Interactive Reconstruction of Monte Carlo Image Sequences using a

Recurrent Denoising Autoencoder

CHAKRAVARTY R. ALLA CHAITANYA, NVIDIA, University of Montreal and McGill University

ANTON S. KAPLANYAN, NVIDIA

CHRISTOPH SCHIED, NVIDIA and Karlsruhe Institute of Technology

MARCO SALVI, NVIDIA

AARON LEFOHN, NVIDIA

DEREK NOWROUZEZAHRAI, McGill University
TIMO AILA, NVIDIA

(a) 1spp noisy input (b) Edge-avoiding wavelets

(¢) SURE-based filter

(d) Recurrent autoencoder (e) Reference

Fig. 1. Left to right: (a) noisy image generated using path-traced global illumination with one indirect inter-reflection and 1 sample/pixel; (b) edge-avoiding
wavelet filter [Dammertz et al. 2010] (10.3ms at 720p, SSIM: 0.7737); (c) SURE-based filter [Li et al. 2012] (74.2ms, SSIM: 0.5960); (d) our recurrent denoising
autoencoder (54.9ms, SSIM: 0.8438); (e) reference path-traced image with 4096 samples/pixel.

We describe a machine learning technique for reconstructing image se-
quences rendered using Monte Carlo methods. Our primary focus is on
reconstruction of global illumination with extremely low sampling budgets
at interactive rates. Motivated by recent advances in image restoration with
deep convolutional networks, we propose a variant of these networks better
suited to the class of noise present in Monte Carlo rendering. We allow
for much larger pixel neighborhoods to be taken into account, while also
improving execution speed by an order of magnitude. Our primary contri-
bution is the addition of recurrent connections to the network in order to
drastically improve temporal stability for sequences of sparsely sampled
input images. Our method also has the desirable property of automatically
modeling relationships based on auxiliary per-pixel input channels, such as
depth and normals. We show significantly higher quality results compared
to existing methods that run at comparable speeds, and furthermore argue a
clear path for making our method run at realtime rates in the near future.

CCS Concepts: « Computing methodologies — Ray tracing; Neural net-
works; Image processing;

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

© 2017 ACM. 0730-0301/2017/7-ART98 $15.00

DOI: http://dx.doi.org/10.1145/3072959.3073601

Additional Key Words and Phrases: Monte Carlo denoising, image recon-

struction, interactive global illumination, machine learning

ACM Reference format:

Chakravarty R. Alla Chaitanya, Anton S. Kaplanyan, Christoph Schied,
Marco Salvi, Aaron Lefohn, Derek Nowrouzezahrai, and Timo Aila. 2017.
Interactive Reconstruction of Monte Carlo Image Sequences using a Recur-
rent Denoising Autoencoder. ACM Trans. Graph. 36, 4, Article 98 (July 2017),
12 pages.

DOI: http://dx.doi.org/10.1145/3072959.3073601

1 INTRODUCTION

Ray and path tracing have recently emerged as the rendering algo-
rithms of choice for visual effects [Keller et al. 2015]. This has en-
couraged the development of filtering and reconstruction techniques
to reduce the noise inherent in Monte Carlo renderings [Zwicker
et al. 2015], but the focus on film-quality results provides hundreds
to thousands of samples per pixel prior to filtering.

Meanwhile, games have also recently migrated towards physically-
based shading from more empirical models [Hill et al. 2015], but
much of the potential increase in realism from this transition hinges
on the possibility of sampling light transport paths more flexibly
than rasterization allows. Unfortunately, even the fastest ray tracers
can only trace a few rays per pixel at 1080p and 30Hz. While this

ACM Transactions on Graphics, Vol. 36, No. 4, Article 98. Publication date: July 2017.

98:2 + Alla Chaitanya et al.

number doubles every few years, the trend is (at least partially)
countered by the move towards higher resolution displays and hig-
her refresh rates. It therefore seems likely that a realistic sampling
budget for games and other realtime applications will remain on
the order of one (short) path per pixel for the foreseeable future. We
present a new general reconstruction technique that significantly
improves the state-of-the-art in this regime.

Reconstructing global illumination from a single path per pixel
presents considerable challenges. Monte Carlo integration of indi-
rect illumination leads to very noisy images at low sampling rates,
so that much of the energy is concentrated in a small subset of paths
or pixels (e.g. Figure 1, left). We therefore frame the problem as a
reconstruction of the final image (rather than denoising) from these
sparse samples since, at prohibitively low sampling rates, many
image areas have almost only noise to begin with. This problem
is further compounded when trying to obtain a temporally stable
result in animation.

Motivated by recent work in single-image restoration using deep
convolutional networks, we propose significant modifications to the
structure of these networks in order to address the particular chal-
lenges of reconstructing rendered image sequences with extreme
Monte Carlo noise. Our solution has the following novel aspects:

e recurrent connections in a deep autoencoder structure lead
to increased temporal stability, and

e end-to-end training allows our network to automatically
learn how to best utilize auxiliary pixel features, such as
depth and normals, with no guidance from the user.

These advances allow us to interactively generate plausible image
sequences with global illumination at extremely low sampling bud-
gets, consistently outperforming the quality of the state-of-the-art
in this regime.

2 RELATED WORK

A large body of work exists for image denoising and the recon-
struction of images from a sparse set of samples. Our primary focus
is on the denoising of images rendered using Monte Carlo methods,
which has been an important research field for over two decades [Lee
and Redner 1990; McCool 1999]. We first review the most relevant
work in computer graphics literature and then draw connections to
the machine learning-based image and video restoration methods.
Recent surveys provide further information [Schmidhuber 2015;
Schwenk 2013; Zwicker et al. 2015].

Offline Denoising for Monte Carlo Rendering. “Last-mile” image de-
noising is essential for making physically based rendering methods
viable for production [Keller et al. 2015], due to long-tailed image
convergence error with stochastic Monte Carlo (MC) methods. To
address this, Jensen and Christensen [1995] apply non-linear image-
space filters to indirect diffuse illumination. More recently, by look-
ing at the frequency analysis of light transport, Egan et al. [2011a;
2011b; 2009] derive high quality sheared filters for specific effects.
These filters are applied over individual ray samples in a 4D domain.
Lehtinen et al. [2012] present high quality image reconstruction
from a coarse light field with auxiliary information for each sample.
Sen and Darabi [2012] estimate parameters for a cross bilateral filter

ACM Transactions on Graphics, Vol. 36, No. 4, Article 98. Publication date: July 2017.

based on mutual information, and track the noise parameters for
each sample.

Many recent papers use auxiliary features from the rendering
process. Li et al. [2012] use Stein’s unbiased risk estimate [1981] to
select from a filter bank in the process of minimizing the denoising
error. Rousselle et al. [2013] employ additional features from the
renderer for denoising. The challenge is how to select the filter
parameters, and the influence of each feature. To address this, Ka-
lantari et al. [2015] train the parameters of a non-local means filter
using machine learning. Zimmer et al. [2015] further decompose
path-space in multiple buffers and apply individual filters to each
buffer. Image features have also been used to build local regression
models [Bitterli et al. 2016; Moon et al. 2015, 2016].

These approaches efficiently reduce residual noise at a cost of
higher execution times measured in seconds or minutes. In an offline
setting, slow reconstruction times are often acceptable, representing
a small fraction of the total image render time. Our proposed method
also uses auxiliary features, but works well with low sample counts,
and runs at interactive rates with plausible results. Next, we will
review interactive approaches to denoising.

Interactive Denoising for Monte Carlo Rendering. Images produced
with ray tracing are challenging to render interactively due to a
high amount of noise with low number of rays traced per pixel [Bik-
ker and van Schijndel 2013]. Robison and Shirley [2009] explore
noise-reducing gathering for filtering an input image with a single
sample per pixel. Schwenk [2013] proposes to filter the incident in-
direct radiance, as well as providing a good overview of interactive
denoising methods.

