the disappearance of the shadows of small features.
Predictions on the frequency content can then be used to control
sampling rates for rendering. Other potential applications include
precomputed radiance transfer and inverse rendering.

Keywords: Light transport, Fourier analysis, signal processing

1 Introduction
Light in a scene is transported, occluded, and filtered by its complex
interaction with objects. By the time it reaches our eyes, radiance is
an intricate function, and simulating or analyzing it is challenging.

Frequency analysis of the radiance function is particularly inter-
esting for many applications, including forward and inverse render-
ing. The effect of local interactions on the frequency content of
radiance has previously been described in a limited context. For in-
stance, it is well-known that diffuse reflection creates smooth (low-
frequency) light distributions, while occlusion and hard shadows
create discontinuities and high frequencies. However, a full char-
acterization of global light transport in terms of signal processing
and frequency analysis presents two major challenges: the domain
of light rays is intricate (three dimensions for position and two for
direction), and light paths can exhibit an infinite number of bounces
(i.e. in terms of signal processing, the system has dense feedback).

To address the above challenges, we focus on the neighborhood
of light paths [Shinya et al. 1987]. This restriction to local prop-
erties is both a price to pay and a fundamental difficulty with the
problem we study: characteristics such as reflectance or presence
and size of blockers are non-stationary, they vary across the scene.

This paper presents a theoretical framework for characterizing
light transport in terms of frequency content. We seek a deep un-
derstanding of the frequency content of the radiance function in a
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Figure 1: Space-angle frequency spectra of the radiance function
measured in a 3D scene. We focus on the neighborhood of a ray
path and measure the spectrum of a 4D light field at different steps,
which we summarize as 2D plots that include only the radial com-
ponents of the spatial and angular dimensions. Notice how the
blockers result in higher spatial frequency and how transport in
free space transfers these spatial frequencies to the angular domain.
Aliasing is present in the visualized spectra due to the resolution
challenge of manipulating 4D light fields.

scene and how it is affected by phenomena such as occlusion, re-
flection, and propagation in space (Fig. 1). We first present the two-
dimensional case for simplicity of exposition. Then we show that it
extends well to 3D because we only consider local neighborhoods
of rays, thereby avoiding singularities on the sphere of directions.

Although we perform our derivations in an abstract setting, we
keep practical questions in mind. In particular, we strongly be-
lieve that a good understanding of frequency creation and atten-
uation allows for more efficient sampling strategies for stochas-
tic approaches such as Monte-Carlo global illumination. Further-
more, it leads to better sampling rates for light-field rendering, pre-
computed radiance transfer, and related applications. Finally, our
frequency analysis can shed key practical insights on inverse prob-
lems and on the field of statistics of natural images by predicting
which phenomena can cause certain local-frequency effects.

1.1 Contributions

This paper makes the following contributions:
Frequency study in space and angle. Our framework encom-
passes both spatial and directional variations of radiance, while
most previous work studied only one of these two components.
Local surface interactions. We describe the frequency effects of
local shading, object curvature, and spatially-varying BRDF.
Global light-transport. We provide expressions for the frequency
modification due to light transport in free space and occlusion.
Most of the derivations in this paper are carried out in 2D for clarity,
but we show that the main characterizations extend to 3D.
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1.2 Related work

Radiance exhibits both spatial and angular variations. A wealth of
previous work has studied the frequency content along one of these
components, but rarely have both space and angle been addressed.
We do not discuss all applications of Fourier analysis, but rather
focus on studies of frequency modification in light transport.
Filtering and sampling Heckbert’s seminal work on texture an-
tialiasing [1989] derives local bandwidth for texture pre-filtering
based on a first-order Taylor expansion of the perspective transform.
The effect of perspective is also studied in the contexts of hologra-
phy and light field sampling [Halle 1994; Isaksen et al. 2000; Chai
et al. 2000; Stewart et al. 2003], mostly ignoring visibility and spec-
ular effects.
Local illumination as a convolution Recently, local illumina-
tion has been characterized in terms of convolution and it was
shown that the outgoing radiance is band-limited by the BRDF
[Ramamoorthi and Hanrahan 2001b; Ramamoorthi and Hanrahan
2004; Basri and Jacobs 2003]. However the lighting is assumed to
come from infinity and occlusion is ignored. Frolova et al. [2004]
explored spatial lighting variations, but only for convex diffuse ob-
jects. We build on these approaches and extend them by adding
spatial dimensions as well as other phenomena such as occlusion
and transport, at the expense of first-order approximations and a lo-
cal treatment. Ramamoorthi et al. [2004] have also studied local
occlusion in a textured object made of pits such as a sponge. Our
treatment of occlusion considers complex blockers at an arbitrary
distance of the blocker and receiver.
Wavelets and frequency bases Wavelets and spherical harmon-
ics have been used extensively as basis functions for lighting sim-
ulation [Gortler et al. 1993; Keller 2001] or pre-computed radi-
ance transfer [Sloan et al. 2002; Ramamoorthi and Hanrahan 2002].
They are typically used in a data-driven manner and in the context
of projection methods, where an oracle helps in the selection of the
relevant components based on the local frequency characteristics of
radiance. Refinement criteria for multiresolution calculations often
implicitly rely on frequency decomposition [Sillion and Drettakis
1995]. In our framework we study the frequency effect of the equa-
tions of light transport in the spirit of linear systems, and obtain
a more explicit characterization of frequency effects. Our results
on the required sampling rate can therefore be used with stochastic
methods or to analyze the well-posedness of inverse problems.
Ray footprint A number of techniques use notions related to band-
width in a ray’s neighborhood and propagate a footprint for adaptive
refinement [Shinya et al. 1987] and texture filtering [Igehy 1999].
Chen and Arvo use perturbation theory to exploit ray coherence
[2000]. Authors have also exploited on-the-fly the frequency con-
tent of the image to make better use of rays [Bolin and Meyer 1998;
Myszkowski 1998; Keller 2001]. Our work is complementary and
provides a framework for frequency-content prediction.
Illumination differentials have been used to derive error bounds
on radiance variations (e.g. gradients [Ward and Heckbert
1992; Annen et al. 2004], Jacobians [Arvo 1994], and Hessians
[Holzschuch and Sillion 1998], but only provide local information,
which cannot easily be used for sampling control.
Fourier analysis has also been extensively used in optics [Good-
man 1996], but in the context of wave optics where phase and inter-
ferences are crucial. In contrast, we consider geometric optics and
characterize frequency content in the visible spatial frequencies.
The varying contrast sensitivity of humans to these spatial frequen-
cies can be exploited for efficient rendering, e.g. [Bolin and Meyer
1995; Ferwerda et al. 1997; Bolin and Meyer 1998; Myszkowski
1998]. Finally we note that the Fourier basis can separate different
phenomena and thus facilitate inverse lighting [Ramamoorthi and
Hanrahan 2001b; Basri and Jacobs 2003] depth from focus [Pent-
land 1987] and shape from texture [Malik and Rosenholtz 1997].

