

Sampling and Reconstruction of Visual Appearance: From Denoising to View Synthesis

CSE 274 [Fall 2021], Lecture 6

Ravi Ramamoorthi

<http://www.cs.ucsd.edu/~ravir>

Basics of Denoising, Frequency Analysis

Monte Carlo Rendering (biggest application)

- Basic idea of denoising
- Frequency analysis one key concept
- Presentation of key papers at next class
- Relevant to other applications as well

Cook et al. [1984] results

depth of field

motion blur

soft shadows

glossy reflection

SIGGRAPH2015

Motivation

- Distribution effects (depth of field, motion blur, global illumination, soft shadows) are slow. Many dimensions sample

- Ray Tracing physically accurate but slow, not real-time
- Can we adaptively sample and filter for fast, real-time?

Sample result

Pathtraced denoising [Kalantari et al. 2015]

scene by Jo Ann Elliott

4 samples/pixel (40.8 sec)

using only post-process filter!

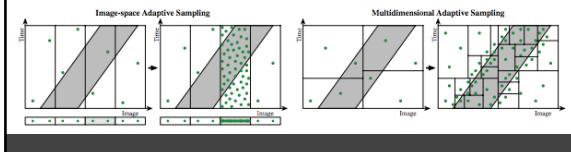
SIGGRAPH2015

Adaptive sampling + reconstruction

- These algorithms use 2 kinds of noise reduction strategies, sometimes combined:
 1. Adaptive sampling algorithms
 - Use information from renderer to position new samples better to reduce noise
 2. Reconstruction (filtering) algorithms
 - Use information from renderer to remove MC noise directly
- Both methods have been explored in the past, but new algorithms make remarkable advances

Multi-Dimensional Adaptive Sampling

- Hachisuka, Jarosz, ... Zwicker, Jensen [MDAS 2008]
- Scenes with motion blur, depth of field, soft shadows
- Involves high-dimensional integral, converges slowly
- Exploit high-dimensional info to sample adaptively
- Sampling in 2D image plane or other dims inadequate
 - Need to consider full joint high-dimensional space

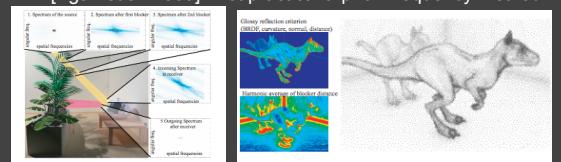


Multi-Dimensional Adaptive Sampling

Motion Blur and Depth of Field 32 samples per pixel

Resurgence (2008 -)

- Eurographics 2015 STAR report by Zwicker et al.
 - Papers below are key a-priori, frequency analysis methods
 - Many other approaches to be discussed in class
- [Durand et al. 2005] *Frequency analysis light transport*
 - Key theoretical ideas, but not initially very practical
- [Chai et al. 2000] Plenoptic Sampling (wedge spectrum)
- [Egan et al. 2009] First practical a-priori frequency method



Background: Fourier Analysis

Analysis in the frequency (not spatial) domain

- Sum of sine waves, with possibly different offsets (phase)
- Each wave different frequency, amplitude

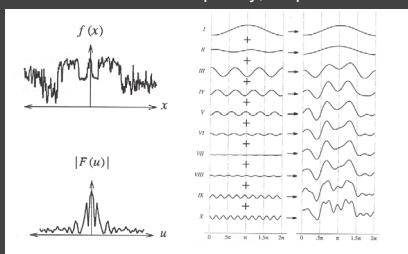


Figure 2.6 Wolberg

Fourier Transform

- Tool for converting from spatial to frequency domain

$$f(x) = \sum_{u=-\infty}^{+\infty} F(u) e^{2\pi i ux}$$

$$e^{2\pi i ux} = \cos(2\pi ux) + i \sin(2\pi ux)$$

- Or vice versa
- One of most important mathematical ideas
- Computational algorithm: Fast Fourier Transform
 - One of 10 great algorithms scientific computing
 - Makes Fourier processing possible (images etc.)
 - Not discussed here, but look up if interested

Fourier Transform

- Simple case, function sum of sines, cosines

$$f(x) = \sum_{u=-\infty}^{+\infty} F(u) e^{2\pi i ux}$$

$$F(u) = \int_0^1 f(x) e^{-2\pi i ux} dx$$

- Continuous infinite case

$$\text{Forward Transform: } F(u) = \int_{-\infty}^{\infty} f(x) e^{-2\pi i ux} dx$$

$$\text{Inverse Transform: } f(x) = \int_{-\infty}^{+\infty} F(u) e^{2\pi i ux} du$$

Fourier Transform

- Simple case, function sum of sines, cosines

$$f(x) = \sum_{u=-\infty}^{+\infty} F(u) e^{2\pi i u x}$$

$$F(u) = \int_0^1 f(x) e^{-2\pi i u x} dx$$

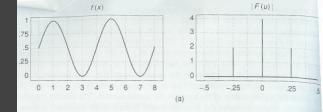
- Discrete case

$$F(u) = \sum_{x=0}^{x=N-1} f(x) [\cos(2\pi u x / N) - i \sin(2\pi u x / N)], \quad 0 \leq u \leq N-1$$

