Fast 4D Sheared Filtering for Interactive Rendering

of Distribution Effects

LING-QI YAN and SOHAM UDAY MEHTA
University of California, Berkeley

RAVI RAMAMOORTHI

University of California, San Diego

and

FREDO DURAND

MIT CSAIL

Soft shadows, depth of field, and diffuse global illumination are common
distribution effects, usually rendered by Monte Carlo ray tracing. Physically
correct, noise-free images can require hundreds or thousands of ray samples
per pixel, and take a long time to compute. Recent approaches have exploited
sparse sampling and filtering; the filtering is either fast (axis-aligned), but
requires more input samples, or needs fewer input samples but is very slow
(sheared). We present a new approach for fast sheared filtering on the GPU.
Our algorithm factors the 4D sheared filter into four 1D filters. We derive
complexity bounds for our method, showing that the per-pixel complexity
is reduced from O(n212) to O(nl), where n is the linear filter width (filter
size is O(n?)) and [is the (usually very small) number of samples for each
dimension of the light or lens per pixel (spp is /2). We thus reduce sheared
filtering overhead dramatically. We demonstrate rendering of depth of field,
soft shadows and diffuse global illumination at interactive speeds. We reduce
the number of samples needed by 5 — 8 x, compared to axis-aligned filtering,
and framerates are 4 x faster for equal quality.

Categories and Subject Descriptors: 1.3.7 [Computer Graphics]: Three-
Dimensional Graphics and Realism—Color, shading, shadowing, and
texture

General Terms: Algorithms, Performance, Design

Additional Key Words and Phrases: Fourier analysis, sampling, filtering,
soft shadows, depth of field, diffuse global illumination, sheared filtering

ACM Reference Format:

Ling-Qi Yan, Soham Uday Mehta, Ravi Ramamoorthi, and Fredo Durand.
2015. Fast 4D sheared filtering for interactive rendering of distribution
effects. ACM Trans. Graph. 35, 1, Article 7 (December 2015), 13 pages.
DOIL: http://dx.doi.org/10.1145/2816814

This work was supported in part by NSF grants 1115242, 1451830, the Intel
Science and Technology Center for Visual Computing, and equipment and
fellowships from NVIDIA.

Authors” Email Addresses: L.-Q. Yan, S. U. Mehta: {lingqi, sohamum} @
cs.berkeley.edu; R. Ramamoorthi: ravir@cs.ucsd.edu; F. Durand: fredo@
mit.edu.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions @acm.org.

(© 2015 ACM 0730-0301/2015/12-ART7 $15.00

DOI: http://dx.doi.org/10.1145/2816814

1. INTRODUCTION

Monte Carlo distribution raytracing is an accurate way to render ef-
fects such as depth-of-field, soft shadows and indirect illumination.
But convergence to a noise-free image is slow, often requiring over
a thousand rays per pixel. Thus, there is a considerable interest in
fast adaptive sampling and filtering approaches.

Fortunately, there is significant coherence in the intensity between
pixels. Our work is closest to the 4D sheared filtering methods,
pioneered by Egan et al. [2009]. These methods perform a careful
frequency analysis to determine near-optimal sampling rates for a
number of different effects, such as motion blur, soft shadows and
spherical harmonic/ambient occlusion [Eganetal. 2011a; Egan et al.
2011b]. While the sample count reductions are dramatic, with very
few additional assumptions, these sheared filtering techniques are
usually memory intensive and have high reconstruction overheads.
One of the key challenges is the irregular search for samples. Even
if the initial samples are stratified, they are distributed irregularly
once one considers the footprint of the 4D sheared filter for each
pixel. Therefore, inspite of numerous efforts to accelerate the basic
sheared filtering algorithm, it remained a slow process taking several
minutes per frame for reconstruction, often dwarfing the cost of even
offline raytracing.

Thus, sheared reconstruction was established as a theoretically
sound technique that reduced sample counts by one to two orders of
magnitude. But it was not practical for fast or interactive raytracing
systems, since irregular sampling and high memory usage made re-
construction too expensive. Methods based on axis-aligned filtering
[Mehta et al. 2012, 2013, 2014] were developed in the past three
years in response to this, to bring sampling and filtering into the
real-time domain. There is a significant tradeoff in sample count,
with axis-aligned filtering requiring an order of magnitude more
samples than 4D sheared filtering. Nevertheless, the simplicity of
the filter and its natural separability in pixel-light, pixel-time or
equivalent space can be exploited to minimize filtering time, and
enable inclusion in interactive raytracing systems. However, one
needs many more input ray samples, since the simple filter doesn’t
bound the frequency spectrum tightly.

In this article, we describe a solution to the now long-standing
problem of fast 4D sheared filtering, showing that the sample count
tradeoff in axis-aligned filtering methods is no longer needed, for the
common visual effects of soft shadows, depth of field, and diffuse
global illumination. Indeed, we achieve the best of both worlds—
the low sampling rates of sheared filtering, and reconstruction times
comparable with axis-aligned filtering.

We start from the 4D pixel-light sheared filter [Egan et al. 2011b]
in the primal domain for soft shadows (a similar analysis applies

ACM Transactions on Graphics, Vol. 35, No. 1, Article 7, Publication date: December 2015.

7:2 .

L.-Q. Yan et al.

(b) Depth of Field, 11 spp, 7.5 fps

vy

(¢) Diffuse Global Illum., 16 spp, 2.5 fps

By B oy
LR

AAF Eq. Time ~ AAF Eq. Qual. Our Method

Ground Truth AAF Eq. Time AAF Eq. Qual. Our Method

pigi

Ground Truth AAF Eq. Time ~ AAF Eq. Qual. Our Method

Ground Truth

9.3 spp, 0.15sec 58 spp, 0.71 sec 8 spp, 0.15sec 1K spp, 4.80 sec 14.2 spp, 0.12 sec 65 spp, 0.56 sec 11 spp, 0.12 sec 1K spp, 2.45 sec 18 spp, 0.40 sec 70 spp, 1.55 sec 16 spp, 0.40 sec 9K spp, 9 min

Fig. 1. We can render soft shadows (CARS, two area lights), defocus blur (POOL, two point lights, modified from NVIDIA OptiX SDK) and diffuse global
illumination (ROOM, one point light) at interactive speeds by fast 4D sheared filtering on a sparsely sampled Monte Carlo (MC) input, which is very noisy
as seen in the insets. We require very low sampling rates, often under 16 samples per pixel (spp). Compared to axis-aligned filtering (AAF) with adaptive
sampling [Mehta et al. 2012, 2013], we perform 4 x faster, and reduce the sampling rate required by 5-8x.

to depth of field and indirect illumination). Inspired by the natural
separability of axis-aligned filtering, we come up with a solution
that handles the high-dimensional sheared filtering by factorizing
it into lower-dimensional forms. This overcomes the problem of
expensive irregular search for samples, caused by the shearing that
couples pixel and light dimensions [Egan et al. 2011b]. Besides
the theoretical contribution of fast high dimensional filtering, that
bridges sheared and axis-aligned filtering algorithms, we dramati-
cally reduce the practical computational cost, achieving a 4x faster
implementation compared to Mehta et al. [2012, 2013], and orders
of magnitude faster than Egan et al. [2009, 2011b]. Specifically, we
make the following contributions:

Factoring 4D sheared filter into four 1D filters. We first observe
that the 4D sheared filter is a product of two 2D sheared filters along
orthogonal pixel-light planes, and develop a two step factored algo-
rithm. We then derive a further factorization into four 1D integrals,
that separate the 2D sheared shape into a pre-convolution and a col-
lection. The computational complexity! per pixel is reduced from
O(n*?) to O(nl), where n is the linear filter size (along one dimen-
sion) and /? is the number of samples per pixel (so / is the number
of samples along each dimension of the lens or light). In sheared
filtering, / can be very small, typically / < 4 and the samples per
pixel (spp) I* < 16. Thus, the complexity is comparable to the O (1)
cost of (fully factored) axis-aligned filtering.?