`R 2D light field (2D) around ray R
x spatial dimension (distance to central ray)
v directional dimension in 2-plane parameterization
θ directional dimension in plane-sphere paramerization
f̂ Fourier transform of function f
ΩX frequency along dimension X
i

√
−1

f ⊗ g convolution of f by g
d Transport distance
V(x, v) visibility function of the blockers
cos+(θ) clamped cosine term: max(cos θ, 0)
dE Differential irradiance (after cosine term).
ρ BRDF

Figure 2: Notations.
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Figure 3: (a-b) The two light field parameterization used in this
article. Locally, they are mostly equivalent: we linearize v = tan θ.
(c) Transport in free space: the angular dimension v is not affected
but the spatial dimension is reparameterized depending on v.

2 Preliminaries
We want to analyze the radiance function in the neighborhood of a
ray along all steps of light propagation. For this, we need a number
of definitions and notations, summarized in Fig. 2. Most of the
derivations in this paper are carried out in 2D for clarity, but we
shall see that our main observations extend naturally to 3D.

2.1 Local light field and frequency content
We consider the 4D (resp. 2D) slice of radiance at a virtual plane
orthogonal to a central ray. We focus on the neighborhood of the
central ray, and we call radiance in such a 4D (resp. 2D) neighbor-
hood slice a local light field (Fig. 3 left). Of the many parameteri-
zations that have been proposed for light fields, we use two distinct
ones in this paper, each allowing for a natural expression of some
transport phenomena. Both use the same parameter for the spatial
coordinates in the virtual plane, x, but they differ slightly in their
treatment of directions. For our two-plane parameterization, we
follow Chai et al. [2000] and use the intersection v with a parallel
plane at unit distance, expressed in the local frame of x (Fig. 3-a).
In the plane-sphere parameterization, we use the angle θ with the
central direction (Fig. 3-b) [Camahort et al. 1998]. These two pa-
rameterizations are linked by v = tan θ and are equivalent around
the origin thanks to a linearization of the tangent.

We study the Fourier spectrum of the radiance field `R, which
we denote by ̂̀R. For the two-plane parameterization, we use the
following definition of the Fourier transform:

̂̀R(Ωx,Ωv) =
∫ ∞

x=−∞

∫ ∞

v=−∞
`R(x, v)e−2iπΩx xe−2iπΩvv dx dv (1)

Examples are shown for two simple light sources in Fig. 4, with
the spatial dimension along the horizontal axis and the direction
along the vertical axis. We discuss the plane-sphere parameteriza-
tion in Section 4.

One of the motivations for using Fourier analysis is the
convolution-multiplication theorem, which states that a convolution
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Figure 4: (a) A point light source is a Dirac in space times a constant
in angle. (b) Its Fourier transform is a constant in space times a
Dirac in angle. (c) A spot light with a finite-size bulb has a smooth
falloff in angle. (d) Its Fourier transform is a sinc times a bell curve.

in the primary domain corresponds to a multiplication in the Fourier
domain, and vice-versa. As we show in this paper, it affords a com-
pact formulation of frequency modification.

2.2 Overview
When light flows in a scene, phenomena such as transport in free
space, occlusion, and shading each modify the local light field in
a characteristic fashion. These operations are described (in 2D) in
Section 3 as filters operating on the frequency signal ̂̀. In Section
4, we describe the general case of local shading and extend the
presentation to 3D in Section 5. Section 6 compares our framework
with previous work and shows a simple application.

3 Transport phenomena as linear filters
This section describes the effect on frequency content of successive
stages of light transport. All phenomena are illustrated in Fig. 6
for a simple 2D scene, where light is emitted at the source, trans-
ported in free space, occluded by obstacles, transported again, and
reflected by a surface. At each step, we show a space-direction
plot of radiance, in primal and frequency space, as well as space-
direction frequency-domain plots obtained in a similar 3D scene
(Fig. 9-b). Note the excellent qualitative agreement between the
2D predictions and 3D observations.

3.1 Travel in free space
Travel in free space is a crucial operation because the directional
variation also turns into spatial variation. Consider a slide projector:
At the source, we have a Dirac in space and the image in the direc-
tional domain. At the receiver, the signal of the image is present in
a combination of space and angle. When light travels in free space,
the value of radiance is unchanged along a ray, and travel in free
space is a reparameterization of the local light field (Fig. 3-c). The
value of radiance at a point x after transport can be found using:

`R(x, v) = `R′ (x − vd, v), (2)

where d is the travel distance. To compute the Fourier transform ̂̀R,
we insert the change of variable x′ = x− vd in the integral of Eq. 1:

̂̀R(Ωx,Ωv) =
∫ ∞

x′=−∞

∫ ∞
v=−∞ `R(x′ , v)e−2iπΩx(x′+vd)e−2iπΩvv dx′ dv

=
∫ ∞

x′=−∞

∫ ∞
v=−∞ `R(x′, v)e−2iπΩx x′e−2iπ(Ωv+dΩx)v dx′ dv,

This is a shear in the directional dimension (Fig. 6, steps 2 and 4):

̂̀R′ (Ωx, Ωv) = ̂̀R(Ωx, Ωv + dΩx) (3)

The longer the travel, the more pronounced the shear.

3.2 Visibility
Occlusion creates high frequencies and discontinuities in the radi-
ance function. Radiance is multiplied by the binary occlusion func-
tion of the occluders:

`R′ (x, v) = `R(x, v) V(x, v) (4)

 0

 0.5

 1

-10 -5  0  5  10
 0

 0.5

 1

-10 -5  0  5  10 -5  0  5 -5  0  5
0

3

(a) g(v) (b) ĝ(Ωv) (c) Ĝ(Ωu,Ωv)
Figure 5: Unit area in lightfield parameterisation.

where V(x, v) is equal to 1 when there is full visibility and to 0
when the occluders are blocking light transport. At the location of
occlusion, V mostly depends on x (Fig. 6, step 3).