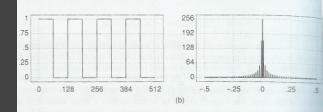
$$f(x) = \frac{1}{N} \sum_{u=0}^{u=N-1} F(u) [\cos(2\pi u x / N) + i \sin(2\pi u x / N)], \quad 0 \leq x \leq N-1$$

Fourier Transform: Examples 1

Single sine curve
(+constant DC term)



(a)



(b)

$$f(x) = \sum_{u=-\infty}^{+\infty} F(u) e^{2\pi i u x}$$

$$F(u) = \int_0^1 f(x) e^{-2\pi i u x} dx$$

Fourier Transform Examples 2

$$\text{Forward Transform: } F(u) = \int_{-\infty}^{\infty} f(x) e^{-2\pi i u x} dx$$

$$\text{Inverse Transform: } f(x) = \int_{-\infty}^{+\infty} F(u) e^{2\pi i u x} du$$

- Common examples

$$\begin{array}{ll} f(x) & F(u) \\ \delta(x - x_0) & e^{-2\pi i u x_0} \\ 1 & \delta(u) \\ e^{-ax^2} & \sqrt{\pi/a} e^{-\pi^2 u^2 / a} \end{array}$$

Fourier Transform Properties

$$\text{Forward Transform: } F(u) = \int_{-\infty}^{\infty} f(x) e^{-2\pi i u x} dx$$

$$\text{Inverse Transform: } f(x) = \int_{-\infty}^{+\infty} F(u) e^{2\pi i u x} du$$

- Common properties

$$\text{Linearity: } F(af(x) + bg(x)) = aF(f(x)) + bF(g(x))$$

$$\text{Derivatives: [integrate by parts]} \quad F(f'(x)) = \int_{-\infty}^{\infty} f'(x) e^{-2\pi i u x} dx = 2\pi i u F(u)$$

$$\text{2D Fourier Transform}$$

$$\text{Forward Transform: } F(u,v) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x,y) e^{-2\pi i u x} e^{-2\pi i v y} dx dy$$

$$\text{Inverse Transform: } f(x,y) = \int_{-\infty}^{\infty} \int_{-\infty}^{+\infty} F(u,v) e^{2\pi i u x} e^{2\pi i v y} du dv$$

Sampling Theorem, Bandlimiting

- A signal can be reconstructed from its samples, if the original signal has no frequencies above half the sampling frequency – Shannon
- The minimum sampling rate for a bandlimited function is called the Nyquist rate

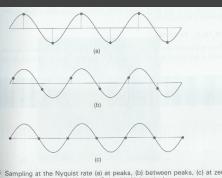
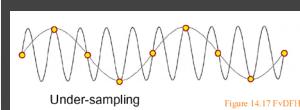


Figure 14.17 FvsDFH

Sampling Theorem, Bandlimiting

- A signal can be reconstructed from its samples, if the original signal has no frequencies above half the sampling frequency – Shannon
- The minimum sampling rate for a bandlimited function is called the Nyquist rate
- A signal is bandlimited if the highest frequency is bounded. This frequency is called the bandwidth
- In general, when we transform, we want to filter to bandlimit before sampling, to avoid aliasing

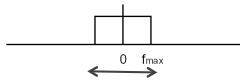
Antialiasing

- Sample at higher rate
 - Not always possible
 - Real world: lines have infinitely high frequencies, can't sample at high enough resolution
- Prefilter to bandlimit signal
 - Low-pass filtering (blurring)
 - Trade blurriness for aliasing

Ideal bandlimiting filter

- Formal derivation is exercise

- Frequency domain



- Spatial domain

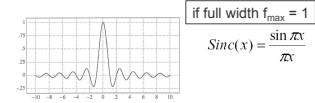
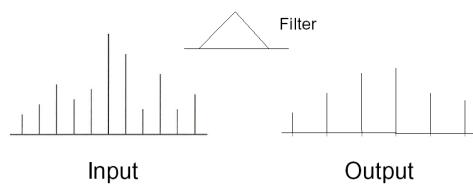


Figure 4.5 Wolberg

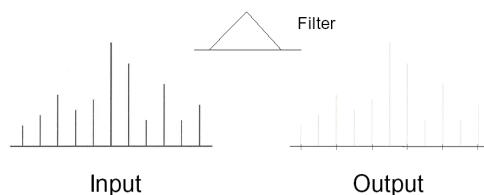
Convolution 1

- Spatial domain: output pixel is weighted sum of pixels in neighborhood of input image
 - Pattern of weights is the "filter"



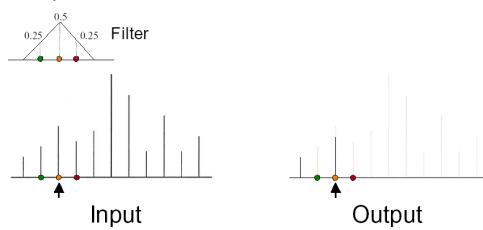
Convolution 2

- Example 1:



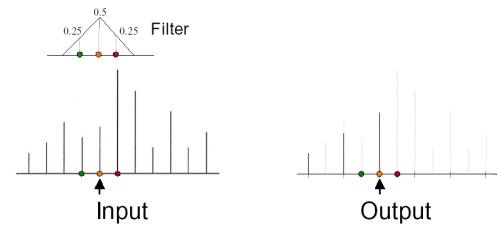
Convolution 3

- Example 1:



