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Optical systems used in photography and cinema produce depth-of-field effects, that is, variations of focus with depth. These effects are simulated in image
synthesis by integrating incoming radiance at each pixel over the lense aperture. Unfortunately, aperture integration is extremely costly for defocused areas
where the incoming radiance has high variance, since many samples are then required for a noise-free Monte Carlo integration. On the other hand, using many
aperture samples is wasteful in focused areas where the integrand varies little. Similarly, image sampling in defocused areas should be adapted to the very
smooth appearance variations due to blurring. This article introduces an analysis of focusing and depth-of-field in the frequency domain, allowing a practical
characterization of a light field’s frequency content both for image and aperture sampling. Based on this analysis we propose an adaptive depth-of-field rendering
algorithm which optimizes sampling in two important ways. First, image sampling is based on conservative bandwidth prediction and a splatting reconstruction
technique ensures correct image reconstruction. Second, at each pixel the variance in the radiance over the aperture is estimated and used to govern sampling.
This technique is easily integrated in any sampling-based renderer, and vastly improves performance.
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1. INTRODUCTION

the sensor, while objects appear increasingly blurry as their distance
to this plane increases. The visual effect of defocus can be dramatic

The simplistic pinhole camera model used to teach perspective and
for most computer graphics rendering results in sharp images be-
cause every pixel corresponds to a single ray in the scene. In con-
trast, real optical systems such as photographic lenses must collect
enough light to accommodate the sensitivity of the imaging system,
and each pixel combines light rays integrated over a finite-sized
aperture. Focusing mechanisms are needed to choose the distance

and is used extensively in photography and film.

Although the simulation of depth of field in computer graphics
has been possible for more than two decades, this effect is still rarely
used in practice because of its high cost: The lens aperture must be
sampled densely to produce a high-quality image. This is partic-
ularly frustrating because the defocus produced by the lens is not
increasing visual complexity: Quite contrarily, it removes detail. In

of an in-focus or focal plane, which will be sharply reproduced on this article, we exploit the blurriness of out-of-focus regions to re-

duce computational load. We study defocus from a signal processing
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bandwidth. This allows us to reduce computation costs by adapting
the sampling rate over both the image and lens aperture domain.

In image space, we exploit the blurriness of out-of-focus regions
by downsampling them: We compute the final image color for only
a subset of the pixels and interpolate. Our motivation for adaptive
sampling of the lens aperture comes from the observation that in-
focus regions do not require a large number of lens samples because
they do not get blurred, in contrast to defocused regions where the
large variations of radiance through the lens requires many samples.
More formally, we derive a formula for the variance over the lens and
use it to adapt sampling for a Monte Carlo integrator. Both image
and lens sampling are derived from a Fourier analysis of depth of
field that extends recent work on light transport [Durand et al. 2005].
In particular, we show how image and lens sampling can be adapted
to the spatial and angular bandwidth of the lightfield.

We emphasize that sparsely sampled images resulting from sim-
ulation of depth of field cannot be splatted up to material or depth
discontinuities (as is done for pinhole camera simulation), due to the
integral over the aperture. Blurred discontinuities in the image need
to be sampled adequately, which requires a systematic treatment of
occlusion and aperture effects.

1.1 Related Work

Our work builds on a variety of previous approaches that seek
to efficiently simulate depth-of-field effects, such as Potmesil and
Chakravarty [1981], Cook et al. [1984, 1987], and Haeberli and
Akeley [1990]. A number of approaches, in particular in real-time
rendering, start from a pinhole image together with a depth map
and postprocess it using various forms of spatially-varying blur, for
example, Potmesil and Chakravarty [1981], Kraus and Strengert
[2007], Barsky et al. [2003], Zhou et al. [2007], and Kolb et al.
[1995]. In this article, we focus on high-quality offline image syn-
thesis that resolves visibility based on a full thin-lens model, not
an input pinhole image. We will show a comparison between our
technique and such methods in Figure 11 in the results section.

The method of multidimensional light cuts [Walter et al. 2006] re-
duces the cost of estimating a composition of multiple integrals, one
of which is over the aperture. However, their work efficiently esti-
mates the integral over the aperture only in conjunction with complex
illumination. For scenes with simple direct lighting, their method
performs no better than the naive technique of independent stratified
sampling of the aperture and image. Our work is complementary to
theirs because we seek to reduce the number of image-space samples
and lens samples, while they reduce light gathering.