IThe full complexity is O(nl 4 [?) but the O(nl) term is dominant, as
explained later.

2The fast sheared filter is still somewhat more expensive, both from the /
factor, and because of the larger size n of the sheared filter. This is more than

ACM Transactions on Graphics, Vol. 35, No. 1, Article 7, Publication date: December 2015.

Efficient GPU Implementation of Sheared Filter. With an efficient
GPU (CUDA) implementation of the factored sheared filter, we
reduce filtering time per frame to about 70 msec. In comparison,
a direct implementation of the 4D sheared filter takes one to two
orders of magnitude longer. This is the first general implementation
of fast 4D sheared filtering that gives interactive performance.

Interactive Rendering of Distribution Effects. We demonstrate
accurate results for soft shadows, depth of field, and diffuse global
illumination with only 6-16 samples per pixel (spp), as shown in
Figure 1. (In the main body of this article, we consider only sin-
gle effects at a time; handling multiple effects simultaneously as
in Mehta et al. [2014] is discussed briefly in the Appendix, with ex-
ample images). Even though the input data is very noisy, we are able
to perform high quality reconstruction. Our results match ground
truth closely, which is typically obtained with 100x the number
of samples per pixel (see Figures 6-8). We implement our filtering
algorithm on the GPU-based real-time Optix raytracer, and demon-
strate a 4x speedup in framerate over equal quality axis-aligned
filtering, while reducing sample counts by 5 — 8x.

2. PREVIOUS WORK

Our work builds on a recent history of methods for adaptive image
filtering to remove noise in ray traced solutions, but most of these
methods were not intended for real-time use. Our approach also
relates to Fourier and light field reconstruction techniques, as well

made up for, by the much smaller number of ray samples that are needed by
our method, as compared to axis-aligned filtering.

Fast 4D Sheared Filtering for Interactive Rendering of Distribution Effects . 7:3

as initial approaches for fast sheared filtering for depth of field and
motion blur.

Image and Adaptive Filtering. Image filtering has a long history,
including [Rushmeier and Ward 1994; McCool 1999]. Adaptive
image sampling also has a long history, with seminal work by
Mitchell [1991]. Recently, Hachisuka et al. [2008] presented multi-
dimensional adaptive sampling and anisotropic reconstruction, that
has inspired much follow-on work. Recent work also includes adap-
tive wavelet rendering [Overbeck et al. 2009], the A-Trous wavelet
transform [Dammertz et al. 2010], cross bilateral filters [Petschnigg
et al. 2004; Paris and Durand 2006] and filtering of stochastic
buffers [Shirley et al. 2011]. A significant advance is random param-
eter filtering [Sen and Darabi 2012] which seeks to separate vari-
ation from random parameters and geometric signals. Other recent
works are based on statistical theories like SURE [Li et al. 2012] and
nonlocal means filtering [Rouselle et al. 2012]. Recently, Kalantari
and Sen [2013] developed a method to locally identify noise in dif-
ferent parts of the image, followed by standard adaptive sampling
and denoising, while Delbracio et al. [2014] use ray color his-
tograms. However, these methods do not exploit the Fourier struc-
ture of the higher-dimensional light field, and typically require high
sampling rates with offline reconstruction; they are not interactive.

Real-time Distribution Effects. Real-time soft shadows are com-
monly produced using soft shadow maps that consider occlusion
from the entire area source [Guennebaud et al. 2007; Annen et al.
2008]. As noted in Johnson et al. [2009], these methods make var-
ious tradeoffs of speed and accuracy. Soler and Sillion [1998] pro-
vide an analytic solution, but only for geometry in parallel planes.
Shadow volumes [Crow 1977] can also be extended to soft shadows
using geometric ideas like penumbra wedges [Assarsson and Moller
2003] and shadow volumes [Laine et al. 2005]. Another body of
work is precomputed relighting [Sloan et al. 2002], but it is usu-
ally limited to static scenes lit by environment maps. Analogously,
for real-time depth of field, the general approach is to rasterize
layers using a pinhole camera [Lee et al. 2010; Lei and Hughes
2013], and then splat and gather the samples on the image plane
to approximate defocus blur for a particular focus depth. There are
also simpler post-processing algorithms [Potmesil and Chakravarty
1981; Yu et al. 2010] that use a single pinhole rendering and depth
buffer to simulate defocus blur.

Real-time approximate global illumination techniques (a survey
can be found in Ritschel et al. [2012]) include voxel-based cone
tracing [Crassin et al. 2011] on the GPU. Point-based approaches
include micro-rendering such as Ritschel et al. [2009], which ray-
traces shading points and partitions them by k-means, and then does
a final gather using GPU-based photon mapping.

Although these approaches are commonly used for their high per-
formance, they make approximations that can produce aliasing and
other artifacts. Our method is based on unbiased Monte-Carlo sam-
pling, and can offer high-quality results with nearly the same speed.

Fourier and Light Field Analysis. Our goal is to obtain low sam-
ple counts from sheared filtering [Egan et al. 2009, 2011a, 2011b],
while achieving interactive filter times comparable to axis-aligned
filtering methods [Mehta et al. 2012, 2013]. Our method applies to
any sheared filtering approach; we demonstrate soft shadows, depth
of field, and diffuse global illumination, but it could be easily ex-
tended to motion blur [Egan et al. 2009].> We also support multiple

3We do not include motion blur, since the real-time GPU Optix framework
does not natively support raytracing with motion. However, it can be easily
implemented within a CPU renderer such as PBRT or Intel’s Embree.

distribution effects [Mehta et al. 2014], as we briefly discuss in the
appendix.

Both sheared and axis-aligned filtering are based on a frequency
analysis of the light field [Chai et al. 2000; Ramamoorthi and
Hanrahan 2001; Durand et al. 2005]. Other recent work in the area
includes Fourier depth of field [Soler et al. 2009] and covariance
tracing [Belcour et al. 2013] that uses a covariance representation
of the 5D space-angle-time light field. In terms of light field recon-
struction, Lehtinen et al. [2011, 2012] proposed a reconstruction
method for motion and defocus blur from sparse sampling of the
3D/5D (spatial position, lens and time) light field, but with a high
memory and computation overhead. In general, these methods are
not intended for interactive use, except for axis-aligned filtering
that requires higher sample counts. In contrast, we provide accurate
results with very low sample counts and interactive frame rates
using fast sheared filtering.

Fast Sheared Filtering. We are inspired by Vaidyanathan
et al. [2015], who demonstrate a fast sheared filtering approach
for defocus blur. This method was later extended by Munkberg
et al. [2014] to handle both defocus blur and motion blur at the
same time, for which Clarberg and Munkberg [2014] proposed an
efficient implementation. However, these methods assume a fixed
filter for a small range of depths, and therefore require separation
of the scene into multiple layers. They use a two-step approach—
first project all samples through the center of the lens to neigh-
boring pixels, accumulate per-layer color and alpha, and then do a
screen-space convolution (further separated along image axes into
two passes). In contrast, we pre-convolve sampled radiance at each
pixel individually along the sampling dimension, and then perform
a sheared spatially-varying convolution by picking up appropri-
ate pre-convolved samples from neighboring pixels—in a total of 4
steps. Our sheared filter implementation works for multiple distribu-
tion effects (soft shadows, defocus blur, diffuse global illumination),
with no need for separating the scene into multiple depth planes.
Visual comparisons are made in Figure 10. We also analyze the
computational complexity of our method, showing how it improves
on the basic sheared filtering algorithm.