Convolution 4

- Example 1:



Convolution 5

- Example 1:

Filter

Input

Output

Convolution in Frequency Domain

Forward Transform: $F(u) = \int_{-\infty}^{\infty} f(x)e^{-2\pi i ux} dx$

Inverse Transform: $f(x) = \int_{-\infty}^{+\infty} F(u)e^{2\pi i ux} du$

- Convolution (f is signal ; g is filter [or vice versa])

$$h(y) = \int_{-\infty}^{+\infty} f(x)g(y-x)dx = \int_{-\infty}^{+\infty} g(x)f(y-x)dx$$

$$h = f * g \text{ or } f \otimes g$$
- Fourier analysis (frequency domain multiplication) $H(u) = F(u)G(u)$

A Frequency Analysis of Light Transport

F. Durand, MIT CSAIL
 N. Holzschuch, C. Soler, ARTIS/GRAVIR-IMAG INRIA
 E. Chan, MIT CSAIL
 F. Sillion, ARTIS/GRAVIR-IMAG INRIA

Illumination effects

- Blurry reflections:

From [Ramamoorthi and Hanrahan 2001]

Illumination effects

- Shadow boundaries:

Point light source Area light source

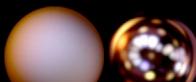
© U. Assarsson 2005

Problem statement

- How does light interaction in a scene explain the frequency content?
- Theoretical framework:
 - Understand the frequency spectrum of the radiance function
 - From the equations of light transport

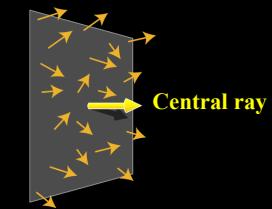
Unified framework:

- Spatial frequency
(e.g. shadows, textures)
- Angular frequency
(e.g. blurry highlight)



Local light field

- 4D light field, around a *central ray*

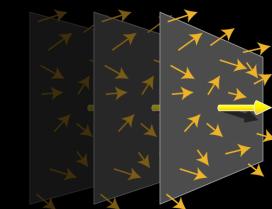


Local light field

- 4D light field, around a *central ray*
- We study its spectrum during transport

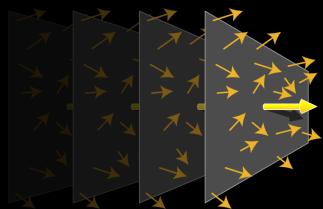
Local light field

- 4D light field, around a *central ray*
- We study its spectrum during transport



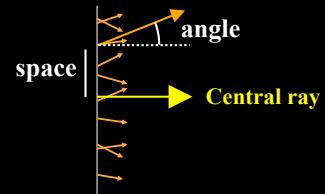
Local light field

- 4D light field, around a *central ray*
- We study its spectrum during transport



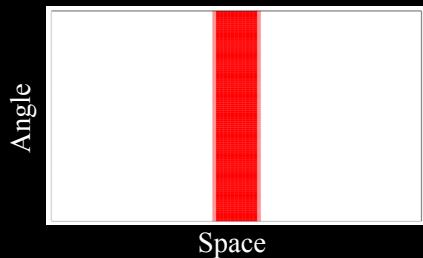
Local light field parameterization

- Space and angle



Local light field representation

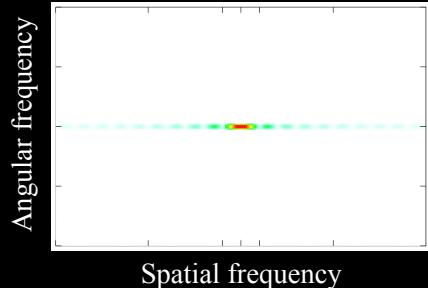
- Density plot:



Local light field Fourier spectrum

- We are interested in the Fourier spectrum of the local light field
- Also represented as a density plot

Local light field Fourier spectrum

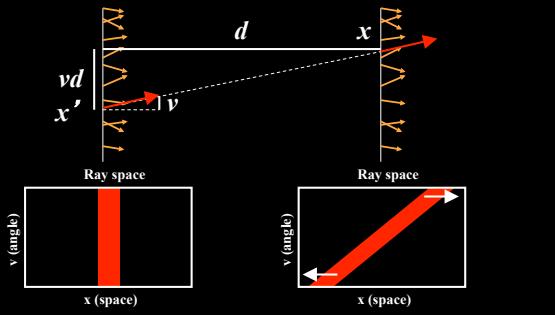


Fourier analysis 101

- Spectrum corresponds to blurriness:
 - Sharpest feature has size $\sim 1/F_{\max}$
- Convolution theorem:
 - Multiplication of functions: spectrum is convolved
 - Convolution of functions: spectrum is multiplied
- Classical spectra:
 - Box becomes sinc
 - Dirac becomes constant