A common theme for interactive MC denoising is to separate
direct and indirect illumination and filter the latter using edge-
avoiding filters. Examples include: edge-avoiding A-trous wavelets
[Dammertz et al. 2010; Hanika et al. 2011], adaptive manifolds [Gas-
tal and Oliveira 2012], guided image filters [Bauszat et al. 2011],
filtering on adaptive manifolds [Bauszat et al. 2015], and in tex-
ture space [Munkberg et al. 2016]. These approaches are fast and
produce convincing results, but lack the error estimates applied by
many offline approaches. Therefore, local detail may be lost. Please
refer to Moon et al. [2015] for an example comparison. Moreover,
the amount of filtering is a user parameter. Our approach does not
need to separate direct and indirect light and does not require user
guidance.

Another class of methods are based on the frequency-space ana-
lysis of light transport. Axis-aligned filters have been proposed for
interactive soft shadows [Mehta et al. 2012], diffuse indirect lig-
hting [Mehta et al. 2013], and multiple distribution effects [Mehta
et al. 2014]. These are faster but less accurate than the sheared filters
discussed in the previous section. Yan et al. [2015] propose a fast
implementation of a quantized 4D sheared filter, which is more accu-
rate, but slower than the axis-aligned versions. Note that these are
domain-specific filters tailored for particular light transport effects.
Furthermore, the soft shadow filter is applied once (with different
parameters) for each individual area light, which makes it hard to
scale to larger scenes. In contrast, our approach is independent of
the illumination in the scene.

In a concurrent work [Bako et al. 2017], a new denoising met-
hod based on machine learning is presented, which targets image
denoising with high sample count.

Convolutional Neural Networks (CNN). CNNs have recently been
used in a wide range of graphics-related tasks, including image
classification [Krizhevsky et al. 2012], object localization [Girshick
et al. 2014], colorization [lizuka et al. 2016; Larsson et al. 2016],
inpainting [Pathak et al. 2016], and view interpolation [Dosovitskiy
etal. 2015; Flynn et al. 2016], with consistently good results. We refer
an interested reader to the recent survey on this topic [Schmidhuber
2015].

CNNs consist of a sequence of layers that apply a set of con-
volution kernels to input from the preceding layer, followed by a
non-linear mapping [LeCun et al. 1998]

a™! ki + b)

®
1l
Q

J

Here * denotes convolution, ag is the scalar 2D image of the ith
activation on the [th layer, kg ; and bg are the jth 2D convolution
kernel and bias term associated with output activation i at level
I, respectively, and o is typically a rectified linear unit, ReLU, i.e.
max (0, -). The input RGB image is usually considered as a layer with
three activations.

Our algorithm makes heavy use of skip connections that jump over
a set of layers. Such shortcuts make the training of deep networks
substantially easier [He et al. 2015a; Raiko et al. 2012]. We also
use recurrent connections that link layers to themselves, so that
the network becomes able to retain state between frames in an
animation sequence [Schmidhuber 2015].

Image Restoration using Deep Learning. The denoising of images
corrupted with Gaussian noise is an active research topic in image
processing and neural networks. Currently the best published results
come from a deep convolutional architecture that uses hierarchical
skip connections [Mao et al. 2016]. The same architecture also yields
state-of-the-art results for super-resolution, JPEG deblocking, and
text removal. The network is trained using a large number of natural
images, and it learns to complete or correct the images to look locally
like the training image patches. We build on this approach, but in
our application the noise has very different characteristics compared
to the additive Gaussian noise. Some samples typically have a very
high energy (well outside the dynamic range of an image), while
most areas appear black. The input pixel values are therefore not
even approximately correct, but we do know that they are correct
on the average.

The task of filling in the missing pixel colors is closely related
to image inpainting [Pathak et al. 2016] and single-image super-
resolution [Ledig et al. 2016]. The key difference is that in our ap-
plication we control the image generation process and have access
to auxiliary information such as depth and normal buffers, in addi-
tion to the pixel colors. In a work closely related to ours, Kalantari
et al. [2015] use a fully connected network to estimate the weights
for the auxiliary parameters in a non-local means filter. In contrast,
we do the entire filtering operation using CNNs.

Recurrent Autoencoder for Interactive Reconstruction « 98:3

Since our focus is on highly interactive—and ultimately realtime—
rendering, temporal stability of the reconstructed frames is very
important. In the context of video super-resolution, good results
have been demonstrated using recurrent neural networks (RNNs) [Hu-
ang et al. 2015] and sub-pixel CNNs [Shi et al. 2016]. Péatrducean
et al. [2015] used a recurrent long short term memory block in the
bottleneck of the autoencoder to improve temporal stability. While
in super-resolution the (potential) temporal flickering is very limited
spatially, in our applications it can affect large, variable-size areas
in the images, and thus we choose to build on the general solution
of hierarchical RNNs.

3 PATH TRACING

Despite the availability of advanced light transport methods, e.g. bi-
directional path tracing and Metropolis light transport [Veach 1998],
many industrial renderers continue to rely on optimized unidirecti-
onal path tracers [Hill et al. 2014]: they are simple to implement
and, compared to bidirectional methods, generate a single (noisy)
path integral estimate more quickly. We target interactive rendering,
and so a 1-sample unidirectionally path-traced estimate is the most
efficient way of generating the input to our technique.

We detail our path tracing implementation below, including the
measures we take to reduce the variance of our estimate without
incurring any substantial additional cost. Afterwards, we discuss the
interaction between our renderer and our reconstruction algorithm.

3.1 Interactive Path Tracer

We use an optimized path tracer to produce our noisy input images.
Traditional path tracers [Kajiya 1986] shoot rays through each pixel,
stochastically scattering according to the profile of the intersected
object’s reflectance, and continuing recursively until striking a light
source. We employ next event estimation to improve convergence
by deterministically connecting each path vertex to a light.

To accelerate visible surface determination, we leverage GPUs to
rasterize (instead of ray tracing) the first hit point from the camera
and store its associated shading attributes in a G-Buffer [Deering
et al. 1988]: we store the hit mesh 1D, mesh primitive 1D, triangle
intersection barycentric coordinates, material 1, world-space posi-
tion and shading normal, diffuse and specular albedo, and motion
vectors. After this rasterization pass, we continue tracing the path
using an NVIDIA OptiX-based GPU ray tracer [Parker et al. 2010].

We choose to not consider depth of field and motion blur during
path tracing, since these effects can be efficiently implemented as
post-processes, and moreover, they introduce noise in the G-Buffer.

We use low-discrepancy Halton sequences [Halton 1964] when
sampling the light source and scattering directions, and apply path
space regularization to glossy and specular materials after scatte-
ring [Kaplanyan and Dachsbacher 2013]. This significantly reduces
the number of sparse high-intensity outliers in glossy reflections, at
the cost of a small bias.

We limit the number of indirect bounces to one for practical inte-
ractivity. As such, our path tracer generates up to one direct lighting
path (camera-surface-light) and one indirect path (camera-surface-
surface-light) at each pixel. The total input generation cost per pixel
comprises rasterization, three rays, two material evaluations, and
one material sampling. Throughout the paper, we call it a one-sample

ACM Transactions on Graphics, Vol. 36, No. 4, Article 98. Publication date: July 2017.

98:4 + Alla Chaitanya et al.

image to emphasize that we trace one path, even though it has two
next event estimations along its way.

3.2 Auxiliary Inputs for Reconstruction

Our G-Buffer contains rich information about geometry, materials,
and light sources of the scene. We make a subset of this available
to the reconstruction by exporting a deep image, which consists
of multiple buffers. In addition to the noisy, high-dynamic range
RGB image, we export the following set of G-Buffer features from
the rasterization pass to the reconstruction algorithm: view-space
shading normals (a 2D vector), depth, and the material’s roughness.
In total the input to the reconstruction algorithm thus consists of
3 + 4 = 7 scalar values per pixel.

The color values are stored in linear space as 16-bit half precision
floating point (FP16) values to retain high dynamic range (HDR).
We linearize the depth values for higher accuracy and store them as
FP16. The remaining 3 channels are stored with 8 bits per channel.
We calculate the view space shading normal using the camera’s
projection matrix and store its x and y components.