3. BACKGROUND AND MOTIVATION

In this section, we introduce our notation for the sheared filter, and
describe the basic motivation and challenges involving factorization
as a solution for fast sheared filtering.

3.1 Basic Notation

We introduce the flatland 2D sheared filter. The next section devel-
ops the concept in 3D, and introduces the full 4D filter. We follow
notation in previous work [Egan et al. 2011b; Mehta et al. 2012] and
discuss our filtering approach for soft shadows first. Let x denote
receiver (surface visible at a pixel) coordinate and y € [—L, L]
denote the light coordinate. Very similar parameterization and no-
tation can be used for the lens coordinate for defocus, or incident
direction parameterization for global illumination, and important
details are mentioned below.

Soft Shadows. Following Mehta et al. [2012], we assume the
light has a Gaussian intensity with standard deviation o, and a side
length 2L = 4o0,. For each pixel, we want to simultaneously filter
and integrate light visibility and intensity, to compute the overall
pixel irradiance. Let f(x, y) be the visibility function and /(y) be
the Gaussian light intensity. Then the pixel irradiance is

L
hx) = | Fo Iy, (1)
—L

ACM Transactions on Graphics, Vol. 35, No. 1, Article 7, Publication date: December 2015.

7:4 . L.-Q. Yan et al.

It is shown in [Egan et al. 2011b] that a single occluder plane at
distance d, from the light, produces a single line of slope given by
s = d;/d, — 1 in the Fourier spectrum of f, when the receiver pixel
is at a distance d, from the light source. With multiple occluders,
most of the Fourier energy lies between lines of slopes sy, and Syax,
as shown in Figure 2(a). These bounds can be estimated during the
ray-tracing phase. The double-wedge spectrum of f is filtered by
the light intensity spectrum on the €, axis, and this bandwidth
is Q" = 4/L. The computation of soft shadows theoretically
requires that the receiver’s material be diffuse, but in practice mod-
erately glossy receivers also work, as shown by Mehta et al. [2012]
and most algorithms based on shadow maps [Hasenfratz et al. 2003;
Guennebaud et al. 2006; Annen et al. 2008].

Depth of Field. For rendering depth of field, x € [-W, W] is
measured in pixel space, where W is the width of the image, and
u € [—A, A] is on the lens, where 2A is the lens aperture.* The
light field incident on the camera sensor in (x,) space has a Fourier
transform similar to the area-light visibility f. As shown in Mehta
etal. [2014] and Vaidyanathan et al. [2015], a plane at a single depth
z produces a line of slope s = W(F/z—1)/S in the fourier spectrum
of the light field, which corresponds to the circle of confusion at
that depth. Here F is the focal distance, and S is the size (meters)
of the focal plane. Hence, most of the spectrum is bounded between
the minimum and maximum circles of confusion, sy, and .. The
bandlimit due to the integration with the Gaussian lens aperture is
QN =4/A.

Diffuse Indirect Illumination. To get the double-wedge spectrum
for the indirect light field, it must be parameterized in coordinates
x along the receiver and v on a plane parallel to the receiver at
unit distance. Then a single parallel reflecting surface at distance z
from the receiver produces a line of slope s = z in the light field
spectrum in the (€2, 2,) space. With multiple sloped reflectors,
as shown in Mehta et al. [2013], we get a double wedge between
slopes Smin, Smax- Finally, the double wedge is band-limited by the
transfer function of the diffuse BRDF, given by

1

(14 v? +vd)?° @

y(vy, v12) =

As derived in [Mehta et al. 2013] the bandlimit Q'** & 2.8. Note
that the bandlimiting function in this case is not a Gaussian, unlike
the lens and light functions before. Hence, we do not use Gaus-
sian weights for filtering. Instead, we importance sample along the
(v1, v2) plane and apply appropriate weights to make it equivalent
to cosine-hemisphere sampling, and then use a box filter to filter the
samples. This is explained further in Sec. 5.

Sheared Filtering. We now introduce the sheared filter for soft
shadows. A similar formalism applies to depth of field and diffuse
global illumination, except for a different choice of variables. As
indicated in Figure 2(a), the resulting Fourier-domain sheared filter
has a shear slope given by the harmonic average of the min and max
slopes, and the filter scale is proportional to the difference in the
slopes (See [Egan et al. 2011b] for details). We are only concerned
with the primal domain filter, as shown in Figure 2(b). The final
filtered pixel irradiance A (x) can be obtained as follows, using a 2D

4This normalization is chosen to be analogous to the soft shadow example,
and is slightly different from Mehta et al. [2014] who normalize the lens
coordinate in [—1, 1], and therefore have an extra aperture factor in their
formula for circle of confusion.

ACM Transactions on Graphics, Vol. 35, No. 1, Article 7, Publication date: December 2015.

Q},‘ ‘

max
Vv

/|

i«

(a) (b)

Fig. 2. Illustration of the 2D sheared filter in flatland in (a) Fourier domain
and (b) primal domain. The sheared filter in flatland gives the weight of a
sample at (x’, y’) for a pixel of interest x. The filter can be split into two
Gaussians: The x-axis Gaussian is fixed with center at x; the y-axis Gaussian
has a varying center given by y = n,(x — x’).

sheared filter w in flatland:
I’l(x) = // f(x', y’)w(x’, y/;x’ y)dx' dy/

= / FE YW (" = x3o)wy (3 — y(x, x); 0y) dx’ dy'.
3

Both w,(-), wy(-) are Gaussian functions, with standard deviations
o, and o, respectively. o, depends on the sheared filter scale, and
o, depends on the light bandlimit with

2 2 SminSmax
o, = _mintmax (4)

Q‘;‘ax Smax — Smin

oy =
Qmax
y

The filter is a sheared spatially-varying convolution, with the
center of the filter along the x’ axis determined by the desired
location x. The center of the filter along the y’ axis is determined
by the shear amount 7,, as in Figure 2(b),

ylx,x) = no(x — x7)
_ SminSmax (5)
2(Smin + Smax) '

while the standard deviation o, remains constant and is related to
the maximum bandlimit of the light, lens, or sloped reflectors in
different applications. Note that we have introduced the auxiliary
variable y for the center of the filter along the y’ axis.

As an aside, axis-aligned filtering can be thought of as a special
case with a shear of n = 0, so that y = 0 always. Then, the overall
filter w, (x"—x)w,(y’ —y) can be separated into two 1D axis-aligned
Gaussians, as described in Mehta et al. [2012]. First, they integrate
along the y’-axis and store the result for each x’. Second, they filter
the 1D result along the x-axis® to get the final noise-free image.

Ny =

3.2 Motivation

The idea is to speed up the integrals for computing the sheared filter,
similar to speed-ups obtained by factoring function transforms—for
example when converting an image into basis coefficients such as

SIn practice, they filter the noisy 2D image by separating the filter further
along the image axes; thus their overall filter is 1D.

