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Sampling and Reconstruction of Visual 
Appearance: From Denoising to View Synthesis 

CSE 274 [Fall 2021], Lecture 9 

Ravi Ramamoorthi 
http://www.cs.ucsd.edu/~ravir 

Applications 
§  Monte Carlo Rendering  

§  Light Transport Acquisition / Many Light Rendering 

§  Light Fields and Computational Photography 

§  View Synthesis 

§  Animation/Simulation (not covered in course) 

§  Introduce concepts of sparsity, coherence, 
compressive sensing for reconstruction 

Acquiring Reflectance Field of Human 
Face [Debevec et al. SIGGRAPH 00] 

Illuminate subject from many incident directions 

Example Images 

Motivation: Image-based Relighting 

Sample Lighting Directions 

Motivation: Image-based Relighting 

Sample Lighting Directions 
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Motivation: Image-based Relighting 

Sample Lighting Directions 

Motivation: Image-based Relighting 

Sample Lighting Directions 

Relight 

16 Samples 

Motivation: Image-based Relighting 

Sample Lighting Directions 

Relight 

16 Samples 

Motivation: Image-based Relighting 

Sample Lighting Directions 

Relight 

64 Samples 

Motivation: Image-based Relighting 

Sample Lighting Directions 

Relight 

256 Samples 

Motivation: Image-based Relighting 

Sample Lighting Directions 

Relight 

256 Samples 
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Motivation: Image-based Relighting 

Sample Lighting Directions 

Relight 

256 Samples 

Motivation: Image-based Relighting 

Sample Lighting Directions 

Relight 

4096 Samples 

Motivation: Image-based Relighting 

Sample Lighting Directions 

Relight 

+10000 Samples 

Motivation: Image-based Relighting 

Sample Lighting Directions 

Relight 

+10000 Samples 

Brute Force Capture 
Practically Impossible 
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Relighting as a Matrix-Vector Multiply 
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Input Lighting 
   (Cubemap Vector) 

Output Image 
(Pixel Vector) 

Precomputed 
Transport 

Matrix 

Relighting as a Matrix-Vector Multiply 
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Matrix Columns (Images) 
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(Pre)compute: Ray-Trace Image Cols 
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(Pre)compute 2: Rasterize Matrix Rows 
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Outline 

§  Matrix Row-Column Sampling (Many Lights) 

(clustering for matrix completion of light transport) 

§  Compressive Sensing for Light Transport 

§  Matrix Completion 

Hasan, Pellacini, Bala SIGGRAPH 07 

Complex Illumination: A Challenge Conversion to Many Lights 

Courtesy Walter et al., Lightcuts, SIGGRAPH 05/06 

•  Area, indirect, sun/sky 
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A Matrix Interpretation 

Pixels 
(2,000,000) 

Lights (100,000) •  Compute sum of columns 

•  Note: We don’t have the matrix data 

Problem Statement 

= Σ ( ) 

P
ix

el
s 

Lights 

Image as a Weighted Column Sum 

compute very small 
subset of columns compute 

weighted sum 

•  The following is possible: 

•  Use rows to choose a good set of columns! 

Exploration and Exploitation 

compute rows 
(explore) 

compute columns 
(exploit) 

weighted 
sum 

? 

choose columns 
and weights 

how to choose 
columns and 

weights? 

Reduced Matrix 

Reduced 
columns 

Clustering Approach 

Choose k clusters 
Choose 

representative 
columns 

Reduced 
columns 
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Reduced to Full 

Use the same 
representatives for 

the full matrix 

Weighted 
sum 

Representative 
columns 

Full Algorithm 

Compute rows 
(GPU) 

Weighted sum 

Assemble rows into 
reduced matrix 

Cluster reduced 
columns 

Choose 
representatives 

Compute columns 
(GPU) 

Results 
•  We show 5 scenes: 

•  Show reference and 5x difference image 
•  All scenes have 100,000+ lights 
•  Timings 