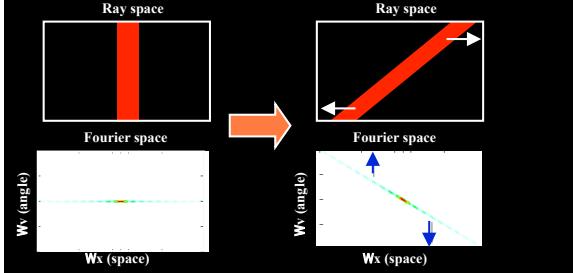
Transport

- Shear: $x' = x - v d$



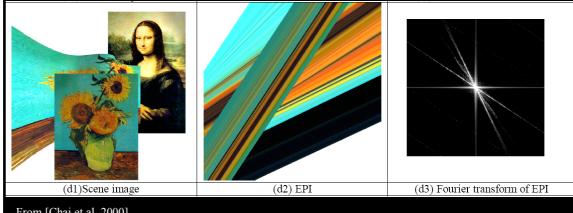
Transport in Fourier space

- Shear in primal: $x' = x - v d$
- Shear in Fourier, along the other dimension



Transport becomes Shear

- This is consistent with light field spectra
[Chai et al. 00, Isaksen et al. 00]



From [Chai et al. 2000]

BRDF integration

- Ray-space: **convolution**

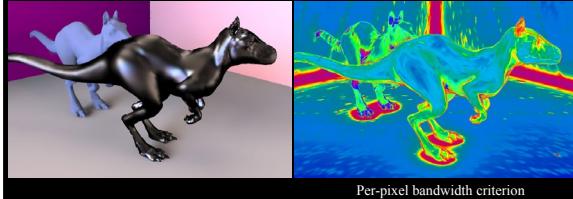
- Outgoing light:
convolution of incoming light and BRDF
- For rotationally-invariant BRDFs

- Fourier domain: **multiplication**

- Outgoing spectrum: multiplication of incoming spectrum and BRDF spectrum

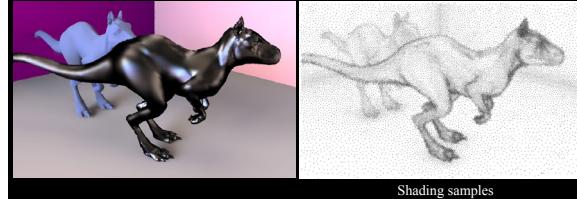
Adaptive shading sampling

- Per-pixel prediction of max. frequency (bandwidth)
 - Based on curvature, BRDF, distance to occluder, etc.
 - No spectrum computed, just estimate max frequency

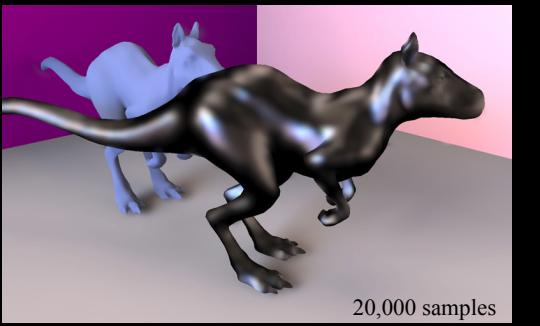


Adaptive shading sampling

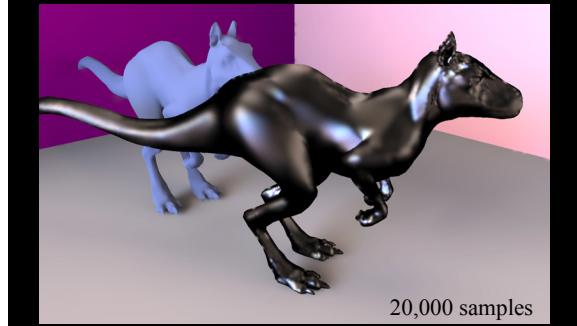
- Per-pixel prediction of max. frequency (bandwidth)
 - Based on curvature, BRDF, distance to occluder, etc.
 - No spectrum computed, just estimate max frequency

