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Sampling and Reconstruction of Visual 
Appearance: From Denoising to View Synthesis 

CSE 274 [Fall 2021], Lecture 6 

Ravi Ramamoorthi 
http://www.cs.ucsd.edu/~ravir 

Basics of Denoising, Frequency Analysis 
Monte Carlo Rendering (biggest application) 

§  Basic idea of denoising 

§  Frequency analysis one key concept  

§  Presentation of key papers at next class 

§  Relevant to other applications as well  
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Cook et al. [1984] results


depth of field 
motion blur 

soft shadows 
 
glossy reflection 

Motivation 

§  Distribution effects (depth of field, motion blur, global 
illumination, soft shadows) are slow.  Many dimensions sample 

§  Ray Tracing physically accurate but slow, not real-time 

§  Can we adaptively sample and filter for fast, real-time? 

PRADEE
P 

SEN


Sample result


4 samples/pixel 
(40.8 sec) 

Path traced scene Filtered result 

4 samples/pixel 
(48.9 sec) 

[Kalantari et al. 2015] 

using only post-process filter! scene by Jo Ann Elliott 
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Adaptive sampling + reconstruction

n  These algorithms use 2 kinds of noise reduction 

strategies, sometimes combined: 
1.  Adaptive sampling algorithms 

§  Use information from renderer to position new 
samples better to reduce noise 

2.  Reconstruction (filtering) algorithms 
§  Use information from renderer to remove MC 

noise directly 

n  Both methods have been explored in the past, 
but new algorithms make remarkable advances 



2 

Multi-Dimensional Adaptive Sampling 
§  Hachisuka, Jarosz, … Zwicker, Jensen [MDAS 2008] 

§  Scenes with motion blur, depth of field, soft shadows 

§  Involves high-dimensional integral, converges slowly 

§  Exploit high-dimensional info to sample adaptively 

§  Sampling in 2D image plane or other dims inadequate 
§  Need to consider full joint high-dimensional space 

Multi-Dimensional Adaptive Sampling 

Motion Blur and Depth of Field 32 samples per pixel 

Resurgence (2008 - ) 
§  Eurographics 2015 STAR report by Zwicker et al.  

§  Papers below are key a-priori, frequency analysis methods 
§  Many other approaches to be discussed in class 

§  [Durand et al. 2005] Frequency analysis light transport 
§  Key theoretical ideas, but not initially very practical  

§  [Chai et al. 2000] Plenoptic Sampling (wedge spectrum) 

§  [Egan et al. 2009] First practical a-priori frequency method  

Background: Fourier Analysis 
Analysis in the frequency (not spatial) domain 

§  Sum of sine waves, with possibly different offsets (phase) 
§  Each wave different frequency, amplitude 

Fourier Transform 

§  Tool for converting from spatial to frequency domain 

§  Or vice versa 

§  One of most important mathematical ideas 

§  Computational algorithm: Fast Fourier Transform 
§  One of 10 great algorithms scientific computing 
§  Makes Fourier processing possible (images etc.) 
§  Not discussed here, but look up if interested 

  

f (x) =
u=−∞

+∞

∑ F(u)e2π iux

e2π iux = cos(2πux)+ i sin(2πux)

i = −1

Fourier Transform 

§  Simple case, function sum of sines, cosines 

§  Continuous infinite case  
  

f (x) =
u=−∞

+∞

∑ F(u)e2π iux

F(u) = f (x)e−2π iux

0

1

∫ dx

  

Forward Transform:      F(u) = f (x)e−2π iux

−∞

∞

∫ dx

Inverse Transform:         f (x) =
−∞

+∞

∫ F(u)e2π iuxdu
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Fourier Transform 

§  Simple case, function sum of sines, cosines 

§  Discrete case  
  

f (x) =
u=−∞

+∞

∑ F(u)e2π iux

F(u) = f (x)e−2π iux

0

1

∫ dx

  

 F(u) = f (x) cos 2πux / N( ) − i sin 2πux / N( )⎡⎣ ⎤⎦
x=0

x=N−1

∑ , 0 ≤ u ≤ N −1

f (x) = 1
N

F(u) cos 2πux / N( ) + i sin 2πux / N( )⎡⎣ ⎤⎦
u=0

u=N−1

∑ , 0 ≤ x ≤ N −1

 