According to the multiplication theorem, such a multiplication
amounts to a convolution in the frequency domain:

̂̀R′ (Ωx, Ωv) = ̂̀R(Ωx, Ωv) ⊗ V̂(Ωx,Ωv) (5)

If the occluders are lying inside a plane orthogonal to the ray, the
occlusion function is a constant in angle, and its Fourier transform
is a Dirac in the angular dimension. In the general case of non-
planar occluders, their spectrum has frequency content in both di-
mensions, but the angular frequency content is restricted to a wedge
with a span proportional to the depth extent of the blockers. Our
formulation also handles semi-transparent blockers by using non-
binary occlusion functions.

After occlusion, another transport step usually occurs, shearing
the spectrum and propagating the occlusion from the spatial dimen-
sion to the angular dimension (Fig. 6, step 4).

3.3 Local diffuse shading

We first treat local shading by a planar Lambertian reflector. Curved
and glossy reflectors will be treated in greater details in Section 4.

For a diffuse reflector with albedo ρ, the outgoing radiance `o has
no directional variation; it is simply the integral over all directions
of the incoming radiance per unit area on the receiver surface:

`o(x) = ρ
∫

Ω

`i(x, v) dA⊥ (6)

dA⊥, the differential area on the receiver surface is cos+ θ times the
Jacobian of the lightfield parameterization; with v = tan θ, we have:

dA⊥ =
dv

(1 + v2)
3
2
= g(v) dv

We introduce dE(x, v) = `i(x, v)g(v), the differential irradiance at
point x from the direction v. Since dE is a product of two functions,
its spectrum is the convolution of their spectra:

d̂E(Ωx, Ωv) = ̂̀i(Ωx, Ωv) ⊗ ĝ(Ωv)

The reflected radiance `o is the integral of dE over all directions v; it
is therefore the value of d̂E at Ωv = 0, that is, ̂̀o(Ωt) = ρd̂E(Ωt, 0).
Putting everything together, we have:

̂̀o(Ωx) = ρ
[̂
`i(Ωx, Ωv) ⊗ ĝ(Ωv)

]
Ωv=0

(7)

g(v) is a bell-like curve (Fig. 5-a); its Fourier transform is:

ĝ(Ωv) = 4π|Ωv|K1(2π|Ωv|)

where K1 is the first-order modified Bessel function of the second
kind. ĝ is highly concentrated on low frequencies (Fig. 5-b); the
effect of convolution by ĝ is a very small blur of the spectrum in the
angular dimension (Fig. 6, step 5).
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Figure 6: Effects on the spectrum of the various steps of light transport with a diffuse reflector. 2D Fourier transforms for steps 1 to 4 are
obtained analytically; step 5 (convolution) is performed numerically. 3D Version spectrums are obtained numerically, via a Photon-Mapping
algorithm and a FFT of the light field computed.
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Figure 7: Scene configuration
for visibility experiment. Left:
spectrum with only one occluder.
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ers, computed with full precision
and phase.

3.4 Example and discussion

Fig. 6 illustrates the various steps of light transport for a simple
scene such as Fig. 9b. The slopes of the transport shears correspond
to the travel distance (steps 2 and 4). Visibility increases the spatial
frequency content through the convolution by a horizontal kernel in
frequency space (step 3). There are only a finite number of blockers
in Fig. 6, which explains why their spectrum is not a Dirac comb
times a sinc, but a blurry version. The blocker spectrum mostly
contains a main central lobe corresponding to the average occlusion
and two side lobes corresponding to the blocker main frequency.
This results in a replication of the sheared source spectrum on the
two sides. The smaller the blocker pattern, the further-away these
replicas are in frequency space. The final diffuse integration (step
6) discards all directional frequencies.

The main differences between the 3D and 2D plots of the spectra
in Fig. 6 come from aliasing problems that are harder to fix with
the 4D light field.Furthermore, in the 3D scene, the position of the
blockers is jittered (see Fig. 9), which results in a smoother spec-
trum.
Feature-based visibility The spectra in Fig. 6 show that the second
transport (step 4) pushes the “replicas” to the angular domain. This
effect is more pronounced for high-frequency blockers, for which
the replicas are farther from the vertical line. Since the final diffuse
integration keeps only the spatial line of frequencies (step 5), the
main high-frequency lobe of the blockers is eliminated by diffuse
shading. This is related to the feature-based approach to visibility
[Sillion and Drettakis 1995], where the effect of small occluders
on soft shadows is approximated by an average occlusion. How-
ever, our finding goes one step further: where the feature-based
technique ignores high frequencies, we show that, for small-enough
blockers, most high-frequencies are effectively removed by integra-
tion.
Combining several blockers A difficult scene for visibility is the
case of two occluders that individually block half of the light, and
together block all the light (Fig. 7). In our framework, if one carries
out the computations with full precision, taking phase into account,
one gets the correct result: an empty spectrum (Fig. 7, right).

However, for practical applications, it is probably not necessary
to compute the full spectrum. Instead, we consider elements of
information about the maximal frequency caused by the scene con-
figuration, as we show in Section 6.2. In that case, one can get
an overestimation of the frequencies caused by a combination of
blockers, but not an underestimation.

4 General case for surface interaction
So far, we have studied only diffuse shading for a central ray normal
to a planar receiver (although rays in the neighborood have a non-
normal incident angle). We now discuss the general case, taking
into account the incidence angle, arbitrary BRDF, receiver curva-
ture as well as spatial albedo variation. Our framework builds upon

Ramamoorthi and Hanrahan [2001b] and extends it in several ways,
which we discuss in Section 6.1.

In a nutshell, local reflection simply corresponds to a multiplica-
tion by the cosine term and a convolution by the BRDF. However,
a number of reparameterizations are necessary to take into account
the incidence and outgoing angles, as well as the surface curvature.
We first treat the special case of rotation-invariant BRDFs such as
Phong before addressing more general forms as well as texture and
spatially-varying BRDFs. Recall that we study frequency content in
ray neighborhoods, which means that for local reflection, we con-
sider an incoming neighborhood and an outgoing neighborhood.
Plane-sphere parameterization Since local reflection mostly in-
volves integrals over the directional dimension, it is more naturally
expressed in a parameterization where angles are uniform. This is
why we use here a plane-sphere parameterization where the direc-
tional component θ is the angle to the central ray (Fig. 3-b). The
spatial dimension is unaffected.