We further simplify the input by demodulating the noisy RGB
image by the albedo of the directly visible material. By storing this
untextured illumination we remove most of the texture complexity
from the noisy image, significantly facilitating training and reducing
the required network capacity. After the untextured illumination
has been reconstructed, we re-modulate by the albedo in order to
include the texture detail in the final rendering.

As we sample directly visible surfaces only once at each pixel,
all of the aforementioned inputs are prone to image-space aliasing.
Antialiasing these inputs would necessitate a higher sampling rate,
precluding interactive rendering. We found, however, that applying
a readily available screen-space antialiasing technique to the re-
constructed output image instead resolved remaining aliasing at a
negligible added cost (see Section 5 for details).

4 IMAGE SEQUENCE RECONSTRUCTION WITH
RECURRENT DENOISING AUTOENCODER

Our image reconstruction algorithm is a data-driven method that
learns a mapping from noisy input image sequences to noise-free
output image sequences based on a large number of training pairs,
each consisting of an example input sequence and the desired output
sequence (i.e. training target).

We base our reconstruction method on the recent, very general
work on image restoration using a convolutional network with
hierarchical skip connections [Mao et al. 2016]. Their network is
a simple CNN where each layer has 128 kernels with a 3 X 3-pixel
spatial support. The best performing variant has 30 layers, each
operating on the same spatial resolution. A skip connection is added
from every second layer to the corresponding layer at the end of
the network, i.e., first layer is connected to the last layer, third layer
to last minus two, and so on. While their network removes additive
Gaussian noise very well from individual images, it has various
weaknesses considering our application. It is too slow because each
layer operates on a full-resolution image and it has problems dealing
with spatially very sparse samples that are common in Monte Carlo

ACM Transactions on Graphics, Vol. 36, No. 4, Article 98. Publication date: July 2017.

renderings. Perhaps most significantly, the results are not temporally
stable because each frame is denoised in isolation.

We address these weaknesses by modifying the architecture to
include subsampling and upsampling stages as well as recurrent
connections (Sections 4.1 and 4.2). We then continue by discussing
the preparation of training data (Section 4.3) and the exact loss
function we optimize during training (Section 4.4).

4.1 Denoising Autoencoder with Skip Connections

As depicted in Figure 2, our network architecture includes distinct
encoder and decoder stages that operate on decreasing and increasing
spatial resolutions, respectively. This makes it similar to the Flownet
[Fischer et al. 2015] and U-Net [Ronneberger et al. 2015] architec-
tures that give good results in optical flow estimation and image
segmentation, respectively, and also emphasizes the connection
to denoising autoencoders [Vincent et al. 2008]. Autoencoders are
networks that learn to reconstruct their inputs from some internal
representation, and denoising autoencoders also learn to remove
noise from the inputs. We use the term denoising autoencoder be-
cause we reconstruct from noisy inputs.

Since the layers that operate on the highest spatial resolutions are
generally the most time consuming, this design leads to approxima-
tely an order of magnitude faster execution compared to Mao et al.
[2016], with negligible decrease in quality (for Gaussian noise). The
receptive field of all the deeper layers is also several times larger in
the input image, allowing us to consider larger pixel neighborhoods
and therefore better deal with very sparse inputs.

Because the network learns a mapping from inputs to outputs, it
has the desirable property that any number of auxiliary inputs can
be provided in addition to the color data. The optimization during
training considers all these inputs and automatically finds the best
way to use them to disambiguate the color data.

4.2 Recurrent Denoising Autoencoder for Temporal
Denoising

Recurrent neural networks (RNN) are used for processing arbitrarily
long input sequences. An RNN has feedback loops that connect
the output of the previous hidden states to the current ones, thus
retaining important information between inputs (Figure 2 right).
This makes it a good fit to our application for two reasons. First, in
order to denoise a continuous stream of images, we need to achieve
temporally stable results. Second, because our inputs are very sparse,
the recurrent connections also gather more information about the
illumination over time.

In order to retain temporal features at multiple scales, we intro-
duce fully convolutional recurrent blocks after every encoding stage.
Related designs have been recently used for video super-resolution
[Huang et al. 2015], but we are not aware of earlier applications in
the context of an autoencoder with skip connections. It is important
that the entire architecture, including the recurrent connections
remains fully convolutional. It allows us to train the network with
small fixed-size crops (e.g., 128 X 128 pixels) and later apply it to
sequences of arbitrary resolution and length. If there was even a
single resolution-specific layer, the property would be lost.

Recurrent Autoencoder for Interactive Reconstruction « 98:5

Recurrent convolutional block

Fig. 2. Architecture of our recurrent autoencoder. The input is 7 scalar values per pixel (noisy RGB, normal vector, depth, roughness). Each encoder stage has
a convolution and 2 X 2 max pooling. A decoder stage applies a 2 X 2 nearest neighbor upsampling, concatenates the per-pixel feature maps from a skip
connection (the spatial resolutions agree), and applies two sets of convolution and pooling. All convolutions have a 3 X 3-pixel spatial support. On the right
we visualize the internal structure of the recurrent RCNN connections. I is the new input and h refers to the hidden, recurrent state that persists between

animation frames.

Similarly to Shi et al. [2016], we have found it more efficient to
place the recurrent blocks in the encoder part as opposed to the
decoder. The reasoning is that the signal is sparser in the encoder.
We started with a single recurrent block in the bottleneck of the
autoencoder (last layer of the encoder), similar to the design of
Patraucean et al. [2015], but found it insufficient. A lot of information
flows through the skip connections, which causes skipping the
recurrent block altogether. Therefore, we place a recurrent block at
every encoding stage (Figure 2), right before max pooling.

Each recurrent block consists of three convolution layers with a
3 X 3-pixel spatial support. One layer processes the input features
from the previous layer of the encoder. It then concatenates the
results with the features from the previous hidden state, and passes
it through two remaining convolution layers. The result becomes
both the new hidden state and the output of the recurrent block.
This provides a sufficient temporal receptive field and, together with
the multi-scale cascade of such recurrent blocks, allows to efficiently
track and retain image features temporally at multiple scales. The
convolution layers in a recurrent block operate on the same input
resolution and the same number of features as the encoding stage it
is attached to.

Formally, the output and the hidden state can be represented
using a recurrent equation:

hi = O; = C3x3 (C3x3 (C3x3(Ti) ™ hi—1)),

where Csxs3 is a convolution kernel with a 3 X 3-pixel spatial support
as defined in Eq. 1, O; is the output, I; is the current input, h; is the
hidden state for the input i, and ~ is a concatenation operator.

As a precursor to the RNN design, we experimented with training
the network with three-frame window sequences as input and target.
While this reduced temporal flickering, it still was clearly visible in
sequences longer than the training window.

4.3 Training

We will now describe the preparation of training data. We start with
a smooth camera fly-through animation with e.g. 1000 frames for
each scene available for training. For every frame, we generate 10
different noisy images at 1 sample per pixel, the auxiliary features,
and the target image for training. By having multiple noisy images,

we can ask that each of these instances of Monte Carlo noise lead to
the same reconstructed image. This increases the number of training
pairs tenfold at a negligible cost compared to creating additional
target images. Note that the noisy images share the auxiliary features
because primary rays are rasterized (Section 3.2).

We generate 1024 X 1024 images during rendering, while the trai-
ning is performed using smaller 128 x 128 crops that are randomly
selected for each training sequence. We use sequences of 7 conse-
cutive frames to provide enough temporal context during training.
We also randomly select the scene fly-through sequence, as well
as the beginning of a training subsequence within the selected fly-
through sequence. We randomly alternate between forward and
backward playback in order to train the network on various camera
movements. We have also found useful to randomly stop the camera
when forming the training sequence. For that, instead of advancing
the camera to the next frame, we keep the camera and the target
image at the current frame of animation, while advancing the noisy
image to a different random seed.