Our approach is related to techniques that adaptively refine com-
putation based on the smoothness of the current estimate and by
assessing how well smooth interpolation can predict new simu-
lated data, for example, Bolin and Meyer [1995], Ferwerda et al.
[1997], Bolin and Meyer [1998], Myszkowski [1998], and Stokes
et al. [2004]. In contrast, we seek to predict the local bandwidth or
smoothness of the image.

A variety of approaches compute derivatives of illumination
to predict smoothness and improve interpolation, such as Ward
and Heckbert [1992], Suykens and Willems [2001], Shinya et al.
[1987], Igehy [1999], and Chen and Arvo [2000]. In particular,
Ramamoorthi et al. [2007] compute 4D gradients of radiance and
adaptively subdivide a Whitted ray tracing solution. While they are
usually easier to estimate than frequency content, derivatives do not
directly provide information about sampling rate and their locality
can be both an asset and a drawback. We seek to predict frequency
content in small neighborhoods that are not infinitesimally small so
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as to avoid missing small features and be able to derive bandwidth
with a reasonable amount of precomputation.

Our work is complementary to the optimization of sampling pat-
terns [Mitchell 1991; Ostromoukhov et al. 2004; Agarwal et al.
2003] since we seek to optimize sampling density. This also builds
on Durand et al.’s analysis of frequency effects in light transport
Durand et al. [2005]. In contrast to the mostly theoretical nature
of that work, we seek to apply bandwidth prediction to accelerate
high-quality rendering.

Finally, we build on studies of defocus effects using Fourier anal-
ysis over 4D light fields, such as Isaksen et al. [2000], Chai et al.
[2000], and Ng [2005]. Our derivation of the frequency effect of
depth of field is similar to theirs but we use it in a ray tracing con-
text rather than for image-based rendering and photography.

1.2 Background on the Frequency Analysis of
Light Transport

Our technique builds on signal processing theory of light trans-
port [Durand et al. 2005], local reflection [Ramamoorthi and Han-
rahan 2004; 2001; Basri and Jacobs 2003], and light field sampling
[Chai et al. 2000; Isaksen et al. 2000]. We briefly review these theo-
retical results, following the analysis by Durand et al. [2005] since
it addresses both spatial and angular effects in global illumination.

We are interested in the content of a local light field characterized
by a 4D slice of radiance in the neighborhood of a central ray.
Following Durand et al. [2005], we use the flatland counterpart of
the 4D radiance function to simplify exposition; for application in
3D scenes, we project the 4D function down to 2D (see Section 3.3).
The local light field £ is parameterized by a spatial component x in
the plane orthogonal to the central ray and an angular component v,
usually the tangent of the angle to the plane normal. We study the
Fourier transform of such light fields

~ o0 o0 . .
K(Qx,ﬂv)zf / Ox, v)e T hx o207V g dy (1)
x=—00 Jy=—00

and how it is modified by transport phenomena. In what follows,
we describe effects in the Fourier domain since this domain enables
bandwidth and sampling rate prediction.

Transport in free space is a shear of the Fourier transform of the
local light field. Reflection is described by two scale transforms due
to the incident and outgoing angles and two shears due to the cur-
vature of the receiver. Shading corresponds to a convolution with a
small kernel corresponding to the spectrum of the clamped cosine
term followed by a clamping by the BRDF angular bandwidth. Tex-
ture mapping is a multiplication of radiance, which is a convolution
in the Fourier domain. Occlusion corresponds to a convolution by
the spectrum of the blockers.

To summarize, existing literature analyzes the effect of transport
phenomena on light fields and shows that transport through free
space, reflection, and occlusion can be modeled by simple trans-
formations of the light field spectra [Durand et al. 2005]: shear,
convolution, and multiplication, repectively. We use this theory to
analyze the effect due to depth of field and derive an efficient algo-
rithm for image synthesis, taking into account effects due to a finite
sized aperture.

2. AFREQUENCY ANALYSIS OF DEPTH OF FIELD

We present a theoretical analysis of the frequency content of the
light field at the sensor plane of a camera with a finite-sized
aperture. For effective exposition, we present a flatland analysis
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Fig. 1. Finite aperture (thin lens) camera model: Rays from points that
lie in front of (respectively, behind) the plane in focus converge behind
(respectively, in front of) the sensor plane, after passing through the lens,
resulting in finite blurry regions on the sensor called “circles of confusion.”

where the lightfield is two-dimensional: one spatial and one angular
dimension. In 3D space the corresponding quantities and transforms
are four-dimensional.