In the plane-sphere parameterization, the domain of directions is
the S 1 circle, which means that frequency content along this dimen-
sion is now a Fourier series, not a transform. Fig. 8 shows the effect
of reparameterizing angles on the frequency plane. The frequency
distribution is very similar, although the spectrum is blurred by the
non-linear reparameterization. For bandwidth analysis, this intro-
duces no significant error. Note that for all local interactions with
the surface (and thus in this entire section), there is no limitation to
small values of θ, the linearization v = tan θ ≈ θ will only be used
again after light leaves the surface, for subsequent transport.

4.1 Rotation-invariant BRDFs on curved receivers
Local shading is described by the shading equation

`o(xi, θo) =
∫

θi

`(xi, θi) ρxi (θ
′
o, θ
′
i ) cos+ θ′i dθi (8)

where the primed angles are in the local frame of the normal while
the unprimed angles are in the global frame (Fig. 10). For now, we
assume that the BRDF ρ does not vary with xi. Local shading is
mostly a directional phenomenon with no spatial interaction: the
outgoing radiance at a point is only determined by the incoming
radiance at that point. However, the normal varies per point.

As pointed out by Ramamoorthi and Hanrahan [2001b], local re-
flection combines quantities that are naturally expressed in a global
frame (incoming and outgoing radiance) and quantities that live in
the local frame defined by the normal at a point (cosine term and
BRDF). For this, we need to rotate all quantities at each spatial
location to align them with the normal. This means that we ro-
tate (reparameterize) the incoming radiance, perform local shading
in the local frame, and rotate (reparameterize ) again to obtain the
outgoing radiance in a global frame. All steps of the local shading
process are illustrated in Fig. 10 and discussed below.

Step 1 & 7: Reparameterization into the tangent frame We
first take the central incidence angle θ0 into account, and reparam-
eterize in the local tangent frame with respect to the central normal
direction. This involves a shift by θ0 in angle and a scale in space
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Figure 8: Spectrum arriving at the receiver (step 4 of Fig. 6), be-
fore and after the sphere-plane reparameterization. Left: (Ωx,Ωv)
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Figure 9: Complex frequency effects in light transport. The three scenes have the same area light and diffuse receiver and differ only by
the frequency content of the blockers. (a) Large blockers result in few high frequencies. (b) With smaller (higher frequency) blockers, high
frequencies increase on the receiver. (c) For very high-frequency blockers, high frequencies on the receiver nearly disappear.

by 1/ cos θ0. We also flip the directions so that incident rays are
pointing up and match the traditional local reflection configuration
(Fig. 10), step 1). We omit the full derivation for brevity and pro-
vide directly the equations corresponding to step 1 and 7 of Fig. 10:

̂̀i(Ωx, Ωθ) = e−iΩθθ0/| cos θ0| ̂̀(−Ωx cos θ0, Ωθ) (9)
̂̀′′(Ωx, Ωθ) = eiΩθθ1 | cos θ1| ̂̀o(Ωx/ cos θ1, Ωθ) (10)

Step 2: Per-point rotation The directional slice corresponding
to each point must be shifted to rotate it in the local frame of the
normal at that point (Fig. 10 step 2): θ′i = θi − α(xi).

For a smooth surface, we use a first-order Taylor expansion of
the angle α of the normal at a point xi. Given the curvature k, we
have α(xi) = kxi and the reparameterization is θ′i = θi − k xi. This is
a shear, but now along the directional dimension, in contrast to the
transport shear. Similarly, the Fourier transform is sheared along
the spatial dimension (Fig. 10 step 2, last row):

̂̀′
i (Ω

′
x,Ω

′
θ) = ̂̀i(Ω′x + kΩ′θ , Ω

′
θ) (11)

After this reparameterization, our two-dimensional spatio-
directional local light field is harder to interpret physically. For
each column, it corresponds to the incoming radiance in the frame
of the local normal: the frame varies for each point. In a sense, we
have unrolled the local surface and warped the space of light ray in
the process [Wood et al. 2000]. The direction of the shear depends
on the sign of the curvature (concave vs. convex).

Step 3: Cosine term and differential irradiance In the local
frame of each point, we compute differential irradiance by multi-
plying by the spatially-constant clamped cosine function cos+. This
multiplication corresponds in frequency space to a convolution by
a Dirac in space times a narrow function in angle:

d̂E′(Ωx,Ωθ) = ̂̀′
i (Ωx,Ωθ) ⊗ ĉos+(Ωθ)δΩx=0 (12)

Over the full directional domain, the spectrum of cos+ is:

ĉos+(Ωθ) = cos
(
π

2Ωθ

) 2
1 − (2πΩθ)2 (13)

Most of the energy is centered around zero (Fig. 12-a) and the 1/Ω2
θ

frequency falloff comes from the derivative discontinuity1 at π/2.
Equivalent to the two-plane reparameterization (Section 3.3), the
cosine term has only a small vertical blurring effect.

1A function with a discontinuity in the nth derivative has a spectrum
falling off as 1/Ωn+1. A Dirac has constant spectrum.

Step 4: Mirror-direction reparameterization Common
BRDFs mostly depend on the difference between the mirror
reflection and the outgoing direction. This is why we remap the
local incoming light using a mirror reflection around the normal
(Fig. 10 step 4): dE′r(θ

′
r) = dE′(−θ′i ).

d̂E′r(Ωx, Ω
′
θ) = d̂E′(Ωx, −Ω′θ) (14)

This is equivalent to reparameterizations of surface light fields
and BRDFs [Wood et al. 2000; Ramamoorthi and Hanrahan 2002].

Step 5: BRDF convolution In the mirror parameterization, as-
suming that the BRDF depends only on the angle difference, the
shading equation 8 becomes:

`′o(xi, θ
′
o) =

∫

θ′r

dE′r(xi, θ
′
r) ρ

′(θo − θ′r) dθ′r (15)

Which is a convolution of dE′r by ρ′ for each xi: that is, we convolve
the 2D function dE′r by a spatial Dirac times the directional shift-
invariant BRDF ρ′ (Fig. 10 step 5). In the Fourier domain, this is a
multiplication by a spatial constant times the directional spectrum
of the BRDF.