In addition, we use randomly picked rotation of the training
sequence by 90/180/270 degrees to train on more movement directi-
ons. We also pick a random modulation in the range [0, 2] separately
to each color channel, and apply them to the entire sequence. It for-
ces the network to better learn the linear input-target color relation,
as well as the independence of the channels.

4.4 Loss Function

A loss function defines how the error between network outputs and
training targets is computed during training. The most commonly
used loss function in image restoration is Ly, which is the mean
squared error between the predicted image P and the target image T.
However, it is also known that using L1 loss instead of L, can reduce
the splotchy artifacts from reconstructed images [Zhao et al. 2016].
Our first loss term is a spatial L; loss, denoted as L for a single
image in the temporal training sequence:

N

1
Li= 3 D IPi-Til.

1

ACM Transactions on Graphics, Vol. 36, No. 4, Article 98. Publication date: July 2017.

98:6 + Alla Chaitanya et al.

where P; and T; are the ith pixel of the predicted and target image
correspondingly. We have also found it useful to flatten the image
by raising all color channels to the power y before computing the
loss. A value of 1/2.2 would be close to the perceptual gamma
correction, however, we found that a more aggressive value of 0.2
allows to penalize the error in the dark regions of the image even
more efficiently. Our implementation raises both the input and target
images into power 0.2 as a preprocess.

The L; spatial loss provides a good overall image metric that is
tolerant to outliers. In order to further penalize the differences in
fine details, such as edges, we also use a gradient-domain L; loss

1 N
Lg:NZ|VPi—VTi|,
i

where each gradient V(-) is computed using a High Frequency Er-
ror Norm (HFEN), an image comparison metric from medical ima-
ging [Ravishankar and Bresler 2011]. The metric uses a Laplacian of
Gaussian kernel for edge-detection. The Laplacian works to detect
edges, but is sensitive to noise, so the image is pre-smoothed with a
Gaussian filter first to make edge-detection work better. We used
the recommended parameter of ¢ = 1.5 for Gaussian kernel size.

These losses minimize the error for each image in isolation. Ho-
wever, they do not penalize temporal incoherence (e.g., flickering
between frames), and neither do they encourage the optimizer to
train the recurrent connections to pass more data across frames.
Therefore, we introduce a temporal L; loss Lt

N
Lt=%2(’?—%),
; t ot
where a temporal derivative dP;/dt for an ith image pixel is com-
puted using finite differencing in time between the ith pixels of the
current and the previous image in the temporal training sequence.

We use a weighted combination of these three losses as the final
training loss

L=ws Ls+wg Lg+w Ly,
where wg/g are the adjustable weights that control the contribu-
tion of each loss. We picked w/g/t = 0.8/0.1/0.1 to approximately
equalize the scales, which improved convergence.

We have also found it important to assign higher weight to the
loss functions of frames later in the sequence to amplify temporal
gradients, and thus incentivize the temporal training of RNN blocks.
We use a Gaussian curve to modulate wg/g: for a sequence of 7
images we use (0.011, 0.044, 0.135, 0.325,0.607, 0.882, 1).

To verify that the combined loss leads to an improvement over the
spatial-only loss L, we measured the structural similarity metric
(SSIM) [Wang et al. 2004] on a validation sequence in SPONZADIF-
FUSE after 100 epochs of training. SSIM showed an improvement
from 0.9335 for L to 0.9417 for the combined loss.

5 IMPLEMENTATION AND RESULTS

We will now describe the design parameters and study the conver-
gence properties of our network. Then we will detail the practical
aspects of training and using the network for interactive recon-
struction. Finally we will focus on the performance measurements
and compare the resulting quality against the state-of-the-art.

ACM Transactions on Graphics, Vol. 36, No. 4, Article 98. Publication date: July 2017.

W Training loss

7

Color only A
— Untextured color \

Untextured + depth Vi

Untextured + normal ™ .
Untextured + normal + depth A\

. Untextured + normal + depth + roughness W
10° 0 1 2 3
10 10 10° Epochs 10°

Fig. 3. The convergence of average training loss as a function of epochs for
our network trained with and without auxiliary features.

5.1 Network Design Analysis

We study the convergence behavior of our network by varying its
layer count and the set of auxiliary input features. Also, when a trai-
ned network is applied to an image, it acts as a reconstruction filter.
Therefore, we demonstrate its qualitative properties by artificially
applying the network repeatedly to the same image.

Network Size. Figure 4 shows the convergence behavior for a
varying number of encoder and decoder stages, as well as for a
different number of feature maps. We observe that after a certain
design point the training loss decreases only marginally while the
computational cost keeps increasing. We select the smallest confi-
guration that gives good results, highlighted in yellow on the left.
In total there are 36 convolution layers in our network: 18 in the
feedforward path (7 in encoder, 10 in decoder and one output layer,
see Figure 4a) and 3 in each of the 6 RCNN blocks (Figure 2, right).

We set the output feature count to 32 per pixel in the first stage
of the encoder, and then multiply the number by 4/3 after every
subsampling operation. This leads to a fixed-rate compression by a
factor of 4/(4/3) = 3 after every subsampling. Therefore, informa-
tion is generally lost at every stage, but it gets reintroduced through
the skip connections. The decoder part then amplifies the amount
of data by 3x after every upsampling.

Auxiliary Features. Figure 3 shows a convergence plot for training
loss averaged over 10 experiments using the SPONZADIFFUSE scene
(Figure 6). We start by switching to the untextured color, and then
gradually grow the set of auxiliary features to observe the network’s
training characteristics.

We observe that untextured lighting—demodulating the image
with the albedo at a primary hit—significantly improves the conver-
gence speed. Another big improvement is obtained by introducing
normals as an auxiliary feature. Normals help the network to de-
tect silhouettes of objects and to better detect discontinuities in
shading. Additional, smaller improvements are obtained from depth
and roughness. In general, the auxiliary features help to disambi-
guate the colors by providing information about the contours and
silhouettes of the scene objects, as well as about different materials.

Recurrent Autoencoder for Interactive Reconstruction « 98:7

0.6

0.90
AE AE AE AE AE feat AE feat AE feat
smallest small large small large

conv-32,32 conv-32,32 | conv-32,32 | conv-32,32 || conv-24,24 | conv-32,32 = conv-48,48

conv-43 conv-43 conv-43 conv-43 conv-36 conv-43 conv-58
conv-57 conv-57 conv-57 conv-57 conv-54 conv-57 conv-69
conv-57 conv-76 conv-76 conv-76 conv-81 conv-76 conv-83 2
conv76 | conv-101 | conv-101 || comv-122 | comv-101 | conv-i00 = 03
conv-101 | conv-135 || conv-122 | conv-101 | conv-100 £

conv-135 conv-81%2 | conv-76*2 = conv-83*2
conv-101%2 [| conv-54*2 | conv-57*2 = conv-69*2

conv-76*2 | conv-76*2 conv-36*2 | conv-43*2 = conv-58*2

conv-57%2 | conv-57*2 | conv-57*2 conv-24*2 | conv-32%2 | conv-48*2 —---Laree Medium

-----Large

conv-43*2 conv-43*2 | conv-43*2 | conv-43*2 |[conv-128,64 conv-128,64 conv-128,64 [y :
4 --==Medium

conv-32*2 conv-32*2 | conv-32*2 | conv-32*2 Small Smallest

conv-64 conv-128,64 | conv-128,64 conv-128,64 Small

&N 100 Epochs 'Hm 100 Epochs
a) b) <) d)
Fig. 4. Ablation study of our network design. Parameter sweeps on a) the number of layers and b) the number of features. Here conv-N means a convolution

layer with N output features, and #2 indicates that there are two such layers back-to-back. Additionally, there is an output layer with 3 output features
(R,G,B). The highlighted columns show the best trade-off between size and training loss. c) Training loss convergence plots for networks trained with different

number of layers from a). d) Training loss convergence plots for networks trained with different number of output features from b).