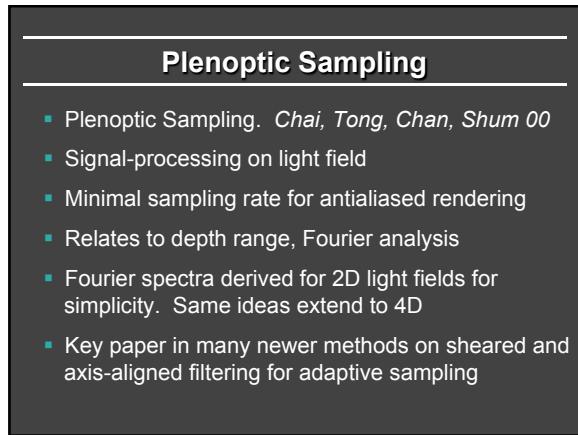
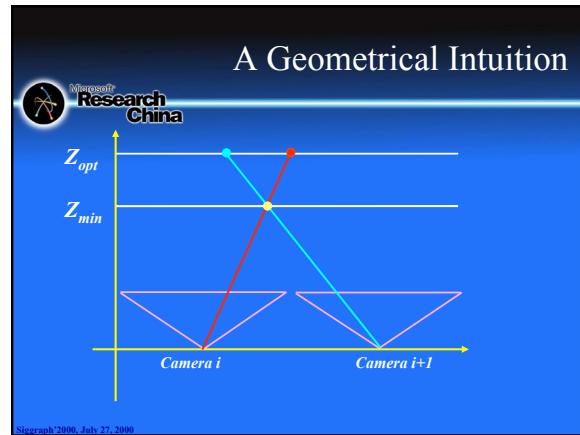
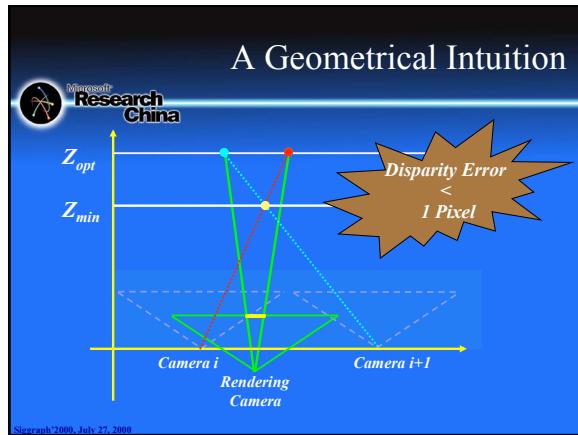
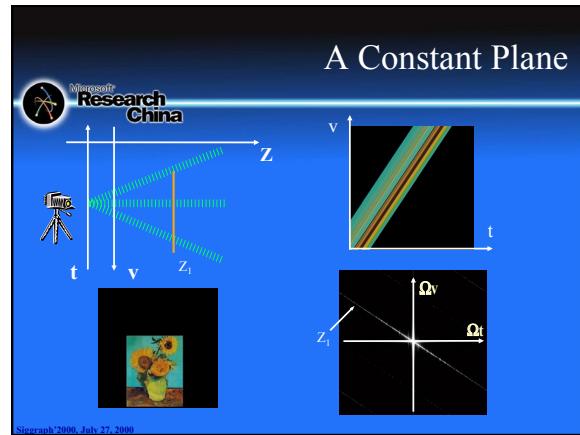
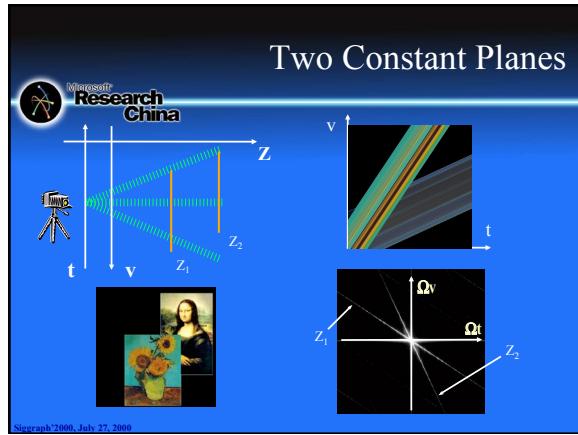
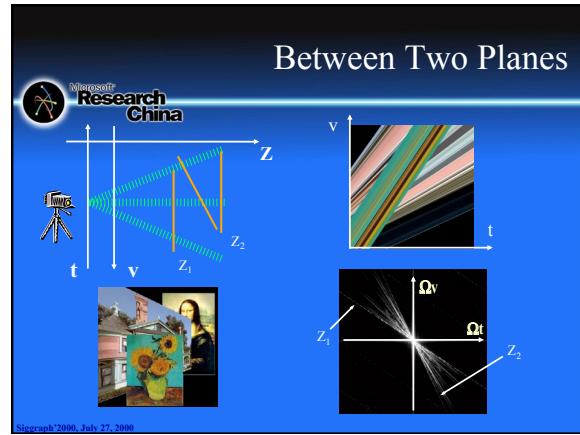