Fourier Transform: Examples 1 

  

f (x) =
u=−∞

+∞

∑ F(u)e2π iux

F(u) = f (x)e−2π iux

0

1

∫ dx

Single sine curve    
(+constant DC term) 
 

 

Fourier Transform Examples 2 

  

Forward Transform:      F(u) = f (x)e−2π iux

−∞

∞

∫ dx

Inverse Transform:         f (x) =
−∞

+∞

∫ F(u)e2π iuxdu
§  Common examples 

  

δ (x − x0) e−2π iux0

1 δ (u)

e−ax2 π
a

e−π 2u2 /a

  f (x) F(u)

Fourier Transform Properties 

  

Forward Transform:      F(u) = f (x)e−2π iux

−∞

∞

∫ dx

Inverse Transform:         f (x) =
−∞

+∞

∫ F(u)e2π iuxdu
§  Common properties 

§  Linearity:  

§  Derivatives: [integrate by parts] 

§  2D Fourier Transform 

§  Convolution (next) 

  

F(f '(x)) = f '(x)e−2π iux

−∞

∞

∫ dx

= 2π iuF(u)

  F(af (x)+ bg(x)) = aF(f (x))+ bF(g(x))

  

Forward Transform:      F(u,v) =
−∞

∞

∫ f (x,y)e−2π iux

−∞

∞

∫ e−2π ivydxdy

Inverse Transform:         f (x,y) =
−∞

∞

∫ −∞

+∞

∫ F(u,v)e2π iuxe2π ivydudv

Sampling Theorem, Bandlimiting 
§  A signal can be reconstructed from its samples, 

if the original signal has no frequencies above 
half the sampling frequency – Shannon 

§  The minimum sampling rate for a bandlimited 
function is called the Nyquist rate 

Sampling Theorem, Bandlimiting 

§  A signal can be reconstructed from its samples, if 
the original signal has no frequencies above half 
the sampling frequency – Shannon 

§  The minimum sampling rate for a bandlimited 
function is called the Nyquist rate 

§  A signal is bandlimited if the highest frequency is 
bounded.  This frequency is called the bandwidth 

§  In general, when we transform, we want to filter to 
bandlimit before sampling, to avoid aliasing 
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Antialiasing 

§  Sample at higher rate 
§  Not always possible  
§  Real world: lines have infinitely high frequencies, 

can’t sample at high enough resolution 

§  Prefilter to bandlimit signal 
§  Low-pass filtering (blurring) 
§  Trade blurriness for aliasing 

Ideal bandlimiting filter 

§  Formal derivation is exercise 

if full width fmax = 1 

Convolution 1 Convolution 2 

Convolution 3 Convolution 4 
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Convolution 5 Convolution in Frequency Domain 

  

Forward Transform:      F(u) = f (x)e−2π iux

−∞

∞

∫ dx

Inverse Transform:         f (x) =
−∞

+∞

∫ F(u)e2π iuxdu
§  Convolution (f is signal ; g is filter [or vice versa]) 

§  Fourier analysis (frequency domain 
multiplication) 

  

h(y) = f (x)g(y − x)dx =
−∞

+∞

∫ g(x)f (y − x)dx
−∞

+∞

∫
h = f * g or f ⊗ g

  H(u) = F(u)G(u)

A Frequency Analysis 
of Light Transport 

F. Durand, MIT CSAIL 

N. Holzschuch, C. Soler, ARTIS/GRAVIR-IMAG INRIA 

E. Chan, MIT CSAIL 

F. Sillion, ARTIS/GRAVIR-IMAG INRIA 

Illumination effects 

•  Blurry reflections: 

From [Ramamoorthi and Hanrahan 2001] 

Illumination effects 

•  Shadow boundaries: 

© U. Assarsson 2005. 

Point light source Area light source 

Problem statement 

•  How does light interaction in a scene explain 
the frequency content? 