̂̀′
o(Ω′x,Ω

′
θ) = d̂E′r(Ω

′
x,Ω

′
θ) ρ̂′(Ω

′
θ) (16)

Note, however, that our expression of the BRDF is not recipro-
cal. We address more general forms of BRDF below.

Step 6: Per-point rotation back to tangent frame We now
apply the inverse directional shear to go back to the global frame.
Because we have applied a mirror transform in step 4, the shear and
inverse shear double their effect rather than canceling each other.
Since the shear comes from the object curvature, this models the
effect of concave and convex mirror and how they deform reflection.
In particular, a mirror sphere maps the full 360 degree field to the
180 degree hemisphere, as exploited for light probes.

4.2 Discussion
The important effects due to curvature, cosine term, and the BRDF
are summarized in Fig. 10. Local shading is mostly a directional
phenomenon, and the spatial component is a double-shear due to
curvature (step 2 and 6). The cosine term results, in frequency
space, in a convolution by a small directional kernel (step 3) while
the BRDF band-limits the signal with a multiplication of the spec-
trum (step 5). Rougher materials operate a more aggressive low-
pass, while in the special case of mirror BRDFs, the BRDF is a
Dirac and the signal is unchanged.

Curvature has no effect on the directional bandwidth of the out-
going light field, which means that previous bounds derived in the
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special case of inifinite lighting [Ramamoorthi and Hanrahan 2004;
Basri and Jacobs 2003; Ramamoorthi and Hanrahan 2001a; Ra-
mamoorthi and Hanrahan 2002] are valid for spatially-varying il-
lumination. However, the spatial frequency content is strongly af-
fected by curvature, which has important practical implications.

The effect of the curvature shear is further increased by the spa-
tial scaling back to the tangent frame in step 7, as described by
Eq. 10. We stress that this explains the well-known difficulty in
sampling specular lighting in situations such as backlighting on the
silhouette of a curved object. This is modeled by the effect of the
curvature shear, the BRDF bandwidth, and the angular scale due to
rotation into the tangent frame.

A case study: simple caustics Caustics are an example of the
interaction between spatial and angular aspects of light transport.
We illustrate this effect with a simple case similar to a solar oven
(Fig 11). A parallel beam of light hits a surface of negative cur-
vature with a mirror (Dirac) BRDF and converges toward a focal
point. This is modeled in our framework by an incoming spectrum
that has energy only in the angular domain. The shear due to curva-
ture followed by the shear due to transport result in a signal where
the energy is concentrated in space: it is a Dirac at the focal point.

4.3 Rotation-varying BRDFs
Not all BRDFs can be simplified into a term that depends only on
the difference to the mirror direction. For example, the Fresnel term
depends on the incoming angle. We now derive the effect of shading
by a BRDF that is factored into separable terms that depend on the
incoming angle θ′i and the difference between the outgoing angle θ′o
and the mirror direction θ′r [Ramamoorthi and Hanrahan 2002], that
is, ρ(θ′i , θ

′
o) = f (θ′i ) ρ

′(θo − θ′r).
Since the term f does not depend on the outgoing angle, it can

be applied in the same way as the cos+ term, using a multiplication
that corresponds to a convolution in frequency space; the rest of
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Figure 12: Spectrum of the clamped cosine in the sphere-plane pa-
rameterization. Spectrum of cos+ f (cosine and Fresnel terms) for
different materials.

the shading remains the same with a convolution by ρ′. Combining
the multiplication by f with the mirror reparameterization of step 4
and the convolution by ρ′ of step 5, we obtain in frequency space a
convolution followed by a multiplication:

̂̀′
o(Ω′x,Ω

′
θ) =

(
d̂E′r(Ω

′
x,Ω

′
θ) ⊗ f̂ (−Ω′θ)δΩx=0

)
ρ̂′(Ω′θ)

(17)

Fig. 12-b shows the spectra of the cosine term cos+ multiplied
by the Fresnel term for typical materials; it contains mostly low fre-
quencies. Other approximations with separable functions depend-
ing on θ′o are equally easy, just reversing the order of the multipli-
cation and convolution. BRDFs are often approximated by sums
of separable terms, which can be handled easily in our framework
because the Fourier transform is linear.

4.4 Texture mapping
When the result of shading is modulated by a texture T (x), this
multiplication corresponds to a convolution in the Fourier domain:

̂̀T (Ωx,Ωθ) = T̂ (Ωx)δΩθ=0 ⊗ ̂̀o(Ωx,Ωθ) (18)

Since the texture has only spatial components, its spectrum is
restricted to the line of spatial frequencies. This means that texture
mapping only affects frequencies along the spatial dimension.

4.5 Spatially-varying BRDFs
We now extend our model to include spatially-varying BRDFs and
revisit step 5 (shading). For each point, shading is still a convolution
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over the directional domain, but the kernel varies spatially.
To model this effect, we exploit the fact that a 2D Fourier trans-

form can be decomposed into two separable 1D transforms, the
first one vertically, then horizontally. We consider the intermedi-
ate semi-Fourier space ˚̀(x,Ωθ) that represents for each location x
the 1D Fourier transform of the directional variation of incoming
light. The full Fourier space is then the 1D Fourier transform of the
semi-Fourier transform along the x dimension. We have

˚̀′
o(x,Ωθ) = ˚dE′r(x,Ωθ) ρ̊(x,Ωθ),

which is a multiplication in the semi-Fourier domain, and therefore
a convolution along x only in full Fourier space:

̂̀′(Ωx,Ωθ) = d̂E′r(Ωx,Ωθ) ⊗x ρ̂(Ωx,Ωθ)

This means that in order to characterize the effect of spatially-
varying BRDFs, we consider the spectrum of ρ(x, θ). We then
take the spectrum of the incoming illumination ̂̀ and convolve it
only horizontally along Ωx, not vertically. We call this a semi-
convolution in Ωx, which we note ⊗x.

In the special case of non-varying BRDFs, the spectrum of
ρ(x, θ) is a Dirac times the directional spectrum of the BRDF. The
horizontal convolution is a multiplication. If the spectrum of ρ is
separable (texture mapping), then the spatially-varying BRDF case
is a multiplication followed by a convolution. The special case of a
a spatially-varying combination of BRDFs [Lensch et al. 2001] can
be handled more simply as the superposition of multiple BRDFs
with weights encoded as textures.