Consider a point P in the scene (see Figure 1). We assume that
we know the local light field at P, denoted by £ (x, v), and its spec-
trum, £p(2,, €2,). We describe the transport of £p to £, where O
is in the support plane of the camera sensor and derive the transfor-
mations undergone by £p(€2,, 2,) corresponding to this transport.
The complete process is illustrated in Figure 2.

2.1 Transport from P to the Lens

To begin with, the light from P travels in free space in direction to
the lens. From earlier work [Durand et al. 2005], we know that free
space traveling a distance d corresponds to a reparameterization of
the lightfield, that is, a shear in the angular domain of its Fourier
spectrum. We define an operator S to represent this transformation.

S ) (Q, Q) = p(Q, Q +dQ)

If the light from P passes by an occluder en route to L, this occluder
also affects the light field. We express this by the operator C. This
operator corresponds to a product between the lightfield and the
visibility function of the occluder. C is a convolution of the spectrum
of the local light field with that of the occluder [Durand et al. 2005]. If
the occluder is planar, the effect of C is to inject spatial frequencies at
the plane of occlusion. For nonplanar occluders, this is a continuous
process through the depth of the occluder.

The spectrum of the local light field at the lens after passing by a
single occluder is a simple composition of the preceding operators.

W, Q) = €S Tp) (2 Q).

In the general case, light traveling from P to L will encounter m
different occluders, and m + 1 shears (with different values for the
shear parameter d). In this case we can write £, (€2,, €2,) as

LR, Q) = (S CO" €p) (., ). ©))

2.2 Lens Integration

The result of a finite-sized aperture is that, at each location Q on the
sensor, there is an integration of the cone of incident rays from the
lens to the scene, defined by the aperture. We choose to model this
integration as an operation over the lightfield at the lens (meaning
that the lightfield dimensionality is not reduced by this operation).
This integration corresponds to a convolution in ray-space at L, and
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the light field just after L is
o, (e, v) = £ (x,v) ® a(x,v). 3)

In this equation L (respectively, L_) represent the lightfield after
(respectively, before) the lens, and « is the indicator function of the
set of rays not blocked by the aperture. The equivalent transform in
Fourier space is a product and can be written as

U (Q, Q) = 0 (Q, Q) a(Q, Q). )

To understand what @ (2., €2,) looks like, it can be noticed that the
set of rays over which the lightfield is integrated, converge at a point
Py in the plane in focus (see Figure 1). Therefore, at this point, the
integration filter is a box in angles and a Dirac in space. Its Fourier
transform is a sinc in angle and a constant in space. At L, a (x, v) is
the same function sheared from the distance between P and L. In
3D, the box has a 2D circular support, and its Fourier transform is
consequently a 2D Bessel function in angles.

Consequently, the light field at L, (i.e., just after the lens) is ban-
dlimited by the spectrum of the aperture response function. Narrow-
ing down the aperture of a camera spreads the width of @ (22, ,)
resulting in increased angular bandwidth at L. The ultimate case
of a pinhole camera restricts a to a Dirac in both space and angle
at the plane in focus, which means that its Fourier transform is a
constant that retains all frequencies in the lightfield.

2.3 Consequences on Lens Integration and
Image-Space Frequencies

When numerically performing the lightfield integration at the lens,
it is desirable to adapt the integration accuracy to the frequency
content of the lightfield at L _ so as to ensure a given precision while
keeping the computation cost as low as possible. This information
is available in ¢, (2,, €2,) and will be used in our algorithm to
drive the lens sampling.

‘When computing an image, we also seek to adapt the image sam-
pling to the frequency content of the image and interpolate between
samples, rather than explicitly compute all pixels. At the sensor, the
result of the integrated lightfield is the radiance at point Q, corre-
sponding to a pixel into the image. Seen from the lens, image-space
frequencies correspond to angular frequencies of the lightfield at L .
measured at the center of the lens (see Figure 1), times the cosine of
the incident angle at the sensor. In Fourier space, this means that we
can measure image-space frequencies from the angular frequencies
inf;, (2, ,) integrated over the spatial domain. This operation
of view extraction is therefore a projection of the spectrum over the
angular axis.

3. ADAPTIVE DEPTH-OF-FIELD RENDERING

We increase the efficiency with which depth-of-field effects can be
simulated by adaptively varying the image-space samples and the
number of samples over the aperture at each image sample. The for-
mer are obtained according to conservatively predicted bandwidths
over the camera sensor and, at each of these samples, the latter are
obtained by estimating the variance of the integrand over the aper-
ture. The computation of both the bandwidth and the estimate of the
variance are enabled by the propagation of local light field spectra
after the last bounce off surfaces in the scene towards the camera
Sensor.