•  Theoretical framework: 
– Understand the frequency spectrum of the 

radiance function 

– From the equations of light transport 
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Unified framework: 

•  Spatial frequency  
(e.g. shadows, textures) 

•  Angular frequency  
(e.g. blurry highlight) 

Local light field 

•  4D light field, around a central ray 

Central ray 

Local light field 

•  4D light field, around a central ray 

•  We study its spectrum during transport 

Local light field 

•  4D light field, around a central ray 

•  We study its spectrum during transport 

Local light field 

•  4D light field, around a central ray 

•  We study its spectrum during transport 

Local light field parameterization 

•  Space and angle 

space 
angle

Central ray 
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Local light field representation 

•  Density plot: 

Space 

A
ng

le
 

Local light field 
Fourier spectrum 

•  We are interested in the Fourier spectrum of 
the local light field 

•  Also represented as a density plot 

Local light field  
Fourier spectrum 

Spatial frequency 

A
ng

ul
ar

 fr
eq

ue
nc

y 

Fourier analysis 101 

•  Spectrum corresponds to blurriness: 
– Sharpest feature has size ~ 1/Fmax 

•  Convolution theorem: 
– Multiplication of functions: spectrum is convolved 

– Convolution of functions: spectrum is multiplied 

•  Classical spectra:  
– Box becomes sinc 
– Dirac becomes constant 

Transport 

•  Shear: x’ = x - v d 

Ray space 

v 
(a

ng
le

) 

x (space) 

Ray space 

v 
(a

ng
le

) 

x (space) 

d 

vd 
v 

x 

x’’ 

Transport in Fourier space 
•  Shear in primal: x’ = x - v d 

•  Shear in Fourier, along the other dimension 
Ray space Ray space 

Fourier space 

WW
v 

(a
ng

le
) 

WWx (space) 

Fourier space 

WW
v 

(a
ng

le
) 

WWx (space) 
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Transport becomes Shear 

•  This is consistent with light field spectra 
[Chai et al. 00, Isaksen et al. 00] 

From [Chai et al. 2000] 

BRDF integration 

•  Ray-space: convolution 
– Outgoing light:  

convolution of incoming light and BRDF 

– For rotationally-invariant BRDFs 

•  Fourier domain: multiplication  
– Outgoing spectrum:  multiplication of incoming 

spectrum and BRDF spectrum 

Adaptive shading sampling 

•  Per-pixel prediction of max. frequency (bandwidth) 
–  Based on curvature, BRDF, distance to occluder, etc. 

– No spectrum computed, just estimate max frequency 

Per-pixel bandwidth criterion 

Adaptive shading sampling 

•  Per-pixel prediction of max. frequency (bandwidth) 
–  Based on curvature, BRDF, distance to occluder, etc. 

– No spectrum computed, just estimate max frequency 

Shading samples 

Uniform sampling 

20,000 samples 

Adaptive sampling 

20,000 samples 



9 

Plenoptic Sampling 

§  Plenoptic Sampling.  Chai, Tong, Chan, Shum 00 

§  Signal-processing on light field 

§  Minimal sampling rate for antialiased rendering 

§  Relates to depth range, Fourier analysis 

§  Fourier spectra derived for 2D light fields for 
simplicity.  Same ideas extend to 4D 

§  Key paper in many newer methods on sheared and 
axis-aligned filtering for adaptive sampling 

Siggraph’2000, July 27, 2000 

A Geometrical Intuition 

Zmin 

Zopt 

Camera i Camera i+1 

Siggraph’2000, July 27, 2000 

A Geometrical Intuition 

Zmin 

Zopt 

Camera i Camera i+1 

  
Disparity Error  

< 
 1 Pixel 

Rendering 
Camera 

Siggraph’2000, July 27, 2000 

A Constant Plane 

Z 

v t 

t 

v 

Z1 

ΩΩt

ΩΩv

Z1 

Siggraph’2000, July 27, 2000 

Two Constant Planes 

Z 

v t Z1 

Z2 
t 

v 

ΩΩt

ΩΩv

Z1 
Z2 

Siggraph’2000, July 27, 2000 

Between Two Planes 

Z 

v t 

t 

v 

Z1 

ΩΩt

ΩΩv

Z1 

Z2 

Z2 
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Siggraph’2000, July 27, 2000 