5 Extension to 3D
We now show how our framework extends to 3D scenes.

5.1 Light-field parameterization phenomena
The derivations presented in Section 3 involve a two-plane light-
field parameterization and extend directly to 3D. The only notable
difference is the calculation of differential irradiance (Eq. 7), where
the projected surface area in 3D becomes:

dA⊥ =
du dv

(1 + v2 + u2)2 = G(u, v) du dv

Fig. 5-c presents the spectrum of G(u, v).

5.2 Shading in plane-sphere parameterization
The sphere S 2 of directions is unfortunately hard to parameterize,
which prompted many authors to use spherical harmonics as the
equivalent of Fourier basis on this domain. In contrast, we have
chosen to represent directions using spherical coordinates and to
use traditional Fourier analysis, which is permitted by our restric-
tion to local neighborhoods of S 2. This solution enables a more di-
rect extension of our 2D results, and in particular it expresses well
the interaction between the spatial and angular components.

Spherical coordinates We use the spherical coordinates θ, ϕ
where θ, in [−π, π], is the azimuth and ϕ, in [−π/2, π/2], the co-
latitude. The distortion of this parameterization is cosϕ, which
means that one must remain around the equator to avoid distortion.
In this neighborhood, the parameterization is essentially Euclidean,
to a first-order approximation.

Local reflection is challenging because it involves four neigh-
borhoods of direction around: the incoming direction, the normal,
the mirror direction, and the outgoing direction; in general, we can-
not choose a spherical parameterization where they all lie near the
equator. Fortunately, we only need to consider two of these neigh-
borhoods at a time (Fig. 4).

For this, we exploit the fact that a rotation around an axis on the
equator can be approximated to first order by a Euclidean rotation
of the (θ, ϕ) coordinates: (θ′, ϕ′) = Rα (θ, ϕ)

For brevity, we omit the comprehensive remapping formulas for
3D shading, but we describe the appropriate parameterization for
each step as well as the major differences with the 2D case.

Tangent frame We start with a parameterization where the equa-
tor is in the incident plane, as defined by the central ray of the in-
cident light field and the central normal vector (Fig. 13-b). If the
light field has been properly rotated, only the x spatial dimension
undergoes the scaling by cos θ0 (Eq. 9)

Curvature In 2D, we approximated the angle with the local nor-
mal linearly by α(x) = kx; For a surface, the corresponding lin-
earization of the normal direction (θN , ϕN) involves a bilinear form
[Do Carmo 1976]:

(θN , ϕN) = M (x, y) (19)

If x and y are aligned with the principal directions of the sur-
face, the matrix M is an anisotropic scaling where the scale fac-
tors are the two principal curvatures. The corresponding remapping
of (x, y, θ, ϕ) is a shear in 4D, with different amounts in the two
principal directions. As with the 2D case, the frequency content is
sheared along the spatial dimensions.

Differential irradiance and cosine Step 3 is mostly un-
changed. Since we placed the equator along the incident plane,
the cosine term depends only on θ to a first approximation. The
spectrum is convolved with a small 1D kernel in θ (Fig. 12-a).

Rotationally-symmetric BRDFs The mirror reparameteriza-
tion of step 4 is unchanged, and the angles remain near the equator
since the equator also contains the normals. We express the con-
volution of the mirrored incoming light field by the BRDF in the
neighborhood of the outgoing direction. For this, we rotate our
spherical coordinates so that the new equator contains both the mir-
ror direction and the direction of the central outgoing ray (Fig. 13-
c). Because all the angles are near the equator, the difference angles
between an outgoing ray and a mirrored ray can be approximated
by θ′o − θ′r and ϕ′o − ϕ′r, and Eq. 16 applies.

Recap of rotations In summary, we first need to rotate the light-
field parameterization so that the central incidence plane is along
one of the axes before reparameterizing from two-plane to sphere-
plane (Fig. 13-b). We then need to rotate between the mirror repa-
rameterization and the BRDF convolution to place the central out-
going direction on the equator (Fig. 13-c). Finally we rotate again
to put the outgoing plane defined by the normal and central outgo-
ing direction in the equator (not shown).

5.3 Anisotropies in 3D
Our extension to 3D exploits the low distortion of spherical coordi-
nates near the equator, at the cost of additional reparameterization
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Ray space Fourier Spectrum formula
Transport
Travel shear shear ̂̀(Ωx, Ωv + dΩx)
Visibility multiplication convolution ̂̀⊗ V̂

Local geometric configuration
Light incidence scale spatial scale spatial e−iΩθθ0

| cos θ0 |
̂̀(−Ωx cos θ0, Ωθ)

Outgoing angle scale spatial scale spatial eiΩθθ1 | cos θ1 | ̂̀o( Ωx
cos θ1
,Ωθ)

Curvature shear shear ̂̀i(Ω′x − kΩ′
θ
, Ω′

θ
)

Local shading
Cosine term multiplication convolution ̂̀′

i ⊗ ĉos+
BRDF convolution multiplication ρ′ d̂E′r
Texture mapping multiplication convolution T̂ ⊗ ̂̀
Separable BRDF multiplication convolution

(
d̂E′r ⊗ f̂

)
ρ′

then convolution then multiplication
Space-vary. BRDF semi-convolution semi convolution d̂E′ ⊗x ρ̂

(angles only) (spatial only)

Table 1: Summary of all phenomena

to align the equator with the relevant neighborhoods. Fortunately,
these reparameterization act locally like Euclidean rotations along
axes that preserve the space-angle separation.

Compared to 2D , the 3D case involves anisotropies both in
the directional and spatial components. The spatial scale to ac-
count for the incident and exitant angle affects only one of the
spatial dimensions, along the corresponding plane normal to the
tangent frame. Curvature is usually different along the two prin-
cipal directions. The directional cosine term mostly depends on
θ, while rotationally-symmetric BRDFs only depend on the spher-
ical distance between mirror and outgoing directions and is more
influenced by θ except around the specular peak. These additional
anisotropies make the 3D situation more complex, but locally they
correspond to linear transforms and preserve the distinction and in-
teraction between spatial and directional effects derived in 2D.