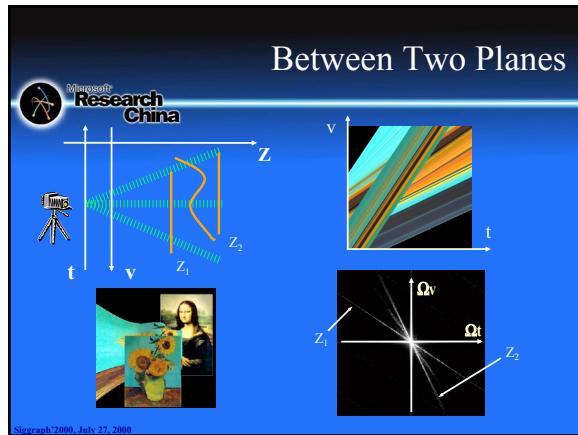
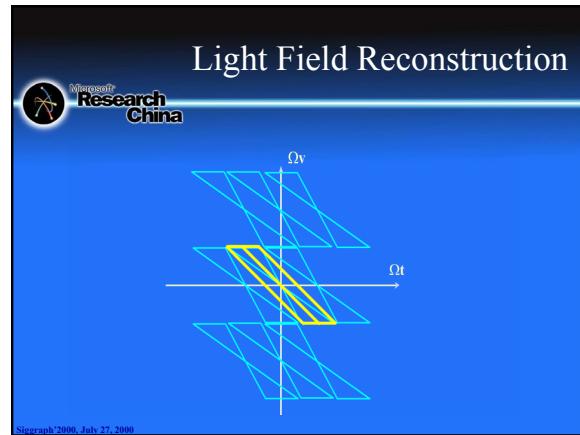
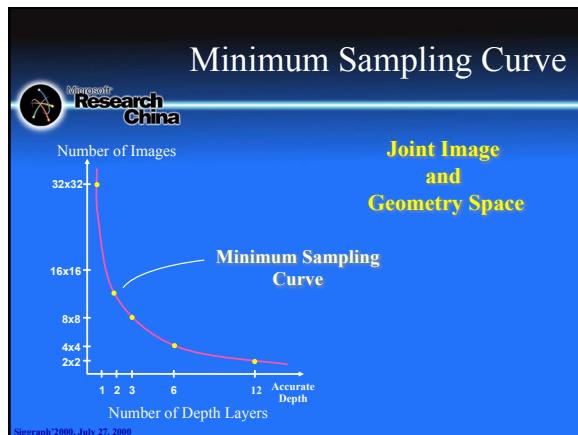
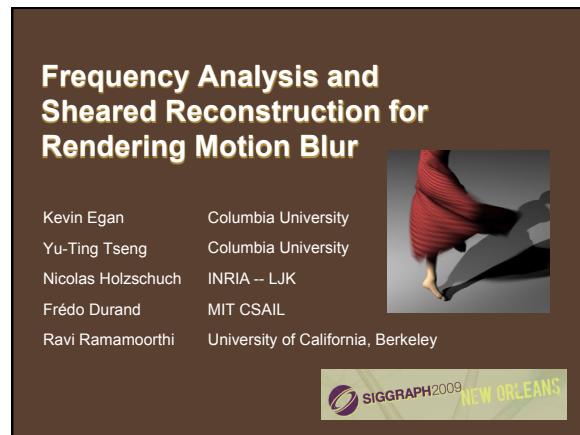
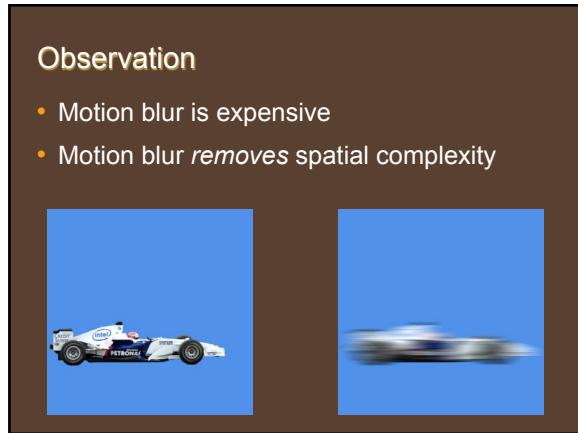
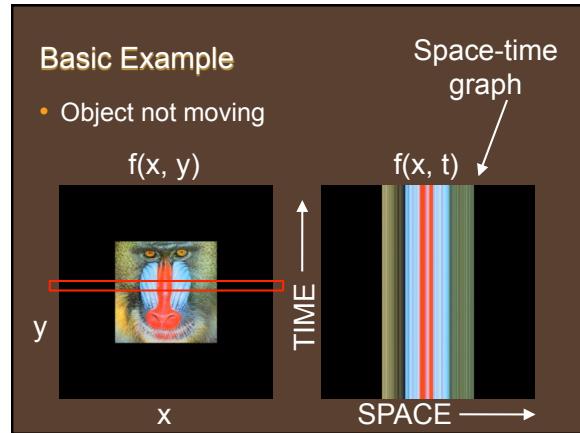
Uniform sampling