3.1 Algorithm

To adapt the effort for both image and aperture sampling, we con-
sider the different transport phenomena between a visible object and
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Fig. 2. Flatland illustration of the transformations at different locations undergone by power spectra of local light fields after last bounce in the scene as they

travel to the camera sensor.

the camera sensor. We propagate the spectral information of local
light fields after the last bounce off visible objects. To do this, we
sample the power spectrum of the light field and adjust these samples
during the different stages of transport to reflect the power spectrum
density locally. Using a depth map to detect occlusion along the
transport, we are able to efficiently estimate frequency propagation
towards the camera sensor.

Using the frequency information of the light fields at the sensor,
we extract a slice to obtain an image space density (see Section 3.4
and Figure 3(a)) that predicts bandwidth locally over the camera
sensor. To improve efficiency, this operation is performed for a sub-
set of image pixels on a regular grid, namely for one-tenth to one-
hundredth of total pixels, and the frequency information is splatted
across the image and combined using a per-pixel max. Slices of the
spectra at the plane of focus are used to estimate the variance of
the integrand over the aperture (see Section 3.4 and Figure 3(b)).
‘We use the density read from this slice to derive the number of lens
samples for each pixel.

The next stage of our algorithm samples the image density and
estimates the number of lens samples required at each of these sam-
ple locations. Given this information, we estimate incident radiance
at these locations on the camera sensor using a Monte Carlo path
tracer. The final image is reconstructed from the scattered radiance
estimates. Figure 3 shows this process on a simple scene with a
dramatic depth-of-field effect.

3.2 Sampling Local Light Field Spectra

Let Q be a point on the sensor from where a primary ray r is cast
(through the center of the lens) and let P be the point of intersection
of this primary ray with the scene, We represent the power spectrum
of the local light field at P, set of random

X v

P
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variables
(@, oD} ~P([6,(2:, 2)])

|w}| < oo and |wf| < 2, are independent random variables rep-
resenting the spatial and angular components of a 2D frequency
sample. €2, is half the angular bandwidth of the reflectance func-
tion at P. P is a projection of the four-dimensional power spectrum
down to two dimensions, one in each, namely space, and angle. The
projection down to two dimensions implies that we assume isotropy
independently in space and in angle, which makes the computation,
representation, and propagation of the spectra practicable. In prac-
tice this assumption is reasonable since we are only interested in
maximum frequencies and not in accurate estimates of the spectra
themselves.

Local light fields in the scene can of course be arbitrarily complex,
as can their corresponding 4D spectra. The existance of discontinu-
ities in the light field implies that the range of frequencies is infinite.
Although after reflection they are restricted in the angular domain
by the bandwidth of the reflectance function, they could contain
arbitrarily high spatial frequencies. This results in a conservative
prediction of bandwidth at Q, resulting in more samples than the
optimal number.

Associated with each primary ray is a set of samples; ray r is
initialized with {(«*;, w;)} from the power spectrum at P as be-
fore. The range of useful frequencies in the image plane is always
bounded by the maximum number of samples N, per square pixel
in image space, and by the maximum number of lens samples N,, in
angle, which are user-defined parameters. In practice, we anticipate
the shear the sensor, and restrict the spatial bounds to be such that the
resulting frequencies stay below the maximum angular frequency
at the sensor.

There is propagation of the frequency content along the ray until
Q requires that the samples be appropriately updated at each step in

0<i<ny.



Spatial density

Image samples

Reconstructed image

Fig. 3. Overview of our algorithm. Top left: image density depicting local bandwidth at each pixel; top right: lens density indicating expected variance in the
aperture integral; bottom left: image samples at which incoming radiance is estimated; bottom right: reconstructed image, using adaptive Gaussian splatting.
Blurry regions of the image are sampled sparsely, but require profuse sampling of the lens.

the transport from P to Q. These updates are simple and inexpensive
to compute (see Figure 4).