Fast 4D Sheared Filtering for Interactive Rendering of Distribution Effects . 75

spherical harmonics, fourier or wavelets. In that canonical case, an
image of N x N pixels is transformed into N2 function coefficients,

h(u,v)=/ f, wx, y;u, v)dxdy, (6)

where f(x, y) is the image or function on a 2D domain, h(u, v)
are the basis coefficients, and w(x, y;u, v) are the basis functions.
A direct implementation has cost O(N*). However, if the basis is
separable along x and y as w, (x; u)w,(y; v), we can write

h(u, v) = / (/ f(x, y)wx(x;u)dx> w,(y; v)dy. 7)

A two-stage factored algorithm can reduce complexity:

g(u,y)=/f(x,y)wx(x;u)dx
(8)
hu, v) = / 20, Yy (: v) d,

where both steps are now O(N?).°

Axis-aligned filtering methods that first integrate samples and
then perform image-space convolutions exploit a similar speedup.
However, sheared filtering is a slow algorithm because the filter
is not separable. Unlike in Equation (7), y is not an independent
variable in Equation (5). Hence, we cannot directly separate the
dimensions of the sheared filter. Also note that for different x,
we have varying 7, values in Equation (5). This prevents us from
separately integrating along the y’-axis, because the filter’s center
y is uncertain.

4. FAST 4D SHEARED FILTERING

We now describe our fast sheared filtering algorithm in its full
four-dimensional form. Our key insight is that with an appropriate
factorization, the general 4D sheared filter can be made separable
into a two-stage 2D integral. By further factoring these 2D integrals
into 1D integrals, greater speedups are obtained. We enable inter-
active frame rates, with overhead not significantly different from
axis-aligned filtering, but with much lower sample counts. Table I
gives the computational complexity of the various steps.

4.1 4D Sheared Filtering

Consider the 4D form of Equation (3), with both x and y split into
two dimensions each. The sheared filtering integral becomes

h(xy, %) = /// FOp, x5, v y)w, (x] — xpwy (x5 — x2)

wy (yy — yi(x1, XD)w, (v — y2(x2, x3)) deydyjdxsdys,
&)

where we have omitted the standard deviations for clarity.
Following the definitions in flatland, here (x, x,) represent re-
ceiver space coordinates (pixel coordinates) and (y;, y,) repre-
sents the light space coordinate. The w,(x] — x1), w,(x) — x2)
are (spatially-varying) convolutions for each pixel (x;, x;), while
wy(y; — y1), wy(¥5 — y2) are integrals which eliminate y| and yj.
Similar to Egan et al. [2011b], we require that the area light
is parameterized with orthogonal basis vectors, guaranteeing that

SFurther speed-ups may of course be obtained by a Fast Fourier Transform
or an in-place wavelet transform, but are not immediately relevant to the
sheared Gaussian filters used in this article.

Table 1.
Computational complexity (per-pixel) and input/output dimensions
of various methods. The integral dim. column is the number of
dimensions we integrate over. Bold is the overall complexity (most
expensive step for the factored algorithms). Here n is the linear
filter size, and [? is the number of samples per pixel.

Input | Output | Integral

Method dim. dim. dim. Complexity
[4Dshearedfiltering | 4 [2 [4 [owd |
[Axis-aligned filtering [2 [2 [2 [O(n)]

2D factoring, Step 1 4 3 2 oml?)

2D factoring, Step 2 3 2 2 O(nl)

Our Method, Step 1a 4 4 1 o)

Our Method, Step 1b 4 3 1 O(nl)

Our Method, Step 2a 3 3 1 0@?

Our Method, Step 2b 3 2 1 o)

(x1, y1) and (x2, y2) span orthogonal 2D subspaces of the 4D light
field. For the simplicity of derivation and implementation, x; and
y; are arranged as parallel, and the same for x, and y,.

Solving this 4D sheared filtering integral efficiently is a long-
standing problem. There are two main challenges. First, the convo-
lution center on the y-plane (y;, y2) is determined by the relative
deviation on the x-plane, or (x; — x;, xj — x,). This indicates that
yi and y, are functions of x| and x; respectively, making the filter
nonseparable between x and y. Second, the visibility function f is
sampled over the entire 4D space. Unlike the 2D x-plane, which
is regularly divided as a pixel grid over the output image, the 2D
y-plane is continuous, over which different pixels (xy, x;) could
(and should) sample at different locations. This means separating
samples on y; and y, is difficult. Hence, neither the filters nor the
samples can be easily separated.

To analyze the computational complexity, we define the image
resolutionin (x;, x,)as N x N = O(N?), where atypical N ~ 1000.
We define the extent of the sheared filter in w(x — x”), corresponding
to the integrals in x| and x} as n, where we use n < 32. The number
of light samples along y; or yj is small and can almost be taken
as a constant, since sheared filtering works with very low sample
counts. We define this as /, where typically / < 4.

As shown in Table I, the input dimensionality (of f) is 4D, and
the output is a 2D image. The computational complexity is O(N?)
for the output, and O(n%?) for the integral for each pixel. The
effective complexity is thus O(N2n??), or O(n?[?) per pixel. In
contrast, the spatially-varying image-space convolutions in axis-
aligned filtering can be performed in O(N?n) time or O(n) per
pixel, using image-space separable Gaussian filters. We will show
that our final separated sheared filtering algorithm has only slightly
higher O(N?nl) complexity or O(nl) per pixel instead of O(n%?).

4.2 Separating into Two 2D Integrals

The last section showed that neither the filters nor the samples
are easily separable, which would suggest that accelerating the 4D
sheared filter is very difficult. Our key insight is that while separating
(x1, x2) and (y1, y2) dimensions directly is not possible, we can try
to separate the (x;, y;) and (x,, y,) dimensions as shown in Figure 3.
In this section, we show how the 4D sheared filter becomes a product
of two independent 2D sheared filters applied over the (x;, y;) and
(x2, y2) planes respectively, and we develop a two step factored
algorithm. We keep the samples and reduce their dimension at each

ACM Transactions on Graphics, Vol. 35, No. 1, Article 7, Publication date: December 2015.

L.-Q. Yan et al.

T2 X

v = | [T ¥

L

Fig. 3. Separating a 4D sheared filter into a product of two independent 2D
sheared filters in (x, y;) and (x2, y2). Note that, as discussed in Section 4.1,
separating a 4D sheared filter into 2D filters over x-plane and y-plane
respectively is more intuitive, but not feasible in theory.

X1 Y2 z1 Y1

filtering step, eliminating the dependency between y; and y, by
integrating them one by one.

Step 1. We first apply one sheared filter in the x;y; plane, effec-
tively evaluating the inner two integrals in Equation (9). Since y,
and x| are related by Equation (5), we also remove y;. We denote
the three dimensional filtered integral of f as g:

g(x1, Xy, y5) = (10)
/ FO K v (e, — 30w, (v — i (er. €y de]dy).

Once again, we omit the standard deviations on the Gaussians for
clarity. The complexity of this step is O(N2nl?), since g needs to be
evaluated at O(N?[) points, and the integral has complexity O(nl).
The per-pixel cost is thus reduced from O(n*?) to O(nl?).

Step 2. Once g is computed, we apply the second sheared filter.
We integrate along x} and y; to determine the final pixel irradiance
h(x1, x,). Similarly, y, is eliminated since it is determined by the
value of x) — x»,:

h(x1.x2) = f / B(X1. Xy, YW (5 — x2)wy (¥ — vz, xp) syl (1)

The complexity of this step is O(N>nl) or O(nl) per pixel. It is
less than step 1, since we only need to produce a 2D output, and the
dimensionality of g is already less than that of f.

In theory, the separation of the 4D filter into a product of two
2D filters in Equations (10) and (11) is exact only when the filter
kernels remain constant over the image plane. However, similar to
separating a 2D box filter over an image into a two-pass orthogonal
linear filter, the inaccuracy when this approximation is violated is
usually negligible in practice. We will evaluate our approximation
against brute force 4D sheared filtering in Section 6, and limitations
are shown in Figure 11.

