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motion blur

soft shadows

glossy reflection

[Kalantari et al. 2015]

scene by Jo Ann Elliott

4 samples/pixel using only post-process filter!
(46.8 sec)

Basics of Denoising, Frequency Analysis

Monte Carlo Rendering (biggest application)
Basic idea of denoising
Frequency analysis one key concept
Presentation of key papers at next class

Relevant to other applications as well

Motivation

Distribution effects (depth of field, motion blur, global
illumination, soft shadows) are slow. Many dimensions sample

Ray Tracing physically accurate but slow, not real-time

Can we adaptively sample and filter for fast, real-time?

These algorithms use 2 kinds of noise reduction
strategies, sometimes combined:

Adaptive sampling algorithms

Use information from renderer to position new
samples better to reduce noise

Reconstruction (filtering) algorithms

Use information from renderer to remove MC
noise directly

Both methods have been explored in the past,
but new algorithms make remarkable advances




Multi-Dimensional Adaptive Sampling

Hachisuka, Jarosz, ... Zwicker, Jensen [MDAS 2008]
Scenes with motion blur, depth of field, soft shadows
Involves high-dimensional integral, converges slowly
Exploit high-dimensional info to sample adaptively

Sampling in 2D image plane or other dims inadequate
Need to consider full joint high-dimensional space

Multidimensional Adaptive Sampling

Resurgence (2008 - )

Eurographics 2015 STAR report by Zwicker et al.
Papers below are key a-priori, frequency analysis methods
Many other approaches to be discussed in class

[Durand et al. 2005] Frequency analysis light transport
Key theoretical ideas, but not initially very practical

[Chai et al. 2000] Plenoptic Sampling (wedge spectrum)
[Egan et al. 2009] First practical a-priori frequency method

Fourier Transform

Tool for converting from spatial to frequency domain

0 =3 Fluje™™

2miux

e = cos(2rux)+ i sin(27mux)

Or vice versa i ==
One of most important mathematical ideas

Computational algorithm: Fast Fourier Transform
One of 10 great algorithms scientific computing
Makes Fourier processing possible (images etc.)

Not discussed here, but look up if interested

Multi-Dimensional Adaptive Sampling

Motion Blur and Depth of Field 32 samples per pixel

Background: Fourier Analysis

Analysis in the frequency (not spatial) domain
Sum of sine waves, with possibly different offsets (phase)
Each wave different frequency, amplitude
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Fourier Transform

Simple case, function sum of sines, cosines

f(X): i F(u)62m'ux

F(u)= [ (e dx

Continuous infinite case

Forward Transform: F(U) = ij f(X)eizm‘ude

Inverse Transform: f(X) = Jﬁé F(U)ezmuxdu




Fourier Transform

Simple case, function sum of sines, cosines

f(x)= i F(u)e*™

F(u)= [ f(x)e > dx
Discrete case

Fu="3 (x)[ cos(2ux/ N)- isin(2zux/ N) |

-1

EN: F(u)[cos(erux/N)+isin(27rux/N)],

Fourier Transform Examples 2

Forward Transform: F(U) = J'“ f(X)eizmude

oo )
Inverse Transform: f(X) = J. F(u)ez”"'xdu
Common examples

F(u)

—2miux,

e

Sampling Theorem, Bandlimiting

A signal can be reconstructed from its samples,
if the original signal has no frequencies above
half the sampling frequency — Shannon

The minimum sampling rate for a bandlimited
function is called the Nyquist rate

KAL)

Under-sampling Drit

Fourier Transform: Examples 1

Single sine curve
(+constant DC term)

f(x)= i F(u)e*™

U=—o

F(u)= [ f(x)e *"dx

Fourier Transform Properties

Forward Transform: F(U) = 'r: f(X)eizmude

Inverse Transform: f(X) = J‘er F(u)ez”iuxdu
Common properties

Linearity: F(af(x)+bg(x)) = aF(f(x))+ bF(g(x))

Derivatives: [integrate by parts]  F(f'(x))= _[7 f'(x)e >"dx
= 2miuF(u)