Other local shading effects such as separable BRDFs, texture
mapping, and spatially-varying BRDFs can be directly extended
from Section 4. While the formulas are complex and are not de-
rived in this paper, the qualititative effects and relevant parameters
remain the same as in 2D.

6 Discussion
Table 1 summarizes the building blocks that compose our frequency
analysis of light transport. This variety of phenomena can be char-
acterized using simple mathematical operators: scale, shear, con-
volution and multiplication. Even spatially-varying BRDFs can be
handled using a semi-convolution that occurs only along the spatial
dimensions.

Some operations such as occlusion are simpler in the original
ray space, while others such as shading are more natural in fre-
quency space. Our framework allows us to express them all in
a unified way. As discussed above, the 3D case essentially fol-
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Figure 14: Special case of diffuse shading for an infinite environ-
ment map. In this case, the convolution and multiplication are
equivalent to a mutltiplication.

lows the 2D derivation, with additional reparameterizations steps
and anisotropies.

In practice, the notion of locality is invoked for three different
reasons, whose importance depends on the context and application:
– the use of first-order Taylor series, for example for the curvature
or for the tan θ ≈ θ remapping,
– the principle of uncertainty, which states that low frequencies
cannot be measured on small windows (in which case big neigh-
borhoods are desired), or in other words, that localization is not
possible in space and frequency at the same time,
– most real scenes are not stationary, that is, their properties such as
the presence and size of blockers vary spatially. Smaller neighbor-
hoods might mean more homogeneous properties and more locally-
pertinent conclusions.

We now discuss how our work extends previous frequency char-
acterization, before illustrating how it can be applied, through a
proof of concept in the context of ray-tracing.

6.1 Relation to previous work
Light field sampling Our formulation of transport in free space is
similar to the derivations of light-field spectra [Isaksen et al. 2000;
Chai et al. 2000], and the same relationship between slope and dis-
tance is found. Our expression as a transport operator makes it
easier to extend these analyzes to arbitrary input signals, and in
particular to non-Lambertian objects and occlusion.
Ray footprint Approaches based on ray differentials [Shinya et al.
1987; Igehy 1999; Chen and Arvo 2000] capture the shear trans-
forms due to transport and curvature, and our first-order Taylor ex-
pansion for curvature corresponds to the same differentials. The
approach by Igehy [1999] only uses 2D derivatives by considering
only ray paths that converge to the viewpoint.
Signal processing framework for local reflection Our framework
extends Ramamoorthi and Hanrahan’s signal processing framework
for local reflection [2004] with the following key differences:
– we take into account spatial variation of the incoming light and
the curvature of the receiver,
– however, we characterize reflection only for a ray neighborhood,
– they parameterize the outgoing radiance by by α and θ′o, while we
use a more natural outgoing parameterization in the global frame,
at the cost of reparameterization,
– as discussed above, our expression of the cosine term is a con-
volution in the frequency domain. This cleanly separates the com-
putation of incoming irradiance and BRDF convolution, at the cost
of additional steps. It also allows us to express the cosine term for
BRDFs such as Phong.
On convolution It might come as a surprise that two phenomena
that have been expressed by previous work as convolutions in the
primary space, soft shadows [Soler and Sillion 1998] and the cosine
term [Ramamoorthi and Hanrahan 2004] correspond in our frame-
work to convolutions in the frequency domain. We show here that
our formulation in fact extends these previous work and that the
primary-space convolution is a special case. The key is that they
consider functions that do not vary in one of the domains (space
resp. direction). The corresponding spectra are therefore restricted
to a line, since the Fourier transform of a constant is a Dirac.

Consider the cosine term for infinitely-distant light sources. The
lighting varies only in angle, and its spectrum is restricted to the
vertical line of directions (Fig. 14(a)). After the curvature shear, it is
a 1D function on the line kΩθ = Ωx (Fig. 14(b)), which we convolve
with the vertical kernel ĉos+. However, for each spatial frequency
Ωx, there is only one non-zero value of the sheared function. As
a result, this convolution is a so-called outer product of the two
one-dimensional functions, and the result is the pairwise product
d̂E′(Ωx,Ωθ) = `i(0,Ωx/k)ĉos+(Ωx/k−Ωθ). (Fig. 14(c)). The diffuse
integration then restricts the function to the line Ωθ = 0, where
dE′(Ωx, 0) = `′i (0,Ωx/k)ĉos+(Ωx/k). The convolution followed by
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restriction to the horizontal line turned into a simple product of 1D
functions, which corresponds to a convolution in the primary space.

The case of soft shadows studied by Soler and Sillion [1998]
is similar: the emitter is diffuse and has a spectrum restricted to
Ωv = 0, and the blockers are planar and have the same restrictions.
The transport from source to occluders results in slanted lines in
frequency space that are convolved together (Fig. 6, step 3). Our
framework extends these two cases to arbitrary cases where the
spectra are not restricted to lines.

6.2 Sampling rate for glossy rendering

We show how our framework can be used to drive image-space sam-
pling in ray tracing. In particular, we illustrate how our framework
can be used to derive sampling rates for algorithms that do not need
to perform computations in the Fourier domain. While we demon-
strate a working implementation, we emphasize that this application
is meant only as a proof of concept and that further development is
necessary to make it fully general, as we discuss below.

We are motivated by the rendering of glossy materials, which de-
spite effective recent developments [Lawrence et al. 2004] remains
computationally expensive. We observe, however, that glossy ob-
jects appear blurry, so it should be possible to reduce the image
sampling rate. Our framework permits a quantitative expression of
the required sampling rate.

Unoccluded environment map We first consider the case of
environment-map rendering without occlusion. The incoming light
field has only directional content (Fig. 15), and the light incidence
angle (Table 1 row 1) has no effect. The shear of curvature (b)
results in a line of slope k that gets convolved with the cosine nar-
row kernel ĉos+, which we neglect. After mirror reparameteriza-
tion (c), a glossy BRDF band-limits this signal (d), which we ap-
proximate by a cutoff at an angular frequency Ωρ. This cutoff de-
pends on the BRDF of the object visible in a given region of the
image. The upper endpoint of the resulting segment is at coordi-
nate (−kΩρ,Ωρ). We apply the inverse shear (step e) and the scale
by 1/ cos θ1 = 1/(n.v), where n is the normal and v the unit vec-
tor towards the viewpoint. We obtain a maximum frequency of
(− 2k

cos θ1
Ωρ,Ωρ) for the light leaving an object in the direction of the

viewpoint (Fig. 15 step f). A transport shear with distance d yields
a bound of

(
− 2k

cos θ1
Ωρ, Ωρ − d 2k

cos θ1
Ωρ

)

A view computation corresponds to the restriction of the function
to the directional domain, and if we assume d >> 1, we obtain the
following approximate bound on the directional bandwidth for a
region of the image:

Glossy reflection criterion 

(BRDF, curvature, normal, distance)

Harmonic average of blocker distance

Figure 16: Criteria and sampling pattern used to render Fig. 17. The
sampling adapts to curvature, the viewing angle, the BRDF as well
as the harmonic average of the distance to potential blockers.