– NVidia GeForce 8800 GTX 
– Light / surface sample creation not included 

Temple Bunny Kitchen Trees Grand Central 

Results: Kitchen 
•  388k polygons 
•  Mostly indirect illumination 
•  Glossy surfaces 
•  Indirect shadows 

Our result: 13.5 sec       
(432 rows + 864 columns) 

Reference: 13 min       
(using all 100k lights) 

5x diff 

Results: Temple 
•  2.1m polygons 
•  Mostly indirect & sky illumination 
•  Indirect shadows 

Our result: 16.9 sec 
(300 rows + 900 columns) 

Reference: 20 min 
(using all 100k lights) 

5x diff 

Results: Trees 
•  328k polygons 
•  Complex incoherent geometry 

Our result: 2.9 sec         
(100 rows + 200 columns) 

Reference: 14 min       
(using all 100k lights) 

5x diff 
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Results: Bunny 
•  869k polygons 
•  Incoherent geometry 
•  High-frequency lighting 
•  Kajiya-Kay hair shader 

Our result: 3.8 sec         
(100 rows + 200 columns) 

Reference: 10 min       
(using all 100k lights) 

5x diff 

Results: Grand Central 
•  1.5m polygons 
•  Point lights between 

stone blocks 

Our result: 24.2 sec         
(588 rows + 1176 columns) 

Reference: 44 min       
(using all 100k lights) 

5x diff 

Outline 

§  Matrix Row-Column Sampling (Many Lights) 

(clustering for matrix completion of light transport) 

§  Compressive Sensing for Light Transport 

§  Matrix Completion 

Gu et al. ECCV 08 
Peers et al. SIGGRAPH 09 
Sen and Darabi EG 09 (reading) 

Motivation: Image-based Relighting 

Sample Lighting Directions 

Relight 

+10000 Samples 

Brute Force Capture 
Practically Impossible 

Compressible / Sparseness 

ψ ψ 

5% Largest Coeff. All Coefficients 

Measurements 
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Measurements 
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Measured Quanta 

ψ Exhaustive Measurements? 

Compressive Sensing: A Brief Introduction 
•  Sparsity / Compressibility:  

–  Signals can be represented as a few non-zero coefficients in an 
appropriately-chosen basis, e.g., wavelet, gradient, PCA. 

•  For sparse signals, acquire measurements (condensed 
representations of the signals) with random projections. 

[Candes et al., 06][Donoho, 06]… 

= X 

Measurement Ensemble 
m×n,  where m<n 

Measurements 
m×1 

Signal 
n×1 

b A 

Compressive Sensing 

x 



9 

Compressive Sensing 

x 

Compressive Sensing 

x 

. . . 

. . . 

Compressive Sensing 

x . . . 

Compressive Sensing 

x . . . 

Measurement 
Ensemble: Φ 

Sparse Signal: x 

Compressive Sensing 

x . . . 

Measurement 
Ensemble: Φ 

Sparse Signal: x 
=

Measured 
Quanta: y 

Compressive Sensing 

x . . . 

Measurement 
Ensemble: Φ 

Sparse Signal: x 
=

Measured 
Quanta: y 

N 

M 

M 
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Compressive Sensing 

x . . . 

Measurement 
Ensemble: Φ 

Sparse Signal: x 
=

Measured 
Quanta: y 

N 

M 

M 

M ~ K logN 

Compressive Sensing 

x = argminx ||x||1      s.t.    Φx = y 

Reconstruction 

x . . . 