Between Two Planes 

Z 

v t 

t 

v 

Z1 

ΩΩt

ΩΩv

Z1 

Z2 

Z2 

Siggraph’2000, July 27, 2000 

Light Field Reconstruction 

Siggraph’2000, July 27, 2000 

Minimum Sampling Curve 

Joint Image  
and 

 Geometry Space 

Minimum Sampling 
Curve 

Number of Depth Layers 
1 2 3 6 12 Accurate 

Depth 

Number of Images 

2x2 

8x8 

4x4 

16x16 

32x32 

Frequency Analysis and 
Sheared Reconstruction for 
Rendering Motion Blur 

Kevin Egan 

Yu-Ting Tseng 

Nicolas Holzschuch 

Frédo Durand 

Ravi Ramamoorthi 

Columbia University 

Columbia University 

INRIA -- LJK 

MIT CSAIL 

University of California, Berkeley 

Observation 

•  Motion blur is expensive 

•  Motion blur removes spatial complexity 

Basic Example 

•  Object not moving 

x 

y 

SPACE 

f(x, y) f(x, t) 

Space-time 
graph 

TI
M

E
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Basic Example 

x 

y t 

x 

f(x, t) 

•  Low velocity,  t ε [ 0.0, 1.0 ]  

f(x, y) 

Basic Example 

x 

y t 

x 

f(x, t) 

•  High velocity,  t ε [ 0.0, 1.0 ]  

f(x, y) 

Shear in Space-Time 

x 

y t 

x 

f(x, t) 

•  Object moving with low velocity 

f(x, y) 

shear Shear in Space-Time 

x 

y t 

x 

•  Object moving with high velocity 

f(x, y) f(x, t) 

Shear in Space-Time 

•  Object moving away from camera 

x 

y t 

x 

f(x, y) f(x, t) 

Basic Example 

•  Applying shutter blurs across time 

x 

y t 

x 

f(x, y) f(x, t) 
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Basic Example – Fourier Domain 

•  Fourier spectrum, zero velocity  

t 

x 

f(x, t) F(Ωx, Ωt) 
texture 

bandwidth 

Ωt 

Ωx 

Basic Example – Fourier Domain 

•  Low velocity, small shear in both domains 

f(x, t) F(Ωx, Ωt) 

t 

x 

slope = 
-speed 

Ωt 

Ωx 

Basic Example – Fourier Domain 

•  Large shear 

f(x, t) F(Ωx, Ωt) 

t 

x Ωt 

Ωx 

Basic Example – Fourier Domain 

•  Non-linear motion, wedge shaped spectra 

f(x, t) 

Ωt 

Ωx 

F(Ωx, Ωt) 

t 

x 

shutter 
bandlimits in 

time 

 -min 
speed 

 -max speed 

shutter applies blur 
across time 

indirectly 
bandlimits in 

space 

Sampling in Fourier Domain 

Ωt 

Ωx t 

x 
 

•  Sampling produces replicas in Fourier domain 

•  Sparse sampling produces dense replicas 

Fourier Domain Primal Domain 

Standard Reconstruction Filtering 

•  Standard filter, dense sampling (slow) 

Ωt 

no aliasing 

Ωx 

Fourier Domain 
replicas 
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Standard Reconstruction Filter 

•  Standard filter, sparse sampling (fast) 

Ωt 

Fourier Domain 

aliasing 

Ωx 

Sheared Reconstruction Filter 

•  Our sheared filter, sparse sampling (fast) 

Ωt 

Ωx 

No aliasing! 

Fourier Domain 

Sheared Reconstruction Filter 

•  Compact shape in Fourier = wide in primal 

t 

x 

Primal Domain 

Ωt 

Ωx 

Fourier Domain 

Car Scene 

Stratified Sampling 
4 samples per pixel 

Our Method, 
4 samples per pixel 

Teapot Scene 
Our Method 

8 samples / pix 

motion blurred 
reflection 

Ballerina Video 