B = d
2k
n.v
Ωρ (20)

This corresponds to the difficulty in appropriately sampling
curved objects at grazing angles, as discussed in Section 4.2. In ad-
dition, distant objects are minified and the apparent curvature is in-
creased. In 3D, the curvature and normal angle involve anisotropy,
and in practice, we use the absolute value of the larger principal
curvature. However, our implementation computes this criterion
directly in screen-space with finite-difference approximation to the
curvature. As a result, the effect of the normal angle, the distance,
and the anisotropies are included for free; see Fig. 16 for a vi-
sualization of this criterion. The faceted look is due to the finite-
difference curvature and Phong normal interpolation. The BRDF
bandwidth for the two dinosaurs and environments were approxi-
mated manually based on the BRDF exponent.

Occlusion The above derivation assumes full visibility. We inte-
grate the effect of the blockers using a worst-case assumption on the
blocker spectrum, we consider that it has content at all frequency.
Based on the effect of the transport shear, we approximate the spec-
trum due to a blocker at distance d′ by a line of slope 1/d′. Going
through the same steps, we obtain an approximate bound of:

B′ = d
1

n.v

(
1
d′
+ 2k

)
Ωρ (21)

To evaluate this criterion, we use the harmonic average of the
distance to occluders. This information is computed by sampling
a hundred rays for a small set of visible points in the image, in
practice 20,000. The criteria is reconstructed over the image us-
ing the same reconstruction algorithm as for the final image, which
we describe shortly. The blocker criterion is shown Fig. 15. It is
similar to Ward et al.’s criterion for irradiance caching [Ward et al.
1988], but expressing it in a unified frequency framework allows us
to combine it with other bandwidth considerations such as BRDF
roughness.

Algorithm and image reconstruction Our proof-of-concept
computes visibility using four samples per pixel, but uses
aggressively-sparse samples for shading: on average, 0.05 samples
per pixel. We use an edge-preserving reconstruction that exploits
the higher-resolution depth and normal to reconstruct the shading,
in the spirit of McCool’s filtering of Monte-Carlo ray tracing out-
puts [1999] but based on a bilateral filter [Tomasi and Manduchi
1998]. As demonstrated in Fig. 17, this results in a smooth recon-
struction where needed and on sharp silhouettes. The spatial width
of the bilateral filter is scaled according to the bandwidth predic-
tion. Given a bandwidth map, we use the blue-noise method by
Ostromoukhov et al. [2004] to generate a set of image samples
(Fig. 17, right). In summary, our algorithm is as follows:
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Uniform sampling Using our bandwidth prediction

Figure 17: Scene rendered without and with adaptive sampling rate based on our prediction of frequency content. Only 20,000 shading
samples were used to compute these 800 × 500 image. Note how our approach better captures the sharp detail in the shiny dinosaur’s head
and feet. The criteria and sampling are shown in Fig. 16. Images rendered using PBRT [Pharr and Humphreys 2004]

Compute visibility at full resolution

Use finite-differences for curvature criterion

Compute harmonic blocker distance for sparse samples

Perform bilateral reconstruction

Compute B’ based on blocker and curvature

Generate blue noise sampling based on B’

Compute shading for samples

Perform bilateral reconstruction

Observe how our sampling density is increased in areas of
high curvature, grazing angles, and near occluders. The environ-
ment map casts particularly soft shadows, and note how the high-
frequency detail on the nose of the foreground dinosaur is well cap-
tured, especially given that the shading sampling is equivalent to a
200 × 100 resolution image.

Although these results are encouraging, the approach needs im-
provement in several areas. The visibility criterion in particular
should take into account the light source intensity in a directional
neighborhood to better weight the inverse distances. Even so, the
simple method outlined above illustrates how knowledge of the
modifications of the frequency content through light transport can
be exploited to drive rendering algorithms. In particular, similar
derivations are promising for precomputed radiance transfer [Sloan
et al. 2002] in order to relate spatial and angular sampling.

7 Conclusions and future work
We have presented a comprehensive framework for the description
of radiance in frequency space, through operations of light trans-
port. By studying the local light field around the direction of prop-
agation, we can characterize the effect of travel in free space, oc-
clusion, and reflection in terms of frequency content both in space
and angle. In addition to the theoretical insight offered by our anal-
ysis, we have shown that practical conclusions can be drawn from a
frequency analysis, without explicitly computing any Fourier trans-
forms, by driving the sampling density of a ray tracer according to
frequency predictions.
Future work On the theory side, we are working on the anal-
ysis of additional local shading effects such as refraction, bump-
mapping, and local shadowing [Ramamoorthi et al. 2004]. We hope
to study the frequency cutoff for micro, meso, and macro-geometry
effects [Becker and Max 1993]. The study of participating media
is promising given the ability of Fourier analysis to model differ-
ential equations. The spectral analysis of light interaction in a full
scene is another challenging topic. Finally, the addition of the time
dimension is a natural way to tackle effects such as motion blur.

We are excited by the wealth of potential applications encom-
passed by our framework. In rendering, we believe that many tra-
ditional algorithms can be cast in this framework in order to derive

theoretical justification, but also to allow extensions to more gen-
eral cases (such as from diffuse to glossy). Our preliminary study of
sampling rates in ray tracing is promising, and we want to develop
new algorithms and data structures to predict local bandwidth, es-
pecially for occlusion effects. Precomputed radiance transfer is an-
other direct application of our work.

Our analysis extends previous work in inverse rendering [Ra-
mamoorthi and Hanrahan 2001b; Basri and Jacobs 2003] and we
are working on applications to inverse rendering with close-range
sources, shape from reflection, and depth from defocus.
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