3.3 Propagating Local Light Field Spectra

3.3.1 Free-Space Transport. Transport through free space
shears the power spectrum along the angular direction proportional
to the distance transported. Starting from the original samples, ob-
taining samples that are distributed according to the sheared distri-
bution involves simply shifting each of the samples in the angular
dimension. In other words, each sample (®°;, ®“;) is updated to be
(a)f, of +dw! ) as a result of the free space transport by a distance

3.3.2  Occlusion. Occlusion involves a convolution of the spec-
trum with the local light field by the spectrum of the occluder. The
probability density function of the sum of two independent random

variables is the convolution of of their respective density functions.
Random variables representing the spectra of the light field and the
occluder when added are therefore representatives of the convolu-
tion of the two distributions. Thus, if we are able to draw samples
{(v*;, v}, 0 <i < ng from an occluder’s spectrum then we can
simply update our samples (o*;, ®“;) to be (a);-‘ 4+, of +vf )

For each ray r we use the depth map to build a list of occluders
and the points along the ray where the occlusions occur. To achieve
this we search the depth map for discontinuities and splat these
discontinuities in an occlusion buffer. Each discontinuity is splatted
to influence a region as large as its circle of confusion. Given a
pixel p and a pixel ¢ in its neighborhood, the test to determine
if ¢ corresponds to a discontinuity where occlusion needs to be
accounted for is illustrated in Figure 5.

At each occlusion point, the power spectrum of the occluder is
assumed to be a Dirac in angle and proportional to 1/w, in space.
This conservative choice is due to the fact that visibility functions
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Fig. 4. Sampled power spectra are propagated from the scene to the camera sensor. Transformations to the spectra are performed by independently modifying
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Fig.5. A depthmap of the scene is used to build the lists of occluders, along
with their distances, for each primary ray. P is the point of intersection of
the primary ray through pixel p and the scene. This defines the double cone
where a ray from the lens can hit the point P. The above figure illustrates the
interval of depth values for a neighboring pixel q within which a discontinuity
is reported.

contain zero-order discontinuities and thus produce a spectrum with
first-order fall-off. The effect of this is seen in the regions surround-
ing the foreground cubes in Figure 7 where the predicted effect of
occlusion is more conservative than its measured counterpart.

3.3.3  Aperture Effect. The effect of a finite aperture is to cut
off high angular frequencies at the plane in focus. Updating samples
to represent the result of applying this operator involves rejecting
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angular frequencies with a probability defined by the shape of the
aperture power spectrum. Although this will increase the variance of
the estimate of the spectrum, it is justifiable since we are interested in
information about maximum frequencies and not complete spectra.

3.4 Bandwidth, Variance and Reconstruction

3.4.1 Sampling the Image. To obtain image space samples, the
first step is to conservatively estimate bandwidth over the camera
sensor using the incoming local light field spectral information.
Specifically, we project the samples onto the angular axis (view
extraction) and compute the highest angular frequency in the local
neighborhood of each pixel. In practice, to decrease sensitivity to
outliers, we use the 98" percentile of energy £, as a representative
of the maximum value at each point s € [0, W) x [0, H). Here
W and H are the width and height of the image, respectively. The
distribution of &, over the image serves as an indicator of regions
that need to be sampled more densely. Further, since & represents
the maximum local frequency, we can estimate the optimal number
of samples required locally (samples per square pixel) at s from the
Nyquist limit, as

4§v2 fh fv
WH

where f), and f, are the horizontal and vertical fields of view. How-
ever, since we predict bandwidth conservatively for increased re-
construction quality, the number of samples over the image may be
suboptimal. After computing the density, image samples are gen-
erated according to p(s) using hierarchical importance sampling

pls) = (&)
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sample image-space frequencies, mea-
sured with windowed Fourier transform pixels

map of measured frequencies for all

image-space frequencies predicted by
our method

Fig.6. Comparison between measured and predicted image-space frequencies: Left: image space frequencies are measured in the reference image by extracting
the maximum 98th percentile (radially) in a 2D spatial spectrum computed using a 64 x 64 windowed Fourier transform around the point. Inlays show the
spectra and image-space frequencies in pixel ~! at four points; center: measured values across the image that should be compared to our simulated values (right).
Our method not only gives qualitatively the same profile of frequencies but also produces a conservative estimate of the actual values. Note that in the domain
of low frequencies, the measured frequencies become higher than our estimate, since the measurement method can not produce very low frequencies because
of the 64 x 64 window resolution. In addition, the windowed fourier transform has an averaging effect whereas we estimate a purely local frequency, hence the

difference in blurriness of the two approaches.

[Ostromoukhov et al. 2004], which produces samples with desir-
able noise properties. The total number of samples is dependent
on the integral of p(s) over the image rather than a user-defined
parameter.