(b) iteration #2
Fig. 5. We perform a qualitative analysis of the reconstruction filter’s pro-
perties by applying the filter to the input image recursively for 1/2/5/10
iterations. The filter acts as an edge-preserving smoothing filter in some
regions, while acting as a contrast or unsharp masking filter in others.

(d) iteration #10

(c) iteration #5

(a) iteration #1

Reconstruction Filter’s Properties. In order to demonstrate the qua-
litative behavior of the proposed reconstruction filter, we artificially
applied it to an input image multiple times recursively. That is, we
first take a noisy color image and the auxiliary features, perform
the inference once, then take the result and use it as a “noisy” color
image for another inference (features stay unchanged), and so on.

Figure 5 shows the qualitative analysis of the filter by applying the
filter recursively 1/2/5/10 times to a frame from SPONZADIFFUSE.
The middle row shows an inset with a subtle trim shadow on top,
which is gradually spread around the whole region after multiple
iterations, with a flag pole being a stop for the filter. This means
that the filter behaves as an edge-preserving kernel, i.e., it tries to
spread around the noisy samples, while preserving the edges. On
the other hand, the filter also tries to preserve the local contrast.
For example, in the bottom row in Figure 5, even after 10 iterations,

s - e
SPONZADIFFUSE
Fig. 6. We train the network using fly-throughs of these 3 scenes.

CLASSROOM

SPONZAGLOSSY

the illumination is mostly blurred, however, the filter still tries to
preserve the initial contrast along the edge of the far corner.

5.2 Training Data vs. Generalization

Our network has a total of 3.2 million trainable parameters, and even
though convolutional networks are naturally tolerant to overfitting,
we need to make sure that our training set is sufficiently large. We
know from earlier image restoration results (e.g. [Mao et al. 2016])
that our training set should contain at least hundreds of image
sequences that offer considerable variety if we want the trained
network to work well in all scenes.

While fly-throughs of 3D scenes offer a convenient way of gather-
ing arbitrary amounts of training data, variation can be a concern.
The network learns to reconstruct the kind of features it sees during
training, and if the training set does not, for example, have any
high-frequency features such as vegetation, its ability to reconstruct
such (unseen) features can remain limited. Ideally, we could thus
train the network with dozens of very different scene geometries,
lighting setups, and camera motions.

We experiment with this setup by using the three scenes shown
in Figure 6 (SPONZADIFFUSE, SPONZAGLOsSY and CLAssRooM) for
training the network, and then use it for reconstructing fly-throughs
of other scenes as well. All results in this paper and in the accom-
panying video were reconstructed using this training setup, unless
explicitly stated otherwise. SPONZADIFFUSE is the CRYTEK SPONZA
scene with the default set of materials and a large area light source
on top of it. For SPoNzAGLossY we further modify the materials by

ACM Transactions on Graphics, Vol. 36, No. 4, Article 98. Publication date: July 2017.

98:8 « Alla Chaitanya et al.

Our reconstruction result MC Input Reference

SANMIGUEL GLOSSYSPONZA SPONZA CoRrNELLBOX

CLASSROOM

Fig. 7. Closeups of 1-bounce global illumination results for 1 spp input (MC), axis-aligned filter (AAF), A-Trous wavelet filter (EAW), SURE-based filter (SBF),
and our result. Statistics are in Figure 8. Please consult the supplemental material for full resolution images and video sequences.

replacing the diffuse BRDF with a glossy GGX BRDF with roughness thin geometric shapes, and layered materials. The target images are
a = 0.06; the same textures are reused for the specular color. The rendered with 2000 spp for SPONzZADIFFUSE, and with 4000 for the
light source moves slowly along the long axis of the scene during the other scenes.

fly-through to provide changes in illumination. CLAssrRooMm has one
directional light source, sky illumination, and a rich set of textures,

ACM Transactions on Graphics, Vol. 36, No. 4, Article 98. Publication date: July 2017.

CoRNELLBOX SPONZA GLOSSYSPONZA ~ SANMIGUEL CLASSROOM

RMSE SSIM RMSE SSIM RMSE SSIM RMSE SSIM RMSE SSIM
AAF 0.018 0978 0.029 0.869 0.069 0.664 0.079 0774 0.064 0.786
EAW 0.019 0978 0.043 0.902 0.089 0586 0.088 0.768 0.059 0.841

SBF 0.044 0.818 0.060 0502 0.057 0.649 0.087 0575 0.072 0.610
Our 0.014 0.984 0.016 0.953 0.034 0.843 0.055 0.844 0.040 0.909

Filter

Fig. 8. Error statistics for still images from Figure 7.

An alternative solution that would sidestep the concern of suffi-
cient scene variety in the training set is to train a network specifi-
cally for a single scene (or a small set of scenes). This could be an
attractive solution for example for a game level; the training would
become a part of the “baking” step and the network would work well
for arbitrary image sequences of that one scene—but possibly poorly
for any other content. We demonstrate the ability of the network to
specialize on a particular data set by performing a separate training
on SANMIGUEL using 600 input frames and 2000 spp target images
that we generated specifically for this experiment. The supplemen-
tary material shows the inference results on the same scene with
different camera motion. All other images and videos, including the
SANMIGUEL results, do not include this training set.

5.3 Implementation of Training

We implemented the training of our network using Lasagne [Die-
leman et al. 2015] and Theano [2016], and used NVIDIA DGX-1
for training. The recurrent blocks are trained by back propagating
through time [Werbos 1988], where the feed-forward subparts of
the RNN are replicated to unroll the recurrence loops. The training
time for 500 epochs is approximately 16 hours on a single GPU, of
which 1 hour goes into preprocessing the dataset so that random
crops can be efficiently fetched using memmap.

We train for 500 epochs using Adam [Kingma and Ba 2014] with
learning rate 0.001 and decay rates 1 = 0.9 and f2 = 0.99. The lear-
ning rate is ramped up tenfold using a geometric progression during
the first 10 training epochs, and then decreased according to 1/t
schedule. We use a minibatch size of 4 sequences, and each epoch
randomizes the order of training data. All parameters are initialized
following He et al. [2015b], and leaky ReLU activation [Maas et al.
2013] with @ = 0.1 is used in all layers except the last one, which
uses linear activation. Max pooling is used for subsampling and
nearest neighbor filtering for upsampling. The exact choice of these
various parameters tends to affect the results only slightly; we refer
an interested reader to a recent survey [Mishkin et al. 2016].

5.4 Reconstruction Quality with Low Sample Counts

In order to compare with the prior work, we have implemented mul-
tiple state-of-the-art algorithms including axis-aligned filter (AAF)
for both soft shadows [Mehta et al. 2012] and indirect illumination
[Mehta et al. 2013], edge-avoiding A-Trous wavelet filter (EAW)
[Dammertz et al. 2010], SURE-based filter (SBF) [Li et al. 2012], and
learning based filter (LBF) [Kalantari et al. 2015].

Since our ray budget allows for only one shadow ray per pixel,
for axis aligned shadow filter [Mehta et al. 2012] we gather the mini-
mum and maximum occlusion distance within a 7 X 7-pixel window
to estimate the minimum and maximum slopes in the light field
frequency spectrum. In our implementation of Li et al. [2012], we do

Recurrent Autoencoder for Interactive Reconstruction « 98:9

Reference

Our reconstruction result LBF Our
PT

Fig. 9. Comparison at 4 samples/pixel. Learning-based filter trained on
4/8/16/32 spp (left, SSIM: 0.8280) and recurrent autoencoder trained on 1
spp (right, SSIM: 0.9074). Our network was not trained on this scene.

not perform any adaptive sampling. We have only one sample/pixel,
and thus we estimate the color variance using a 2 X 2-pixel spatial
window. Thanks to a noise-free G-buffer, we also skip the normali-
zation by variance (Eq.6 in the paper) for the auxiliary features.