2D Fourier Transform 3 -
Foward Transtorn: (U, V') = J. J,, f(x,y)e > e 2™ dxdy

Convolution (Next),e e f(xy)= [ [~ Fuvie™ e dudv

Sampling Theorem, Bandlimiting

A signal can be reconstructed from its samples, if
the original signal has no frequencies above half
the sampling frequency — Shannon

The minimum sampling rate for a bandlimited
function is called the Nyquist rate

A signal is bandlimited if the highest frequency is
bounded. This frequency is called the bandwidth

In general, when we transform, we want to filter to
bandlimit before sampling, to avoid aliasing




Antialiasing

Sample at higher rate
Not always possible
Real world: lines have infinitely high frequencies,
can’ t sample at high enough resolution

Prefilter to bandlimit signal
Low-pass filtering (blurring)
Trade blurriness for aliasing

Convolution 1
+ Spatial domain: output pixel is weighted sum of

pixels in neighborhood of input image
o Pattern of weights is the “filter”
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Input Output

Convolution 3

Ideal bandlimiting filter

Formal derivation is exercise
» Frequency domain

if full width f,,, = 1

. sin 7zx
Sinc(x)=——""—

Figure 4.5 Wolberg

Convolution 2

+ Example 1:

i

Input Output

Convolution 4

+ Example 1:
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Convolution 5

* Example 1:
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Input Output

A Frequency Analysis
of Light Transport

F. Durand, mMIT CSAIL
N. Holzschuch, C. Soler, ARTIS/GRAVIR-IMAG INRIA
E. Chan, miT csAlL

F. Sillion, ARTIS/GRAVIR-IMAG INRIA

Illumination effects

* Shadow boundaries:

Point light source Area light source

© U. Assarsson 2005

Convolution in Frequency Domain

Forward Transform: F(U) = Jm f(x)e—Zniude

oo .
Inverse Transform: f(X) = Jl F(u)e2’”“xdu

Convolution (f is signal ; g is filter [or vice versa])
hiy)= [ f(x)g(y - x)ax = [ g(x)f(y - x)dx

h=f*g or f®g
Fourier analysis (frequency domain
multiplication) H(u) = F(u)G(u)

lllumination effects

* Blurry reflections:
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From [Ramamoorthi and Hanrahan 2001]

Problem statement

How does light interaction in a scene explain
the frequency content?

Theoretical framework:

— Understand the frequency spectrum of the
radiance function

— From the equations of light transport




Unified framework:

* Spatial frequency
(e.g. shadows, textures)

* Angular frequency
(e.g. blurry highlight)
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Local light field

* 4D light field, around a central ray

* We study its spectrum during transport

Local light field

* 4D light field, around a central ray

* We study its spectrum during transport
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Local light field

* 4D light field, around a central ray
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Local light field

* 4D light field, around a central ray

* We study its spectrum during transport
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Local light field parameterization

* Space and angle

angle

Central ray




Local light field representation

* Density plot:

Local light field
Fourier spectrum

* We are interested in the Fourier spectrum of
the local light field

Local light field

Fourier spectrum

* Also represented as a density plot

Fourier analysis 101

* Spectrum corresponds to blurriness:
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— Sharpest feature has size ~ 1/F .,

* Convolution theorem:
— Multiplication of functions: spectrum is convolved
— Convolution of functions: spectrum is multiplied

* Classical spectra:

— Box becomes sinc
— Dirac becomes constant

Spatial frequency

Transport

e Shear: x" =x-vd

Ray space

v (angle)

X (space)

v (angle)

4_

Transport in Fourier space
* Shearin primal: x" =x-vd
* Shear in Fourier, along the other dimension

Ray space Ray space

—>

e
Ray space Fourier space Fourier space

=

Wv (angle)
Wv (angle)

X (space) Wx (space) Wx (space)




Transport becomes Shear BRDF integration

* This is consistent with light field spectra

* Ray-space: convolution
[Chai et al. 00, Isaksen et al. 00] . .
— Outgoing light:

convolution of incoming light and BRDF
— For rotationally-invariant BRDFs
Fourier domain: multiplication

— Outgoing spectrum: multiplication of incoming
spectrum and BRDF spectrum

(d3) Fourier transform of EPI

Adaptive shading sampling Adaptive shading sampling

* Per-pixel prediction of max. frequency (bandwidth) * Per-pixel prediction of max. frequency (bandwidth)
— Based on curvature, BRDF, distance to occluder, etc.