3.4.2 Sampling the Aperture. Using Monte Carlo integration
over a finite aperture, the variance of the estimates depend on the
variance of the integrand. The goal is to sample the aperture more
profusely at image locations where the variance of the lens inte-
grand is high. We use the light field spectra at the plane of focus to
estimate the angular variance of the light field, since, according to
Parseval’s theorem, the variance of a function is the integral of its
power spectrum minus the DC term.

o’ = / Yp(Q)7 — ¥,(0)

In this equation, y, is the predicted spectrum just before the lens,
obliquely projected onto the angular axis. The projection is oblique
because of the local parameterization at the lens. Since all rays
through the lens intersect at a common point at the plane of focus,
the parameterization makes this projection horizontal at this plane.
The slope of the projection to apply at the lens is thus given by the
shear distance from the lens to the plane in focus.

The variance of a Monte Carlo estimator using uniform sampling
over the aperture converges as O (n;'). While, in theory, stratifica-
tion can improve the variance up to O (n;z), Mitchell [1996] showed
that in practice it is about O (n;*) for pixels with edge boundaries.
Using this conservative estimate for stratified sampling of the aper-
ture, we determine the number of samples as

n, = k (67)7. ©)

The constant of proportionality, k, can be used to control the ex-
pected error consistently over the entire image.

3.4.3 [Image Reconstruction. We reconstruct the image using
the radiance estimates at each of the image sample locations. The
color at each pixel is computed as a weighted average of a constant
number of neighboring samples. Since the samples are distributed
according to a density, choosing a constant number of neighboring

samples involves adaptively varying the radius of contribution of
each pixel so that a constant number of samples (independent of the
local density) contribute to the color at each pixel. In practice, we
use a Gaussian weighting term with a variance that is proportional
to the square root of the local density.

4. VALIDATION AND RESULTS
4.1 Validation

We compare our conservative predictions of the local image band-
width and lens variance against experimental measurements. To ver-
ify our predictions of the image density, at each pixel s; (in the
reference image) we compute a windowed Fast Fourier Transform
(FFT) with the window centered at s; and record the 98™ percentile.
Figure 6 shows a comparison of such a measured 98" percentile
image against our image space sampling density. The measurement
is not entirely local due to a fundamental property of the windowed
FFT. Depending on the choice of window size, the measured fre-
quencies are either heavily blurred (large window) or restricted heav-
ily in the range of measured frequencies (small window). To avoid
border effects, the measurements are limited to the interior of the
reference image. From the figure, it appears that our prediction qual-
itatively matches the distribution of measured frequency and is of
the same order of magnitude. In fact, we obtain a much more local
prediction than observed with the windowed FFT.

To verify our estimates of the variation of the integrand over the
aperture, we use stratified samples to estimate and record the vari-
ance in the lens integrals at each pixel. In Figure 7 we compare the
predicted variance at each pixel using Eq. (6) to the actual variance
measured during Monte Carlo integration over the aperture for the
reference image. From the comparison we observe that, although
our predicted distribution resembles the measured variance, we pre-
dict higher frequencies around the blurry cubes in the foreground
since our prediction is conservative.

4.2 Computation Times and Memory Requirements

The table in Figure 8 sums up computation cost for the various scenes
and focus settings with our algorithm. Kitchen 1 and 2 correspond
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133 412 1270 3820 12097 37331

Measured lens variance.

133 412 1270 3620 12087 37331

Lens variance predicted by our method.

Fig. 7. Comparison of variance measured over the rays converging to each pixel of the cubes scene (left), with the variance predicted by our method (right).
Both images are displayed using the same scale. Our prediction is comparable to the actual measured values both in its distribution over the image, but also
qualitatively, except in the foreground where it is a more conservative estimate. This makes it usable for adaptive lens sampling.

Scene Size Frequency Path | Reconstruction | Image space | Primary
computation | tracing (seconds) samples rays
(seconds) | (seconds)

Cubes | 721 x 589 45 3,150 3 76,000 13M
Snooker | 904 x 806 90 4,500 10 119,335 25M
Kitchen 1| 897 x 679 60 7,401 8 867,000 44 M
Kitchen 2| 897 x 679 60 6,849 3 2,000,000 TTM

Fig. 8. Execution times for the different steps in our algorithm and number
of primary rays cast are shown for different scenes.

to the kitchen scene with the plane in focus set on the foreground
and background, respectively. The accumulated cost of propagating,
computing and splatting frequency information, along with image
reconstruction (using splatting) is negligible compared to the cost
of naive stratified Monte Carlo integration over the aperture at all
pixels (see table in Figure 9). This suggests that our adaptive algo-
rithm significantly increases the efficiency of synthesizing images
with depth of field effects (at least by an order of magnitude). The
shallower the depth of field, the blurrier the image; this is when the
adaptive algorithm provides maximum gain.