4.3 Separating into 1D Integrals

While the separation into two 2D integrals provides savings, the
first step in Equation (10) is still expensive, with complexity O (nl?)
per pixel. We derive a further factorization into 1D integrals, with
a two-step computation of each 2D step. Both 2D filters have a
sheared shape in the xy plane. The basic idea is to separate the
sheared filter’s shape into a pre-convolution and a collection as in
Figure 4.

Step 1a. To compute g in Step 1 efficiently, we first perform a
pre-convolution for each y; (outer integral in Equation (10)), to
produce an intermediate result p:

p(Xi%,yl,yé)=/f(xtx;,yi,yé)w>-(yi —yndy;. (12)

There are several important points to note here. Unlike elsewhere
in this section, y; is an independent variable, and p is precomputed

ACM Transactions on Graphics, Vol. 35, No. 1, Article 7, Publication date: December 2015.

4
’
’input output y
samples ~ samples ~ ' ' ‘).C' ! ,
YR VAT Ny P
I :I * FLe ¢ o o 0
SRR R R
I o o |
X —H—Q—%—Q—Q—>
O‘:“‘r‘:' ¢ 4 & 4 Y
¢¢Od6 ||||\+\\||
B s e e e et .
G I SRR SR T I I R 3
(a) Step a (b) Step b

Fig. 4. We first separate the 4D sheared filter into two 2D sheared filters,
and then evaluate each 2D filter in two 1D integration steps. As shown in (a),
we first convolve along the y-axis and compute a y-dependent function (we
show the visibility samples with open circles, and reconstruction locations
with filled black circles, and the red circle shows an example convolution).
Then in (b), we convolve along the x-axis to remove the y-dependence,
effectively collecting pre-convolved samples along the shear direction, using
the nearest neighbor pre-convolved values (shown in red).

(pre-convolved) for each y; in preparation for step 1b, where y; will
be expressed as usual in terms of x; and x;. p is calculated for each
pixel (x], x5) and each value of y;.

Since y; is a continuous parameter, we discretize (stratify) the
range of y, into O(l) bins.” In practice, accurate reconstruction
requires about 4/ bins. Since / < 4 in our case, we use 16 bins.

Note that p needs to be stored at O(N?/?) points, and the cost
of the integral is O(/), so that the total complexity is O(N2I3) or
O(I?) per pixel. While this is still cubic, note that [< n is a small
constant (typically / < 4), and this cost is generally less than the
O(nl?) per-pixel complexity of Equation (10).® In practice, step 1a
is not even the most expensive in our implementation.

Step 1b. After this pre-convolution step, we can finally compute g
by applying the filter in the x-dimension (inner integral in Equation
(10) as follows:

g(xh)Cé,yQ)=/p(XI,XQ,y1(X1,XI), y)wy(x — xp)dxp. (13)

This is a 1D integral that does a “gather” around x,. Since p is
already computed, it can be quickly queried. Note that the parameter
y1 on right, is a function of x| — x; as usual, and is also integrated
out in this step. Since we still need to filter and integrate g along y;,
we also discretize y; into O(/) bins, similar to yi.0

The complexity of this step is O(N2nl) since we need to store
g at O(N?I) values, and the integral has complexity O(n). The
per-pixel cost is thus O(I* + nl) from combining steps 1a and 1b.
In practice, the sheared filter size n is about 32 pixels, while the
number of samples on the light /? is usually about 16. Hence we have
n > I? and step 1b dominates, with the net per-pixel complexity

7In practice, we use uniform jittered sampling so the samples for a given
pixel are offset the same way in each stratum, but this is not critical for our
method as long as stratified sampling is used.

8Just as in practice we must use & 4/ bins, we need a similar number of bins
for storing y} in Equation (10), since the jitter offsets for different pixels are
different for the next step.

9Instead of enumerating each possible y5 value and searching for feasible p
samples, we instead use an inverse method by projecting different y) values
of the p samples onto the discretized y} space.

Fast 4D Sheared Filtering for Interactive Rendering of Distribution Effects - 77

being O (nl). Note that this is the square root of the original O(n*I%)
complexity in Equation (9).

Step 2a. As for step 1, we separate the sheared filter in step 2 into
two 1D filters. Similar to step 1a, we first pre-filter the result of step
1b, and determine the result g for every possible y;:

q(x1, x5, y2) = /g(xl,x;,yé)wy(yé—yz)dyé- (14

Step 2b. Finally, we integrate on x5 while quickly querying g,

h(xi, x2) = / q(x1, x5, y2(x2, x5))w (x5 — x) dx;. 15)

This last step also integrates out the y, dependence, because y,
depends in the usual way on x, — x,. Finally, we have evaluated the
4D integral of h in Equation (9) using four 1D filters.

The complexity of step 2a is O(N?1?) and of step 2b is O(N>n).
Since n > [?, the last step dominates and the net per-pixel cost is
O(n) per pixel, as compared to O (nl) for Equation (11). Step 1b is
the overall dominant cost, which is O(nl) per pixel. Since [is a small
constant, this is effectively O(n) per pixel, and the computational
complexity is comparable to (but with higher constants than) axis-
aligned filtering.

5. IMPLEMENTATION

Our implementation involves two basic components, as in most
previous work: Sampling by ray or path tracing to obtain the original
noisy samples of f(-), and filtering or reconstruction by fast sheared
filtering. We implement our algorithm using OptiX 3.0 and CUDA
5.0 inter-operation. We use OptiX to do the sampling step, and
we store the result in OptiX buffers. Then we use four sequential
CUDA pixel shader passes to perform our four-pass filtering. We
will release the source code online upon publication. Note that
while we have described filtering using integrals above, these map
almost directly to discrete summations over a grid of points. We
now discuss a few important details of the implementation.

Ray Tracing and Sampling. To reduce memory footprint while
avoiding banding artifacts, we use uniform jittered sampling [Ra-
mamoorthi et al. 2012], so that a given pixel’s samples have the same
random offset on a regular stratifed sampling grid. This makes it
easier for the filtering steps, that can now operate on a regular grid,
as well as in reducing memory in storing samples for intermediate
stages. For soft shadows and depth of field, we sample uniformly on
the light and lens respectively (and use Gaussian filter weights which
account for the Gaussian intensity and aperture respectively). For a
given pixel, we store the jitter value (€ [0, 1]%), and each sample’s
visibility or radiance, that is, discrete samples of the function f(-)
for filtering. These samples also determine the pixel’s frequency
information, and ultimately the slope bounds for the sheared filter,
Smin and spax. In contrast to previous work on axis-aligned filtering,
we use only a single (nonadaptive) sampling pass, since our sam-
pling rates (4 to 16 samples per pixel) are so low; these samples
determine both f(-) and the sheared filter.