— Based on curvature, BRDF, distance to occluder, etc.
— No spectrum computed, just estimate max frequency

— No spectrum computed, just estimate max frequency

Per-pixel bandwidth criterion

Shading samples

Uniform sampling Adaptive sampling

20,000 samples

20,000 samples




Plenoptic Sampling

Plenoptic Sampling. Chai, Tong, Chan, Shum 00
Signal-processing on light field
Minimal sampling rate for antialiased rendering .

Relates to depth range, Fourier analysis

Fourier spectra derived for 2D light fields for
simplicity. Same ideas extend to 4D

Key paper in many newer methods on sheared and
axis-aligned filtering for adaptive sampling

Camera i

A Geometrical Intuition

V4 3 0\ Y

opt Disparity Error
. =

Z min ; 1 Pixel

VA VA
Camera i Camera i+1
Rendering
Camera

Two Constant Planes

A Geometrical Intuition

Camera i+1

A Constant Plane

Between Two Planes




Between Two Planes Light Field Reconstruction

Minimum Sampling Curve Frequency Analysis and

Sheared Reconstruction for

Joint Image Rendering Motion Blur
and

Geometry Space : s
Kevin Egan Columbia University

Minimum Sampling Yu-Ting Tseng Columbia University P
Curve Nicolas Holzschuch  INRIA -- LJK

Frédo Durand MIT CSAIL

Ravi Ramamoorthi University of California, Berkeley
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Number of Depth Layers

Observation Basic Example Space-time
graph
* Motion blur is expensive * Object not moving

* Motion blur removes spatial complexity f(x, t)

SPACE —




Basic Example

* Low velocity, t&[0.0,1.0]
f(x, y)

Shear in Space-Time
* Object moving with low velocity

f(x, )

Shear in Space-Time
* Object moving away from camera

f(x, t)

e

/

Basic Example

* High velocity, t€[ 0.0,1.0]
f(x, y) f(x, t)

Shear in Space-Time

* Object moving with high velocity
f(x, y) f(x, t)

Basic Example

* Applying shutter blurs across time

f(x, y) f(x, t)
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Basic Example — Fourier Domain
* Fourier spectrum, zero velocity

f(x, t) F(Q,, Q)
texture
bandwidth

 Q

X

Q

Basic Example — Fourier Domain

* Large shear

Sampling in Fourier Domain

* Sampling produces in Fourier domain
* Sparse sampling produces dense replicas

Primal Domain Fourier Domain

Basic Example — Fourier Domain

* Low velocity, small shear in both domains

Basic Example — Fourier Domain
* Non-linear motion, wedge shaped spectra

f(x, )

shutter applies blur
across time

Standard Reconstruction Filtering
» Standard filter, dense sampling (slow)

replicas

Fourier Domain / J

Q

X

no aliasing
O
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Standard Reconstruction Filter

 Standard filter, sparse sampling (fast)

Fourier Domain

aliasing

Sheared Reconstruction Filter

* Compact shape in Fourier = wide in primal

Primal Domain Fourier Domain

t o

Teapot Scene

Our Method
8 samples / pix

motion blurred
reflection

Sheared Reconstruction Filter

* Our sheared filter, sparse sampling (fast)

Fourier Domain

No aliasing!

Car Scene

Our Method, Stratified Sampling
4 samples per pixel 4 samples per pixel

Ballerina Video

Ballerina sequence
(8 samples/pixel)

Note smooth motion-blur
of dress and shadows

Frequency Analysis
and Sheared Reconstruction
for Rendering Motion Blur

ID: 0034
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