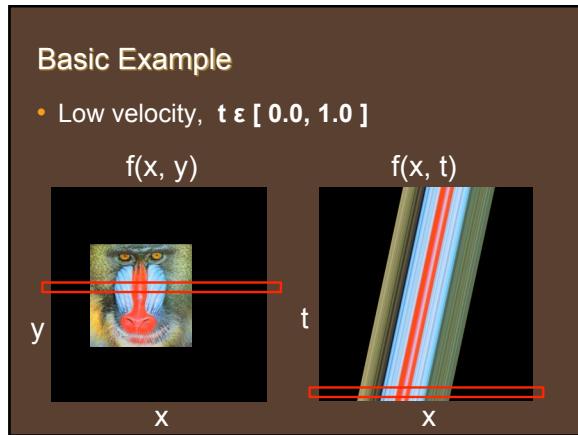
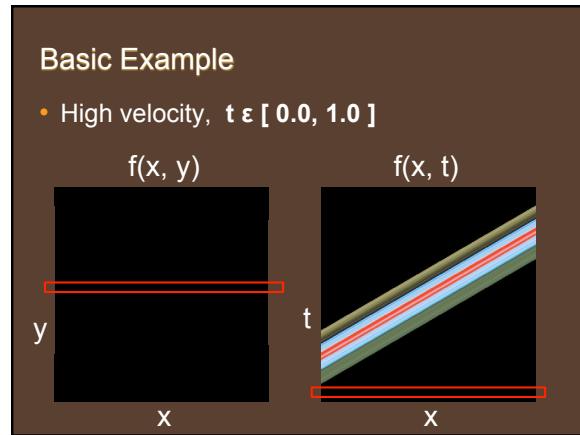
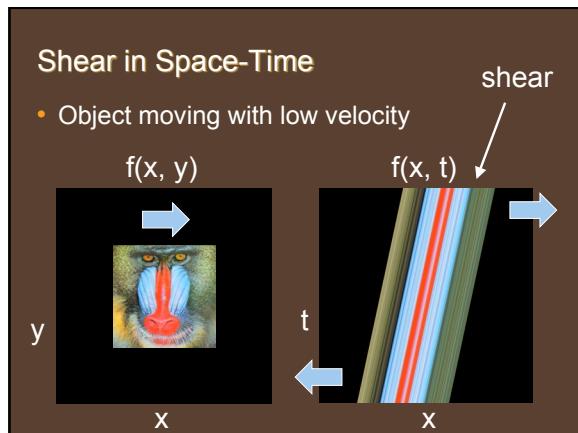
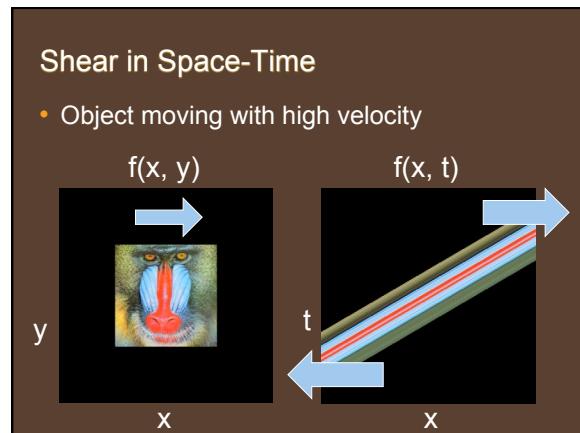
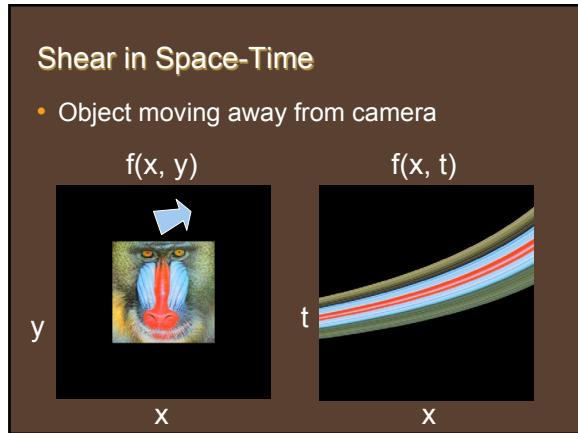
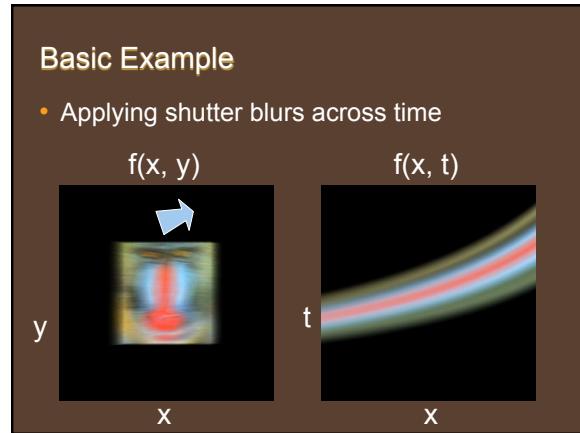