Filtering. Our filtering algorithm was described in the previous
section. We clamp the maximum filtering range to a diameter of
32 pixels; this prevents rapid changes in rendering speed when the
view is changed. The number of discrete bins used in filtering steps
la and 1b for storing y values is 16 ~ 4/. In steps 1b and 2b, it
is required that we filter along x;, x, directions exactly—these are
given by the projection of the light’s axes y;, y, on the receiver for
soft shadows. So, we first compute each pixel’s x; and x, in the
world coordinate frame, sample along each direction, then project

normal

ray A A
camera (©) sample /g
y ‘\\\ (] Ol
\ "\ ()
<~ normal nd !
R 2"proj [& i ® eofe,
\ , / N 2
\ X / A ﬂ 2
\ - 1 lan
Je .- view plane /
7% ¥ proj. reciever teceiver/ i
-
(a) (b)

Fig. 5. (a) Since soft shadows must be filtered along x1, x, axes as de-
fined by the light source, we first determine these axes in screen space, by
projection from the light to the receiver and then to image space. (b) We
sample indirect illumination along the v-plane instead of the usual cosine-
hemisphere sampling.

the sampled point back to the screen as shown in Figure 5(a). For
indirect illumination, the filtering directions x,, x; are orthogonal in
world space to the receiver normal, and locally aligned. For depth
of field x, x, are exactly along the screen’s row and column axes,
so the filtering algorithm can be applied directly.

Slope Smoothing for Soft Shadows. After the initial sampling,
many pixels on the edges of shadows do not have valid Smin, Smax
values (if none of the samples hit occluders), which causes edge
artifacts. Hence, similar to Mehta et al. [2012], we obtain the slope
range for unoccluded pixels by smoothing over a 5 x 5 window. The
(small) time for this operation is shown as pre-filtering in Table II,
and included in the total overhead of our algorithm.

Adaptive Sampling for Depth of Field. For depth of field, for some
pixels, the slope bounds s, and sy,;, could be of opposite signs. In
such cases, the shear value can be close to zero, and the filtering is
inaccurate. As in [Vaidyanathan et al. 2015], we find that using axis-
aligned filtering gives better results for pixels with Spax * Smin < O.
These pixels usually need more samples even with filtering, so we
trace a fixed 36 more samples for such pixels in a second sampling
pass (and then do standard axis-aligned filtering—this small post-
filtering time is reported as part of the overhead in Table II). In most
cases, the fraction of the image that requires further sampling is
very small. For the scene of Figure 7, the first pass requires 9 spp
and the average from the second pass is 2.2 spp.

Sampling/Filtering for Indirect Illumination. As described in Sec-
tion 3.1, indirect illumination must be filtered in v-space, and hence
we also sample on the v plane. For a single pixel, we map a uniform
jittered sample with a cubic function and a scaling, to approximate
the nonuniform PDF of the diffuse transfer function y (v, v2) on
(v, v2) € [—5, 517, and then compute the ray direction, as shown in
Figure 5(b). Theoretically, the range of (v;, v,) is the infinite plane,
but our truncation contains over 99% of the total energy of y(-) and
only introduces a very small bias. Note that we apply the BRDF
weight to each sample (v, v;) and also account for the sampling
PDF. Finally while filtering in steps 1a and 2a, we use a box function
instead of a Gaussian as for soft shadows and depth of field, since
the BRDF transfer function is no longer a Gaussian. Steps 1b and
2b (spatial filtering) can still use Gaussian weights.

6. RESULTS

Our results are produced on an Intel 6-core 3.6GHz i7-4960X CPU,
with a NVIDIA GTX Titan video card. We show results for in-
teractive soft shadows in Figures 1(a) and 6; depth of field in

ACM Transactions on Graphics, Vol. 35, No. 1, Article 7, Publication date: December 2015.

7:8 .

L.-Q. Yan et al.

o
(

fps () MC Input
9 spp, 0.05s

:;) Soft Shadows (Ours), 9 spp, 12.2

(c) AAF (ET)
13 spp, 0.08s

(@) AAF (EQ)
46 spp, 0.30s

(e) Ours
9 spp, 0.08s

) Gr. truth () 4D SHF
1K spp, 3.94s 9 spp, 2.92s

Fig. 6. The CAMEL scene with soft shadows, rendered at 12.2 fps with 9 samples per pixel (spp), demonstrates our ability to accurately reconstruct
overlapping and thin-occluder shadows. Comparisons show (b) noisy unfiltered MC input to our method (note that we store individual samples for sheared
filtering), (c) Equal time (ET) Axis-aligned filtering (AAF) retains some low-frequency noise, and overblurs sharp shadow edges (since we use p < 1) (d)
Equal time (EQ) AAF is 4x slower, while (g) simple 4D sheared filtering is 50x slower.

Table II.
Detailed timings of our scenes (in milliseconds) rendered at 720 x 720. Cars and Camel show soft shadows, Pool and Still Life are
depth of field, Room and Sibenik are diffuse global illumination. We list triangles and samples per pixel for all six scenes (Pool uses
spheres rather than triangles). We also list the per-frame sampling time for raytracing in Optix, followed by timings for various stages
or our algorithm, and the total overhead for fast sheared filtering. For comparison, we also list the total overhead for axis-aligned
filtering. Finally, we list the total time and frame rates. We achieve interactive frame rates of 3-12 fps on a variety of complex scenes.

Sampling Our fast GPU sheared filtering algorithm AAF Total
Optix Pre/Post | Step la | Step Ib | Step2a | Step2b | overhead || AAF time

Scene Tris Spp (ms) filt.(ms) (ms) (ms) (ms) (ms) (ms) (ms) (ms) fps
CARS 4K 8 85.2 8.2 4.0 28.6 114 16.2 68.4 32.0 153.6 6.5
CAMEL 43K 9 48.0 43 2.0 144 5.7 7.6 34.0 16.0 82.0 | 12.2
POOL - 11.0 69.5 1.2 4.8 25.8 11.3 20.6 63.7 13.0 133.2 7.5
STILL 233K | 11.2 146.0 2.0 6.4 44.0 11.1 224 85.9 18.0 231.9 4.3
LIFE

ROOM 163 K 16 310.0 - 7.5 47.9 11.5 23.8 90.7 75.0 400.7 2.5
SIBENIK 75K 16 2252 - 7.5 40.8 115 23.0 82.8 72.5 310.0 3.2

Figures 1(b) and 7; and diffuse indirect illumination in Figures 1(c)
and 8. We compare to stratified Monte Carlo sampling without
filtering, unaccelerated 4D sheared filtering [Egan et al. 2011b],
and to axis-aligned filtering [Mehta et al. 2012, 2013]. The accom-
panying video shows animations and screen captures with moving
light source, viewpoint and some examples of dynamic geometry.
We require no precomputation except the ray-tracer BVH, and each
frame is rendered independently.

6.1 Accuracy and Speedup over Monte Carlo

The accuracy of our method, and the benefit of filtering over strat-
ified Monte Carlo is evident from the figures, for all three visual
effects (soft shadows, defocus, diffuse global illumination) in a
number of different situations. We take as input a Monte Carlo
result with 4-9 average samples per pixel for depth of field and
soft shadows, and 16 samples per pixel for indirect illumination.
As shown in the insets of Figure 1, and Figures 6(b)-8(b), this in-
put is very noisy, but our fast sheared filtering technique produces
visually accurate results compared to ground truth Monte Carlo
with 1024-4096 samples, which is 100-200x slower. A quantitative

ACM Transactions on Graphics, Vol. 35, No. 1, Article 7, Publication date: December 2015.

comparison is in the graph of Figure 9. While the quantitative errors
are somewhat higher than from a visual comparison, our method
converges with more samples, and for equal RMS error, reduces the
number of samples needed by over an order of magnitude compared
to Monte Carlo, and about 6x relative to axis-aligned filtering.