Temporal antialiasing (TAA) provides pixel-scale antialiasing at
a negligible cost and also reduces the flickering of small features
at a cost of subtle blur [Karis 2014]. Most of the prior methods are
not temporally stable at a single sample/pixel, and in order to do
fair comparisons, we apply TAA as a supplemental post-process
pass to all methods. Our method also benefits from TAA because
the recurrent loops at finer resolutions have insufficient temporal
receptive field to reproject the high-frequency features. The video
offers an evaluation of temporal stability between the methods.

Figure 7 shows the main results and closeups from the five scenes.
CorNELLBOX demonstrates the ability of our network to preserve
the hard features, such as contact shadows and edges while hand-
ling the scant and flat appearance. SPONZADIFFUSE, SPONZAGLOSSY
and CLAssroOM scenes were used for training, albeit with different
camera fly-throughs and CLassroom also had a different lighting
setup during training. This demonstrates the ability of the network
to adapt to arbitrary viewpoints and different lighting setups. SAN-
MIGUEL scene was never presented to the network prior to the
inference. This demonstrates the network’s ability to generalize to
completely new data, where the illumination, materials, and scene
geometry differ from what the network was trained on. For example,
none of our training sets contain foliage, which is usually challen-
ging to filter. The video also shows that our network generalizes
convincingly to SPONZASPECULAR that has specular materials, even
though pure specularities were not present in the training set. It
is therefore somewhat surprising that it works as well as it does,
and a training-theoretical argument can be made that further qua-
lity improvements should be possible through more varied training.
Figure 8 provides root-mean-square error (RMSE) and structural
similarity metric (SSIM) measurements for the results in Figure 7.

Figure 10 demonstrates that our method is agnostic to the input
and can also filter other challenging situations, such as complex soft
and hard contact shadows, at a reasonable quality.

Higher Sample Count and Number of Bounces. The learning based
filter (LBF) was trained on 20 scenes that simulated a wide variety
of Monte Carlo effects at 4, 8, 16, 32, and 64 samples/pixel. In order
to perform a fair comparison, we run LBF and our filter using a 4
spp input (Figure 9). Even though our network was trained only
with 1 spp inputs, we can see that it generalizes well to inputs with
4 samples per pixel, and the result quality surpasses LBF.

ACM Transactions on Graphics, Vol. 36, No. 4, Article 98. Publication date: July 2017.

98:10 « Alla Chaitanya et al.

Our reconstruction result

MC Input

Reference

GRIDS

PILLARS

Fig. 10. Closeups for shadow filtering for 1 spp input (MC), axis-aligned filter (AAF), A-Trous wavelet filter (EAW), SURE-based filter (SBF), and our result.

In Figure 11 we have also demonstrated that the autoencoder
trained on 1spp scenario can generalize to significantly higher sam-
ple count as well as to a higher number of bounces. We generated
images using path tracing with up to three bounces and 256 samples
per pixel. We also provide a comparison with the state-of-the-art
offline denoiser using Nonlinearly-weighted First Order Regression
(NFOR) [Bitterli et al. 2016]. We have found that even when trai-
ned with 1spp, our method can generalize to the input with higher
sample count and higher number of bounces, providing reasonable
denoising quality within its performance ballpark (Figure 12).

Failure cases. If the training data is insufficient, or the samples
are too sparse to disambiguate important output features, the result
will lack detail and can produce splotchy-looking results. Visually,
this results in over-smoothed images with approximately correct
colors (often also with edge preservation) and sometimes painted
appearance, as can be seen in the crop with thin shadows on the floor
in SponzaA row in Figure 7. If there are not enough samples, some
features (e.g., a small specular highlight) can be also missing, like the
glossy reflections on the lamp fixture in the crop of the CLAsSsSRooM
row. On the other hand, the tendency of the network to produce
an average answer often provides a suboptimal solution. Figure 11
shows that the network trained with 1spp can provide good overall
results even on a 256spp input, however, offline methods specifically
crafted for this noise level perform systematically better than ours
when using quantitative error metrics (Figure 12).

5.5 Reconstruction Performance

We implemented the inference (i.e. runtime reconstruction) using
fused CUDA kernels and cuDNN 5.1' convolution routines with
Winograd optimization.

!https://developer.nvidia.com/cudnn

ACM Transactions on Graphics, Vol. 36, No. 4, Article 98. Publication date: July 2017.

We were able to achieve highly interactive performance on the
latest GPUs. For a 720p image (1280 X 720 pixels), the reconstruction
time was 54.9ms on NVIDIA (Pascal) Titan X. The execution time
scales linearly with the number of pixels.

The performance of the comparison methods varies considerably.
EAW (10.3ms) is fast, while SBF (74.2ms), AAF (211ms), and LBF
(1550ms) are slower than our method (54.9ms). The NFOR method
has a runtime of 107-121s on Intel i7-7700HQ CPU. Our comparisons
are based on the image quality obtainable from a fixed number of
input samples, disregarding the performance differences. That said,
the performance of our OptiX-based path tracer varies from 70ms
in SPONZAGLOSSY to 260ms in SANMIGUEL for 1 sample/pixel. Thus
in this context, until the path tracer becomes substantially faster, it
would be more expensive to take another sample/pixel than it is to
reconstruct the image using our method.

Furthermore, our method is a convolutional network, and there is
a strong evidence that the inference of such networks can be accele-
rated considerably by building custom reduced-precision hardware
units for it, e.g., over 100X [Han et al. 2016]. In such a scenario, our
method would move from highly interactive speeds to the realtime
domain.

6 CONCLUSIONS AND FUTURE WORK

We presented the first application of recurrent denoising autoenco-
ders, and deep convolutional networks in general, to the problem of
light transport reconstruction, producing noise-free and temporally
coherent animation sequences with global illumination. We can see
several interesting avenues of future work for this approach.

In this work, we demonstrated state-of-the-art quality in inte-
ractive reconstruction. Looking ahead, we would like to study how
much the results can be improved by introducing more varied trai-
ning material. In addition, it could be beneficial to specialize (and

 https://developer.nvidia.com/cudnn

Our reconstruction result Reference

Recurrent Autoencoder for Interactive Reconstruction « 98:11

MC input EAW SBF NFOR Our Reference

=
o
Q
=
E
<
m

Horse Room

Living Room

Fig. 11. Generalization example: Autoencoder trained on 1spp data was applied to 256spp MC input images. Closeups of 2-bounce global illumination input,
A-Trous wavelet filter (EAW), SURE-based filter (SBF), Nonlinearly-weighted First Order Regression (NFOR), and our result.

possibly simplify) the design to target lower-dimensional distri-
bution effects, such as motion blur and depth of field. It is likely
possible to extend our method to handle these effects by providing
lens and time coordinates as inputs to the network. It will also be
interesting to apply these ideas to the high-sample rate regime of
film-quality rendering, where a much smaller amount of noise re-
mains in input images but the geometry (e.g. hair) is also orders of
magnitude more detailed.

7 ACKNOWLEDGMENTS

We thank Jon Hasselgren and Jacob Munkberg for optimizing the
inference performance with Cuda and cuDNN, Shigiu Liu and John
Burgess for help with the comparisons. Alla Chaitanya was suppor-
ted by a Doctoral Research Scholarship from the Fonds de recherche
du Québec — Nature et technologies, a J. Armand Bombardier Scho-
larship at the University of Montreal, and a Engineering Doctoral
Award at McGill University. We also thank Jan Kautz and his group
for valuable suggestions, as well as to Dmitry Korobchenko for dis-
cussions about the loss function. We thank Nir Benty and Kai-Hwa
Yao for assisting with the Falcor framework, to John Spitzer and
Alexander Evstigneev for providing game testing infrastructure for
training data generation, to Nicholas Hull and Anjul Patney for
adjusting the scenes, as well as to Fabrice Rousselle and the Disney
Research group for helping with the NFOR comparison.

REFERENCES

Bako, S., Vogels, T., McWilliams, B., Meyer, M., Novak, J., Harvill, A., Sen, P., DeRose,
T., and Rousselle, F. 2017. Kernel-Predicting Convolutional Networks for Denoising
Monte Carlo Renderings. ACM Trans. Graph. (2017).