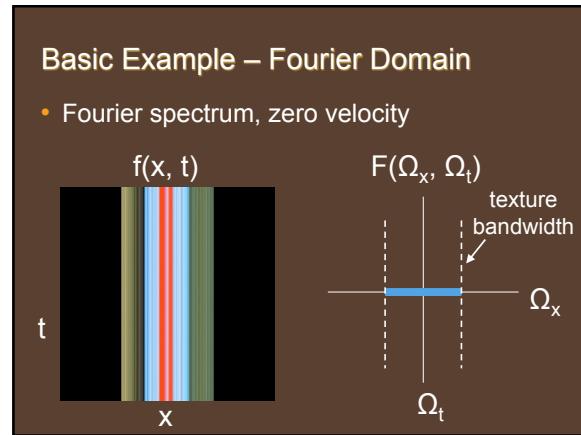
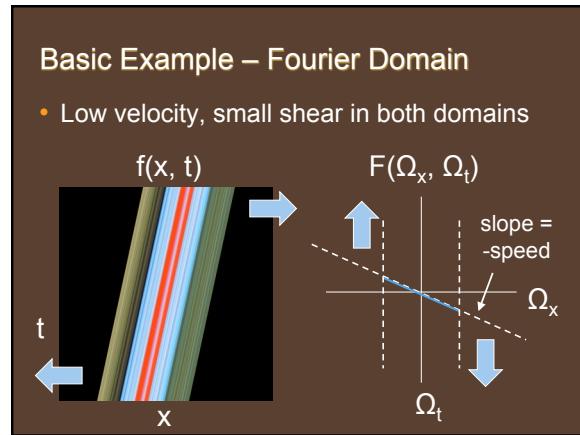
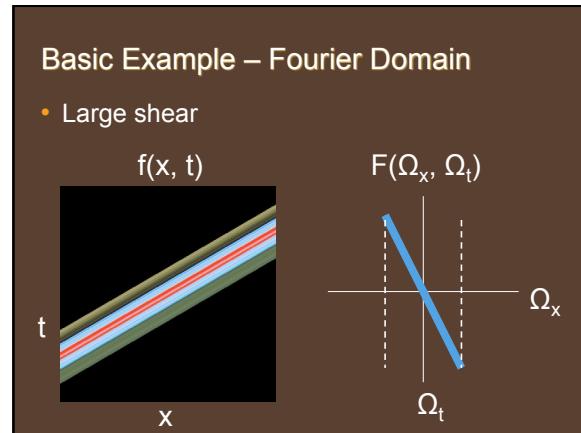
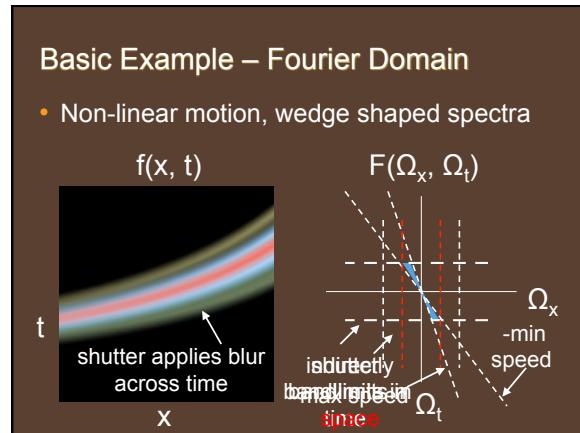
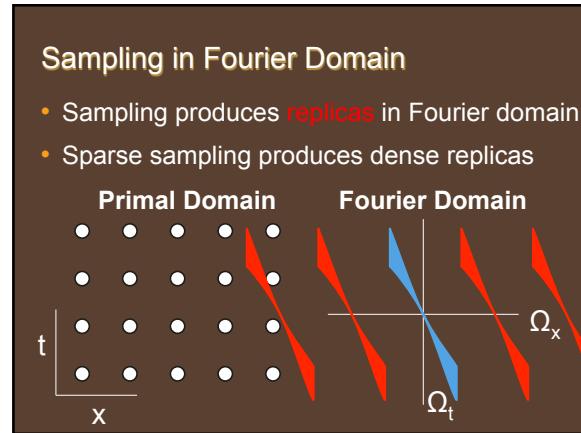
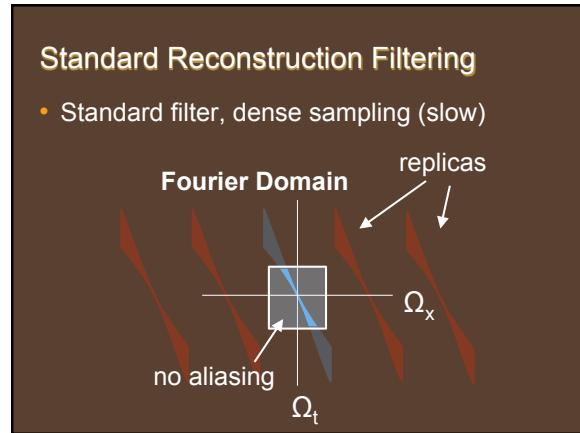
Adaptive sampling





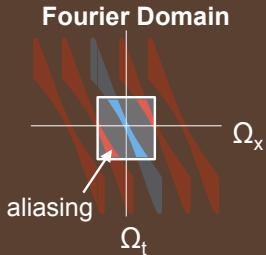






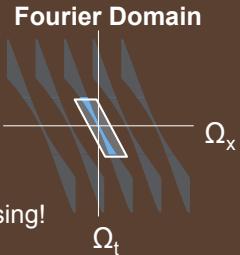
Standard Reconstruction Filter

- Standard filter, sparse sampling (fast)



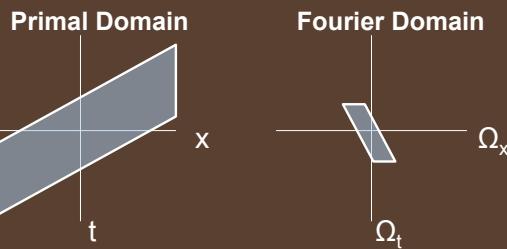
Sheared Reconstruction Filter

- Our sheared filter, sparse sampling (fast)



Sheared Reconstruction Filter

- Compact shape in Fourier = wide in primal



Car Scene

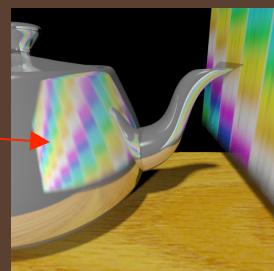
Our Method,
4 samples per pixel

Stratified Sampling
4 samples per pixel

Teapot Scene

Our Method
8 samples / pix

motion blurred
reflection



Ballerina Video

Ballerina sequence
(8 samples/pixel)

Note smooth motion-blur
of dress and shadows

Frequency Analysis
and Sheared Reconstruction
for Rendering Motion Blur

ID: 0034