Measurement 
Ensemble: Φ 

Sparse Signal: x 
=

Measured 
Quanta: y 

Approximation: x 

Diffuse Sphere 
 
 

128 x 128 
 
 

1000 Normal 
 Distributed Noise Light Conditions 

 
 

100 Haar  
Wavelet Coefficients  

Scene: 
 
 
Lighting Resolution: 
 
 
Measurements: 
 
 
 
Reconstruction: 

Brute Force: Result 

Diffuse Sphere 
 
 

128 x 128 
 
 

1000 Normal 
 Distributed Noise Light Conditions 

 
 

100 Haar  
Wavelet Coefficients  

Scene: 
 
 
Lighting Resolution: 
 
 
Measurements: 
 
 
 
Reconstruction: 

Brute Force: Result 

Diffuse Sphere 
 
 

128 x 128 
 
 

1000 Normal 
 Distributed Noise Light Conditions 

 
 

100 Haar  
Wavelet Coefficients  

Scene: 
 
 
Lighting Resolution: 
 
 
Measurements: 
 
 
 
Reconstruction: 

Brute Force: Result 

Each pixel computed 
 separately 
 
Spatial Coherence 
 not exploited 

Multi-resolution Approach 
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Multi-resolution Approach 

Compressive 
Decoding 

Init 

Multi-resolution Approach 

Brute Force 
Compressive 

Decoding 

Compressive 
Decoding 

Init 

Compressive 
Decoding 

Init 

R
ef

le
ct

an
ce

 F
un

c.
 

Results 

Brute Force Algorithm Hierarchical Algorithm 

Resolution 

1000 Measurements 
128 x 128 Lighting Resolution 
128 Haar Wavelet Coefficients 

Resolution 

1000 Measurements 
128 x 128 Lighting Resolution 
128 Haar Wavelet Coefficients 

Results 

Reference 1000 Measurement 
128 x 128 Lighting Resolution 
128 Haar Wavelet Coefficients 
 



12 

1000 Measurement 
128 x 128 Lighting Resolution 
128 Haar Wavelet Coefficients 

Results 

Reference 1000 Measurement 
128 x 128 Lighting Resolution 
128 Haar Wavelet Coefficients 
 

Reference 

Results 

0.04 
0.06 
0.09 

0.13 
0.17 
0.25 

0.30 

Inhomogeneous Participating Media 

    Volume densities rather than boundary surfaces.  
    Efficiency in acquisition is critical, especially for time-

varying participating media.  

Drifting Smoke of Incense 
(532fps Camera) 

Mixing a Pink Drink with Water  
(1000fps Camera) 

Video clips are from http://www.lucidmovement.com 

•  Projector: DLP, 1024x768, 360 fps 
•  Camera: Dragonfly Express 8bit, 320x140 at 360 fps 
•  24 measurements per time instance, and thus recover dynamic 

volumes up to 360/24 = 15 fps. 

Projector 

Camera 

Milk Drops 

Compressive Structured Light 

Gu, Nayar, Grinspun, Belhumeur, Ramamoorthi 08, 13 

Milk Dissolving: One Instance of time 

Photograph 

•  Milk drops dissolving in a water tank. 

Measurements 
(24 images of size 128x250) 

Reconstructed Volume 
(128x128x250) 

Milk Dissolving: Time-varying Volume 

Video (15fps) Reconstructed Volume 
(128x128x250) 

•  Milk drops dissolving in a water tank. 
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Outline 

§  Matrix Row-Column Sampling (Many Lights) 

(clustering for matrix completion of light transport) 

§  Compressive Sensing for Light Transport 

§  Matrix Completion 
§  Extension to compressive sensing: Low rank matrices 
§  Minimize matrix norm (rank), given some entries 
§  Combine many ideas seen previously 

Huo et al. SIGGRAPH Asia 16 

Outline 

§  Matrix Completion 
§  Extension to compressive sensing: Low rank matrices 
§  Minimize matrix norm (rank), given some entries 
§  Combine many ideas seen previously 

Huo et al. SIGGRAPH Asia 16 

Results (Participating Media) Summary 
§  Light Transport for Acquisition, Many Light Rendering 

§  Compressive Sensing for projected patterns 

§  Matrix Completion for many light rendering 

§  Leverages popular ideas in applied math 

§  Consider all forms of coherence 

§  Think about modern extensions with deep learning 