Bararoom Horse Room LiviNg Room Frame

RMSE SSIM RMSE SSIM RMSE SSIM time
EAW 0127 0840 0094 0831 0071 0870 10.3ms
SBF 0.044 0.902 0.040 0.939 0.042 0.931 74.2ms

NFOR 0.009 0.990 0.018 0.984 0.012 0.984 110s(CPU)
Our 0.041 0.944 0.034 0.945 0.029 0.942 54.9ms

Filter

Fig. 12. Errors for images with high sample count (256 spp) from Figure 11.

Bauszat, P., Eisemann, M., John, S., and Magnor, M. 2015. Sample-Based Manifold
Filtering for Interactive Global Illumination and Depth of Field. Comp. Graph. Forum
34,1 (2015).

Bauszat, P., Eisemann, M., and Magnor, M. 2011. Guided Image Filtering for Interactive
High-quality Global Illumination (Comp. Graph. Forum). 8.

Bikker, J. and van Schijndel, J. 2013. The brigade renderer: A path tracer for real-time
games. J. Comp. Games Tech. 8 (2013).

Bitterli, B., Rousselle, F., Moon, B., Iglesias-Guitian, J. A., Adler, D., Mitchell, K., Jarosz,
W., and Novak, J. 2016. Nonlinearly Weighted First-order Regression for Denoising
Monte Carlo Renderings. Comp. Graph. Forum 35, 4 (2016).

Dammertz, H., Sewtz, D., Hanika, J., and Lensch, H. 2010. Edge-avoiding A-Trous
wavelet transform for fast global illumination filtering. In Proc. High Perf. Graph.

Deering, M., Winner, S., Schediwy, B., Duffy, C., and Hunt, N. 1988. The Triangle
Processor and Normal Vector Shader: A VLSI System for High Performance Graphics.
Proc. SIGGRAPH 22, 4 (1988).

Dieleman, S., Schliiter, J., Raffel, C., Olson, E., Senderby, S. K., and others. 2015. Lasagne:
First release. (2015).

Dosovitskiy, A., Springenberg, J. T., and Brox, T. 2015. Learning to generate chairs with
convolutional neural networks. In Proc. CVPR. 1538-1546.

Egan, K, Durand, F., and Ramamoorthi, R. 2011a. Practical Filtering for Efficient
Ray-traced Directional Occlusion. ACM Trans. Graph. 30, 6 (2011).

Egan, K., Hecht, F., Durand, F., and Ramamoorthi, R. 2011b. Frequency Analysis and
Sheared Filtering for Shadow Light Fields of Complex Occluders. ACM Trans. Graph.
30, 2 (2011).

Egan, K., Tseng, Y.-T., Holzschuch, N., Durand, F., and Ramamoorthi, R. 2009. Frequency
Analysis and Sheared Reconstruction for Rendering Motion Blur. ACM Trans. Graph.
28, 3 (2009).

Fischer, P., Dosovitskiy, A., Ilg, E., Hausser, P., Hazirbas, C., Golkov, V., van der Smagt, P.,
Cremers, D., and Brox, T. 2015. FlowNet: Learning Optical Flow with Convolutional

ACM Transactions on Graphics, Vol. 36, No. 4, Article 98. Publication date: July 2017.

98:12 « Alla Chaitanya et al.

Networks. ArXiv e-prints (2015). arXiv:1504.06852.

Flynn, J., Neulander, L, Philbin, J., and Snavely, N. 2016. DeepStereo: Learning to Predict
New Views From the World’s Imagery. In Proc. CVPR.

Gastal, E. S. and Oliveira, M. M. 2012. Adaptive manifolds for real-time high-dimensional
filtering. ACM Trans. Graph. 31, 4 (2012).

Girshick, R., Donahue, J., Darrell, T., and Malik, J. 2014. Rich Feature Hierarchies for
Accurate Object Detection and Semantic Segmentation. In Proc. CVPR. 580-587.
Halton, J. H. 1964. Algorithm 247: Radical-inverse Quasi-random Point Sequence.

Comm. ACM 7, 12 (1964).

Han, S., Liu, X., Mao, H., Pu, J., Pedram, A., Horowitz, M. A., and Dally, W. J. 2016. EIE:
Efficient Inference Engine on Compressed Deep Neural Network. In Proc. Comp.
Arch.

Hanika, J., Dammertz, H., and Lensch, H. 2011. Edge-Optimized A-Trous Wavelets for
Local Contrast Enhancement with Robust Denoising. Comp. Graph. Forum 30, 7
(2011).

He, K., Zhang, X., Ren, S., and Sun, J. 2015a. Deep Residual Learning for Image Recog-
nition. ArXiv e-prints (2015). arXiv:1512.03385.

He, K., Zhang, X., Ren, S., and Sun, J. 2015b. Delving Deep into Rectifiers: Surpassing
Human-Level Performance on ImageNet Classification. In Proc. IEEE Conf. Comp.
Vis.

Hill, S., McAuley, S., Burley, B., Chan, D., Fascione, L., Iwanicki, M., Hoffman, N., Jakob,
W., Neubelt, D., Pesce, A., and Pettineo, M. 2015. Physically Based Shading in Theory
and Practice. In SIGGRAPH Courses. Article 22.

Hill, S., McAuley, S., Dupuy, J., Gotanda, Y., Heitz, E., Hoffman, N., Lagarde, S., Langlands,
A., Megibben, I, Rayani, F., and de Rousiers, C. 2014. Physically Based Shading in
Theory and Practice. In SIGGRAPH Courses. Article 23.

Huang, Y., Wang, W., and Wang, L. 2015. Bidirectional recurrent convolutional networks
for multi-frame super-resolution. In Proc. NIPS.

lizuka, S., Simo-Serra, E., and Ishikawa, H. 2016. Joint End-to-end Learning of Glo-
bal and Local Image Priors for Automatic Image Colorization with Simultaneous
Classification. ACM Trans. Graph. 35, 4 (2016).

Jensen, H. W. and Christensen, N. J. 1995. Optimizing Path Tracing using Noise
Reduction Filters. In Proc. WSCG.

Kajiya, J. T. 1986. The rendering equation. In Proc. SSGGRAPH.

Kalantari, N. K., Bako, S., and Sen, P. 2015. A machine learning approach for filtering
Monte Carlo noise. ACM Trans. Graph. 34, 4 (2015).

Kaplanyan, A. S. and Dachsbacher, C. 2013. Path Space Regularization for Holistic and
Robust Light Transport. Comp. Graph. Forum 32, 2 (2013).

Karis, B. 2014. High-quality temporal supersampling. In Advances in Real-Time Rende-
ring in Games, SIGGRAPH Courses.

Keller, A., Fascione, L., Fajardo, M., Georgiev, I, Christensen, P., Hanika, J., Eisenacher, C.,
and Nichols, G. 2015. The path tracing revolution in the movie industry. SSGGRAPH
Courses (2015).

Kingma, D. and Ba, J. 2014. Adam: A Method for Stochastic Optimization. ArXiv e-prints
(2014). arXiv:1412.6980.

Krizhevsky, A., Sutskever, I, and Hinton, G. E. 2012. Imagenet classification with deep
convolutional neural networks. In Proc. NIPS.

Larsson, G., Maire, M., and Shakhnarovich, G. 2016. Learning Representations for
Automatic Colorization. In Proc. ECCV.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. 1998. Gradient-based learning applied
to document recognition. In Proc. IEEE.

Ledig, C., Theis, L., Huszar, F., Caballero, J., Aitken, A. P., Tejani, A., Totz, J., Wang, Z.,
and Shi, W. 2016. Photo-Realistic Single Image Super-Resolution Using a Generative
Adversarial Network. ArXiv e-prints (2016). arXiv:1609.04802.

Lee, M. E. and Redner, R. A. 1990. A note on the use of nonlinear filtering in computer
graphics. IEEE Comp. Graph. App. 10, 3 (1990).