The number of image samples is indicative of the number of
pixels where radiance needs to be estimated. For images with larger
regions in focus (large depth of field), this number would be very
close to the number of pixels in the image. In those regions, the
gain from using our algorithm is due to the extremely sparse lens
sampling, again implying that fewer radiance estimates are required.
Note that focused images are reconstructed faster because samples
require smaller splatting radii.

We use the total number of primary rays cast to compare our
technique with the nonadaptive stratified sampling technique. By
distributing the total number of primary rays cast in our method
amongst all pixels for the stratified sampling method, we generate
images of similar computational cost. The table (see Figure 9) shows
the number of rays cast for similar image quality as those images
used for measurements in Figure 8. We also tabulate the theoretical
speedup by dividing the number of primary rays in the reference
technique by the number of primary rays cast by our algorithm.
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Scene Number of Number of . Speedup
lens rays/pixel primary rays due to our method
Cubes 450 191M 14.7
Snooker 600 437M 17.3
Kitchen 1 1,100 2,719M 61.0
Kitchen 2 1,100 2,719M 353

Fig. 9. Number of rays cast using stratified sampling Monte Carlo integra-
tion for similar appearance quality as for the images tabulated in Figure 8.
The last column shows the speedup gained by using our method, obtained
by dividing the middle column by the last column in Figure 8.

Finally, the memory overead of our algorithm is small, as we only
need to store the density images for the lens and spatial sampling,
which most of the time is negligible as compared to the scene,
textures, and BRDF information.

4.3 Comparison with Adaptive Lens Sampling

We compare our approach to adaptive lens sampling based on vari-
ance estimation: For each pixel, we trace a fixed (and small) num-
ber of rays and use their radiance value to estimate their variance
o accross the lens. Using Eq. (6) we compute, for each pixel, the
required number of rays to reduce the variance of the integrated
radiance through the lens under a given threshold. We set up this
threshold so that the total number of primary rays is the same as the
number of rays used by our method. In Figure 10 we compare the
two methods on the kitchen (foreground focus setup) at different
locations.

4.4 Comparison with Image-Based Methods

We finally compare our approach to blurring a pinhole camera im-
age, based on the depth map. The blur is performed using a kernel
of the same size as the circle of confusion for each pixel. It appears
that the image-space blur solution fails in some configurations, for
example, where small blurred objects are surrounded by focused
regions (see the leaves of the plant for instance in Figure 11(a)),



Adaptive lens sampling

Our method (Same cost)

Fourier Depth of Field . 18:9

Fig. 10. Comparison between our method (botton row) and adaptive lens sampling based on variance estimation from a small number of samples (top row).
Both methods use the same total number of primary rays for the entire image. While the adaptive lens sampling manages to uniformize the variance accross
the image, it needs to send rays for each and every pixel while our method only samples a few pixels in the most blurry regions. This makes the adaptive lens
sampling unable to compete with our method at equal number of primary rays. This explains why the images are noisier than the ones produced using our

method.

v

(a) blur according to depth

(b) our algorithm

.
- v
&___

(c) reference image

Fig. 11. Comparison between blurring a pinhole camera image according to depth (a) and our technique (b) The lack of visibility information in image-space

methods is a source of bias.

whereas our technique (Figure 11(b)) gives a result which is much
closer to the actual brute-force algorithm.

While we admit that various improvements over this naive
approach may increase the quality of the output [Potmesil and
Chakravarty 1981; Kraus and Strengert 2007; Barsky et al. 2003;
Zhou et al. 2007; Kolb et al. 1995], image-based algorithms al-
ways lack visibility information and are therefore necessarily bi-
ased. These methods produce approximations which are acceptable
when real-time images are required, while ours produces an unbi-
ased result.

4.5 Examples

We present, in Figure 12, example renderings with direct illumina-
tion of a scene lit by area and point light sources. The frequency
maps conservatively capture the various effects which can produce
high image-space and lens frequencies such as focused regions, and
highly curved specular regions, respectively. The image samples as
well as the lens samples are automatically adapted so as to produce

an image of constant quality. The image resolution is 897 x 679, and
we used maximum values of Ny = 4 image samples per square pixel
and N, = 2500 lens samples per pixel. The total number of primary
rays is 44,000,000 and 77,000,000 in the two settings, respectively.

‘We compare our results for the same computation cost to stratified
lens sampling with image, space stratification for antialiasing. We
do this by setting the number of lens samples so that the total number
of primary rays is the same as with our method samples (70 and 129
for the foreground and background focus settings, respectively).
In both cases our algorithm results in images that are less noisy.
Our algorithm performs particularly well in regions of high angular
variance such as the handles of the cabinet. Although the total cost
is the same, the naive method exhibits more noise because it cannot
adapt to the local image blurriness and wastes image samples in
defocused regions.