6.2 Timings

In Table II, we show timings for steps of our algorithm on different
scenes, rendered at a resolution of 720 x 720. The CARS scene in
Figure 1 has 4K triangles with soft shadows from two area lights,
each sampled with 4 samples per pixel (total 8 spp). The CAMEL
is a more complex example of soft shadows, rendered with 9 spp
for the light. The POOL (which uses spheres, rather than triangles
as primitives) and STILL LIFE show depth of field effects, while
ROOM and SIBENIK are complex scenes with over 10° triangles,
that demonstrate diffuse indirect illumination with 16 spp. The ray-
tracing time using OptiX varies with scene complexity, from 39ms
for POOL to 310ms for ROOM. The total overhead of our method
is about 40-60ms for soft shadows and depth of field, and about
80ms for indirect illumination. This is less than the cost of raytrac-

Fast 4D Sheared Filtering for Interactive Rendering of Distribution Effects . 7:9

(a) Defocus Blur (Ours), 11.2 spp, 4.3 fps (b)) MC Input (¢) AAF (ET) (d) AAF (EQ) (e) Ours

) Gr. truth (g) 4D SHF

11.2 spp, 0.16s 15 spp, 0.22s 94 spp, 1.43s 11.2 spp, 0.23s 1K spp, 19.2s 15 spp, 12.2s

Fig. 7. The STILL LIFE with depth of field is illuminated by two point lights and rendered at 4.3 fps with only 11.2 average samples per pixel (spp).
Comparisons show (b) noisy unfiltered MC input to our method, (c) Equal time (ET) Axis-aligned filtering (AAF) retains some low-frequency noise, (d) Equal
quality (EQ) AAF is 6x slower, while (g) simple 4D sheared filtering is 45x slower. Our method (and 4D SHF) produces slight overblur for background
regions and underblur for foreground ones, and transition artifacts near the focal plane where AAF and our method switch. However, our method reduces most

noise and requires the least number of samples.

& %
L

(© AAF (ET)

P

o

= =] &
F]
| 3 R

T

() 4D SHF

(@) AAF (EQ) (e) Ours (0 Gr. truth

fps 16 spp, 0.23s 19spp, 0.32s 94 spp, 1.39s 16 spp, 0.31s 4K spp, 128.2s 16 spp, 7.1s

Fig. 8. The SIBENIK scene showing only 1-bounce diffuse indirect lighting with one point light, rendered with only 16 samples per pixel at 3.2 fps. Monte
Carlo input in (b) is noisy, while equal time axis-aligned filtering in (c) has artifacts at this low sample count. Equal quality AAF in (d) requires 6x as many
samples as our method in (e), and is 4 x slower. While there are a few artifacts remaining, our method significantly reduces noise to the level of ground truth
in (f) and simple 4D sheared filtering in (g), but is more than an order of magnitude faster.

ing in most cases, and about 25% of the total cost for the more
complex ROOM and SIBENIK scenes, resulting in only a mod-
est decrease in the overall performance of the real-time raytracer.
Step 1b, involving the gather operation is the most expensive step,
as discussed in the text, accounting for about half the total overhead.

Compared to axis-aligned filtering (AAF), our overhead is about
2x as much for soft shadows, 4x for depth of field, and only 20%
more for diffuse indirect illumination. While equal time AAF can
use slightly more samples (and adaptively sample), the many fewer
samples needed by our method provides a net win of 4x in wall
clock time and about 5 — 6x sample count reduction for equal
quality, as shown in the figures. Our algorithm does require more
memory compared to the axis-aligned approach, since we need
to store intermediate results. However, since we usually need low

sampling rates, GPU memory is usually adequate. Even for visually
indistinguishable convergence, we usually need no more than 25
samples per pixel for soft shadows and depth of field effects, and
49 samples per pixel for global illumination. We achieve interactive
frame rates of 3-12fps for a wide range of scenes.

6.3 Comparisons

Axis-aligned filtering. We use the authors’ code for soft shadows
and indirect illumination, and implement depth of field analogously.
Their user-specified parameter u is used to control filter size and
adaptive sampling rate. We use . = 1 for equal quality comparisons
in all six of our scene figures, and this requires about 5 — 6x
the sampling rate of our method. For equal-time comparisons in

ACM Transactions on Graphics, Vol. 35, No. 1, Article 7, Publication date: December 2015.

7:10 . L.-Q. Yan et al.

— 01'11‘ Method
— Axis-aligned
—— Stratified MC

0.05

0.002=5——""1p 20 =730 T00 200

samples per pixel —>

Fig.9. RMS error of the CAMEL scene as a function of sampling rate
for our method, unfiltered stratified Monte Carlo and axis-aligned
filtering with adaptive sampling. At very low sample counts, we
obtain an overall benefit of more than an order of magnitude over
Monte Carlo (even better visually), and around 4 x over axis-aligned
filtering. Moreover, our method converges to ground truth, and is
always more accurate than axis-aligned filtering.

Figures 6(c), 7(c), 8(c), we need touse . < 1 toreduce the sampling
rate. This increases the filter sizes, and slightly overblurs the image.
Low-frequency noise is also retained in high-variance regions. For
diffuse global illumination, much higher sample counts are needed,
and the equal time comparison in Figure 8(c) shows artifacts. Our
method performs better; While inaccuracies exist in out-of-focus
regions and artifacts can be seen around discontinuous geometry in
soft shadows and diffuse global illumination situations, our method
filters out most visible noise with significantly fewer samples.

Layered light field reconstruction. We use the source code of
LLFR [Vaidyanathan et al. 2015] to make comparisons with our
method both in terms of quality and speed for filtering depth-of-
field images. We use the GPU implementation of LLFR, with their
default filter width of n = 16 pixels, rather than n = 32 as used
in our results. Since the LLFR code takes as input only uniformly
sampled light fields, we disable adaptive sampling and use a con-
stant 9 spp for both depth-of-field scenes compared. LLFR requires
segmentation of the scene into depth layers, where the same filter
can be applied within a layer. Our method makes no such assump-
tions. As shown in Figure 10, LLFR produces more noise in some
regions, because the sheared spectrum it is using is not as compact
as ours due to layering. However, LLFR has a slightly lower recon-
struction time than our method, which is partly due to their use of
half-precision floating point numbers for all stored data.

4D sheared filtering. Our method is equally accurate as the full 4D
brute-force sheared filter of [Egan et al. 2011b] (compare Figures 6,
7, 8 (c) and (g)). We implemented the simple 4D sheared filter
without any of our factorizations in CUDA, so we could compare
using the same framework as our method. We used a single filtering
pass for the 4D sheared filter, which accumulates radiance from all
samples in the neighborhood of a pixel. As seen in the figures, this
is about 40 — 50x slower than our approach. For all the depth of
field results using 4D sheared filtering, adaptive sampling is used

ACM Transactions on Graphics, Vol. 35, No. 1, Article 7, Publication date: December 2015.

LLFR reconstructed LLFR 23ms Ours 4lms Ground Truth

LLFR 29ms Ours 42ms Ground Truth

LLFR reconstructed

Fig. 10. 'We compare insets of the STILL LIFE scene (top row) and the
POOL scene (bottom row) to LLFR [Vaidyanathan et al. 2015], with a
uniform 9 spp for both scenes and 12 layers for LLFR (the default). Overall,
LLFR has good quality and takes less reconstruction time than our method.
However, it usually produces more visible noise, as mentioned in Sec. 6.3,
and is limited to depth of field only. Our method makes no assumptions
about depth layers and is general enough for soft shadows and indirect
illumination as well.

according to the general sampling rate formula for sheared filters
derived in Egan et al. [2009]. At in-focus regions, since the shape of
the spectrum is no longer a double wedge, 4D sheared filtering falls
back to brute force Monte Carlo as described in Egan et al. [2009].