Lehtinen, J., Aila, T., Laine, S., and Durand, F. 2012. Reconstructing the indirect light
field for global illumination. ACM Trans. Graph. 31, 4 (2012).

Li, T-M., Wu, Y.-T., and Chuang, Y.-Y. 2012. SURE-based Optimization for Adaptive
Sampling and Reconstruction. ACM Trans. Graph. 31, 6 (2012).

Maas, A. L., Hannun, A. Y., and Ng, A. Y. 2013. Rectifier nonlinearities improve neural
network acoustic models. In International Conference on Machine Learning, Vol. 30.

Mao, X., Shen, C., and Yang, Y. 2016. Image Restoration Using Convolutional Auto-
encoders with Symmetric Skip Connections. In Proc. NIPS. arXiv:1606.08921.

McCool, M. D. 1999. Anisotropic diffusion for Monte Carlo noise reduction. ACM Trans.
Graph. 18, 2 (1999).

Mehta, S. U., Wang, B., and Ramamoorthi, R. 2012. Axis-aligned Filtering for Interactive
Sampled Soft Shadows. ACM Trans. Graph. 31, 6 (2012).

Mehta, S. U., Wang, B., Ramamoorthi, R., and Durand, F. 2013. Axis-aligned Filtering
for Interactive Physically-based Diffuse Indirect Lighting. ACM Trans. Graph. 32, 4
(2013).

Mehta, S. U,, Yao, J., Ramamoorthi, R., and Durand, F. 2014. Factored Axis-aligned
Filtering for Rendering Multiple Distribution Effects. ACM Trans. Graph. 33, 4
(2014).

Mishkin, D., Sergievskiy, N., and Matas, J. 2016. Systematic evaluation of CNN advances
on the ImageNet. ArXiv e-prints (2016). arXiv:1606.02228.

Moon, B., Iglesias-Guitian, J. A., Yoon, S.-E., and Mitchell, K. 2015. Adaptive rendering
with linear predictions. ACM Trans. Graph. 34, 4 (2015).

ACM Transactions on Graphics, Vol. 36, No. 4, Article 98. Publication date: July 2017.

Moon, B., McDonagh, S., Mitchell, K., and Gross, M. 2016. Adaptive polynomial rende-
ring. ACM Trans. Graph. 35, 4 (2016).

Munkberg, J., Hasselgren, J., Clarberg, P., Andersson, M., and Akenine-Méller, T. 2016.
Texture space caching and reconstruction for ray tracing. ACM Trans. Graph. 35, 6
(2016).

Parker, S. G., Bigler, J., Dietrich, A., Friedrich, H., Hoberock, J., Luebke, D., McAllister,
D., McGuire, M., Morley, K., Robison, A., and Stich, M. 2010. OptiX: A General
Purpose Ray Tracing Engine. ACM Trans. Graph. 29, 4 (2010).

Pathak, D., Krahenbiihl, P., Donahue, J., Darrell, T., and Efros, A. 2016. Context Encoders:
Feature Learning by Inpainting. In Proc. CVPR.

Patraucean, V., Handa, A., and Cipolla, R. 2015. Spatio-temporal video autoencoder
with differentiable memory. ArXiv e-prints (2015). arXiv:1511.06309.

Raiko, T., Valpola, H., and Lecun, Y. 2012. Deep Learning Made Easier by Linear
Transformations in Perceptrons, In Proc. Artificial Intelligence and Statistics. 7. of
Machine Learning Research 22.

Ravishankar, S. and Bresler, Y. 2011. MR Image Reconstruction From Highly Undersam-
pled k-Space Data by Dictionary Learning. IEEE Trans. Med. Imaging 30, 5 (2011),
1028-1041.

Robison, A. and Shirley, P. 2009. Image space gathering. In Proc. High Perf. Graph.

Ronneberger, O., Fischer, P., and Brox, T. 2015. U-Net: Convolutional Networks for
Biomedical Image Segmentation. 234-241.

Rousselle, F., Manzi, M., and Zwicker, M. 2013. Robust Denoising using Feature and
Color Information. Comp. Graph. Forum 32, 7 (2013). DOI : https://doi.org/10.1111/
cgf.12219

Schmidhuber, J. 2015. Deep Learning in Neural Networks: An Overview. Neural
Networks 61 (2015).

Schwenk, K. 2013. Filtering techniques for low-noise previews of interactive stochastic
ray tracing. Ph.D. Dissertation. Darmstadt University.

Sen, P. and Darabi, S. 2012. On filtering the noise from the random parameters in Monte
Carlo rendering. ACM Trans. Graph. 31, 3 (2012).

Shi, W., Caballero, J., Huszar, F., Totz,]., Aitken, A. P, Bishop, R., Rueckert, D., and
Wang, Z. 2016. Real-time single image and video super-resolution using an efficient
sub-pixel convolutional neural network. In Proc. CVPR.

Stein, C. M. 1981. Estimation of the mean of a multivariate normal distribution. In
Annals of Stat., Vol. 9.

Theano Development Team. 2016. Theano: A Python framework for fast computation
of mathematical expressions. ArXiv e-prints (2016). arXiv:1605.02688.

Veach, E. 1998. Robust Monte Carlo Methods for Light Transport Simulation. Ph.D.
Dissertation. Advisor(s) Guibas, Leonidas J.

Vincent, P., Larochelle, H., Bengio, Y., and Manzagol, P.-A. 2008. Extracting and Com-
posing Robust Features with Denoising Autoencoders. Proc. Machine Learning
(2008).

Wang, Z., Bovik, A. C., Sheikh, H. R., and Simoncelli, E. P. 2004. Image Quality Asses-
sment: From Error Visibility to Structural Similarity. Trans. Img. Proc. 13, 4 (2004),
600-612.

Werbos, P. J. 1988. Generalization of backpropagation with application to a recurrent
gas market model. Neural Networks 1, 4 (1988).

Yan, L.-Q., Mehta, S. U., Ramamoorthi, R., and Durand, F. 2015. Fast 4D Sheared Filtering
for Interactive Rendering of Distribution Effects. ACM Trans. Graph. 35, 1 (2015).

Zhao, H., Gallo, O., Frosio, I, and Kautz, J. 2016. Loss Functions for Image Restoration
with Neural Networks. IEEE Transactions on Computational Imaging (2016).

Zimmer, H., Rousselle, F., Jakob, W., Wang, O., Adler, D., Jarosz, W., Sorkine-Hornung, O.,
and Sorkine-Hornung, A. 2015. Path-space Motion Estimation and Decomposition
for Robust Animation Filtering. Comp. Graph. Forum 34, 4 (2015).

Zwicker, M., Jarosz, W., Lehtinen, J., Moon, B., Ramamoorthi, R., Rousselle, F., Sen,
P., Soler, C., and Yoon, S.-E. 2015. Recent advances in adaptive sampling and
reconstruction for Monte Carlo rendering. Comp. Graph. Forum 34, 2 (2015).

https://arxiv.org/abs/1504.06852
http://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1609.04802
https://arxiv.org/abs/1606.08921
https://arxiv.org/abs/1606.02228
https://arxiv.org/abs/1511.06309
https://doi.org/10.1111/cgf.12219
https://doi.org/10.1111/cgf.12219
https://arxiv.org/abs/1605.02688

	Abstract
	1 Introduction
	2 Related Work
	3 Path Tracing
	3.1 Interactive Path Tracer
	3.2 Auxiliary Inputs for Reconstruction

	4 Image Sequence Reconstruction with Recurrent Denoising Autoencoder
	4.1 Denoising Autoencoder with Skip Connections
	4.2 Recurrent Denoising Autoencoder for Temporal Denoising
	4.3 Training
	4.4 Loss Function

	5 Implementation and Results
	5.1 Network Design Analysis
	5.2 Training Data vs. Generalization
	5.3 Implementation of Training
	5.4 Reconstruction Quality with Low Sample Counts
	5.5 Reconstruction Performance

	6 Conclusions and Future Work
	7 Acknowledgments
	References