In Figure 13 we show another configuration where ray tracing
benefits from our method: In particular, the lens sampling densities
and the image-space sampling densities adapt to the BRDFs of the
shiny balls and the specular trumpet.
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(b) Constant lens sampling (same cost)

(c) Comparison with constant lens (d) Lens space frequency map
sampling at equivalent cost and number of lens samples

(e) Image—space frequency map

(f) Our method (backgound focus) (g) Constant lens sampling (same cost)

Fig. 12. Example of renderings using our method, with two settings of the focus plane (a) and (f). In both cases, we compare our result to sampling the lens
constantly throughout the image and by shooting the same number of total rays as in our method. The images obtained are much more blurry in regions of high
variance, such as door handles which are highly curved very specular materials. In (c) we zoom on specific image locations and compare our method (at left) to
the uniform constant sampling (at right). In (d) and (e) we show the lens and image-space frequency maps (logarithmic tone mapping) that we used to sample
the lens and image, as well as the number of lens samples used at some locations.

4.6 Discussion of the Various Approximations between spectra. In practice, this means that we neglect the relative

positions of multiple obstacles close to the same ray, which could in
Our model ignores the phase information in local light field spectra, some configurations result in no light passing at all. The convolu-
which produces approximations in the computation of convolutions tion is then overestimated, and tends to produce higher frequencies
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(a) image sampling density

(c) image space samples

(b) lens sampling density

(d) reconstructed image

Fig. 13. (a) The image sampling density predicts that the shiny regions of the trumpet, with high curvature and in focus, need to be sampled most profusely
in the image; (b) the aperture density predicts that defocused regions need to be sampled densely while the ball in focus requires very few samples over the
aperture; (c) the image samples obtained from the image sampling density; (d) the image is reconstructed from scattered radiance estimates.

when multiple obstacles lie between the eye and the scene. This ap-
proximation is therefore conservative with respect to image-space
frequency and lens variance.

By reducing dimensionality from 4D spectra to 2D spectra, we
implicitly make assumptions about the isotropy in the spatial and
angular domains independently. This assumption practically states
that angular and spatial frequencies on a 2D slice, containing the
sampling direction, do not depend on the orientation of the slice.
In practice, since we only use the spectra to conservatively predict
bandwidth, we do not observe artifacts due to this projection.

Our use of conservative spectra, such as maximum spatial fre-
quencies for a texture or the angular bandwidth of a BRDF, can
result in suboptimal sampling. For example, our implementation

cannot take advantage of the local bandwidth of a texture. In addi-
tion we do not take illumination into account while sampling.

5. CONCLUSION AND FUTURE WORK

‘We have proposed a practical scheme that adapts the sampling rate of
both the image and the aperture, in order to simulate depth-of-field
effects in image synthesis. For this, we have extended prior work
on the frequency analysis of light transport to handle depth-of-field
effects. We have presented a new algorithm that locally predicts
both the image bandwidth as well as the variance of the radiance
impinging on the lens aperture. This allows us to discover image
regions that can be sampled sparsely because they are out of focus,
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as well as pixels where the lens integration can be computed with a
smaller number of samples because the incoming radiance has low
variance. Our adaptive sampling of the image and the aperture is
complementary: In the focal plane, image sampling must be high
because the scene is sharp, but the lens sampling is usually low
because all rays for a pixel come from the same scene point and
have roughly the same radiance. In contrast, out-of-focus regions
can be subsampled because they are heavily bandlimited by the
depth-of-field effect, but they require more lens samples because
the light rays come from different scene points.

Our algorithm yields a sparse yet sufficient sampling of the image
in conjunction with a number of lens samples at each pixel that re-
duces variance drastically. We have shown a significant reduction in
the number of primary rays required, in comparison with a uniform
sampling of the image with stratified sampling of the aperture.

Our estimates of bandwidth and expected variance over the aper-
ture are, however, conservative and the number of samples can be
suboptimal. An exciting avenue of future work is to initialize our
algorithm with more intelligent spectral samples in order to further
improve efficacy. In particular, it might be desirable to predict light
field spectra at points in the scene taking into account global illu-
mination effects. Another interesting avenue would be to explore
the possibility of seeding the Metropolis light transport algorithm
[Veach and Guibas 1997] with carefully chosen paths according to
frequency predictions.
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