7. DISCUSSIONS AND LIMITATIONS

Complexity. The actual complexity of our four-step filtering should
be O(*) + O(nl) + O(1*) + O(n). Clearly, steps 1a and 1b have
cost O(I* + nl) which is [more than steps 2a and 2b. In practice,
1> < n, since [is typically 4 or less and n is 32. Therefore, step
1b dominates. Furthermore, since the O(/>) step 1a happens within
each pixel, an efficient pixel-level parallelized implemention is used
to avoid much of the overhead caused by conflicts in pixel-access.
Hence, the O(?) term can be absorbed into the numerical constant,
and the total complexity would be O (nl) per pixel.

Multiple Effects. Our method currently focuses on seperated sin-
gle effects. Simultaneously handling multiple effects [Mehta et al.
2014; Munkberg et al. 2014], including soft shadows, depth of field
and motion blur, requires filtering higher dimensional (often 5D or
6D) data, while the spectrum of each slice of the data for a sin-
gle effect still remains a sheared shape. This can be difficult, since
it further increases dimensionality and nonseparability of samples
for different effects. However, by introducing a reasonable approx-
imation, we demonstrate that multiple effects could be separated
into a combination of several individual effects. Please refer to the
Appendix for detailed derivations and results.

Limitations. For soft shadows, minor artifacts could emerge due
to projections of world space receivers to screen space, when the

Fast 4D Sheared Filtering for Interactive Rendering of Distribution Effects o 711

Soft shadows Global illumination

Depth of field

Fig.11. Comparisons of our method (top row) and the ground truth (bottom
row) in difficult regions. Our method produces minor artifacts in certain
regions as pointed out and discussed in Section 7.

receiver becomes almost perpendicular to the viewing direction
(projection from receiver to screen space collapses to a single point),
or when the light becomes normal to the receiver (the x|, x, axes
become parallel). For depth of field, inaccuracies may result when
the slope range at a pixel is large. In diffuse indirect lighting, a
small bias is introduced in sampling due to using truncated v-plane
sampling, but the bias is usually not perceivable.

When a large filter is applied to locations where the filter sizes
vary rapidly, inaccuracies could occur since our method uses sepa-
rable passes. This is often encountered when filtering near in-focus
regions for depth of field effects, resulting in slight overblur around
these regions. We do not filter between neighboring pixels if they
are distant in world space, or if they have very different normals
(angle threshold 20°). Pixels at which many such neighboring pixels
are rejected may retain noise or artifacts. Figure 11 shows some of
these difficult regions and points out the artifacts.

In depth of field rendering, our method falls back to axis-aligned
filtering in regions where Spax - Smin < 0. Therefore, ghosting ar-
tifacts may appear on the boundary where this switch occurs, for
example, around the stem of the pear in the Still Life Scene (Fig-
ure 11 middle) and the topmost apple. These transitions and ghost-
ing artifacts also occur in the original 4D sheared filtering, since the
problem is not related to separability.

Our method also suffers from the general problem of sheared
filtering — noisy occluding geometry. Since we are using a fairly
low number of sample rays, the occluding geometry may not be
accurately captured — thus the shape of the sheared filter itself could
be inaccurate and noisy. This will consequently lead to flickering
between frames. However, video comparisons show that our method
still performs better than previous methods, even when the previous
approaches use many more samples and more time.

Similar to [Egan et al. 2009], our method needs to store and filter
the entire 4D light field f(x;, x2, y1, ¥2), which is of complexity
O(N?[?). This introduces significant storage overhead, practically
limiting our method to about 25 spp for a resolution of 2K x 2K
(for our specific hardware configuration). For HD applications, a
block-wise sampling and filtering configuration could be derived
from our work with an expected but small additional performance
cost for inter-block operations. We leave this for future work.

8. CONCLUSIONS AND FUTURE WORK

We demonstrate an interactive GPU-based method of sheared filter-
ing for Monte-Carlo rendering of distribution effects. We propose a
novel factorization of the 4D sheared filter into two 2D filters, and
we further split each 2D filter into two 1D filters. We also derive a
complexity analysis for our method, and compare it to axis-aligned
filtering. Our results show soft shadows, depth of field and diffuse
global illumination at interactive speeds for complex scenes, and
we are 4x faster than axis-aligned filtering for the same quality,
with a 5 — 6x reduction in sample count.

In future work, we plan to extend our range of applications to
environment lighting or spherical harmonic occlusion [Egan et al.
2011a], and generalize our method for filtering Monte Carlo im-
ages involving higher dimensional integrals, including simultane-
ous primary and secondary distribution effects [Mehta et al. 2014;
Munkberg et al. 2014]; initial results are shown in the appendix. A
simple extension for adaptive sampling could also be considered.

Sparse sampling, followed by sophisticated filtering and recon-
struction, has emerged as an important method to dramatically speed
up Monte Carlo rendering. However, the slow performance of meth-
ods like sheared filtering have limited the performance gains and
interactivity. We have taken an important step towards real-time
physically accurate rendering, by developing the first factored GPU
4D sheared filtering method, and expect many future developments
that enable both low sampling rates and high performance.

APPENDIX: MULTIPLE EFFECTS

In this section, we focus on how to efficiently separate multiple ef-
fects (soft shadows, depth of field and diffuse global illumination)
into independent single effects. Similar to Mehta et al. [2014], we
observe that soft shadows and diffuse global illumination represent
direct and indirect lighting respectively, and they could therefore
be naturally separated. Thus, without loss of generality, we demon-
strate the derivation of our separation scheme only for the com-
bination of soft shadows and depth of field effects. Figure 12(e)
shows a separate pass for the filtered indirect illumination (using
the algorithm in the main text), that is added to the final result in
Figure 12(a).

We refer to a simplified notation, using x as (2D) screen coor-
dinate, u as lens coordinate, and y as light coordinate. Intuitively,
the pixel radiance due to direct illumination is a two-step integral.
The first or inner step filters out the correct outgoing radiance due
to the area light, and the second or outer step filters for the lens. The
equation is given by

Lan () = / (/ f(x,u,yW(x,u,y)dy) kr.w)du. (16)
u ¥

where f(x,u,y) is the BRDF term, V(x, u, y) is the visibility
term, and k(x, u) represents the texture or reflectance. Note that,
this equation is difficult to separate, because both the BRDF term
and the visibility term depend on samples from the lens and samples
from the area light.

To solve the problem, we first denote the product of the BRDF
term and the visibility term as F(x, u, y) = f(x,u,y)- V(x,u, y).
Then we introduce an approximation by replacing F for each pixel
with its average over every related lens sample u, or F(x, u, y) =~
F(x, y)|.. Then Equation (16) becomes

Lan () ~ / (/ Fe)l dy) keowde, (17)

y

ACM Transactions on Graphics, Vol. 35, No. 1, Article 7, Publication date: December 2015.

7:12 . L.-Q. Yan et al.

UNEE
e

(a) Our method, 9 spp, 580 ms (b) Ground truth, 12288 spp

(c¢) Unfiltered

(e) Filtered indirect illumi-
nation

(d) Filtered visibility

Fig. 12. The TOASTERS scene rendered with an area light, depth of field
and global illumination. Our method achieves visually plausible results but
uses only 9 samples per pixel, each sample with 1 ray for depth of field, 1
ray for soft shadows and 1 ray for indirect illumination.

We have essentially factored out the inner integral over the light for
soft shadows, and the outer integral over the lens for defocus.

We now propose a two-step filtering algorithm. For each pixel,
we sample the lens to shoot primary rays. For each valid hit, we
shoot one (or more) secondary shadow rays and compute the corre-
sponding F term. After this, we average primary rays to get F.

The following filtering steps are straightforward. We first filter
the F(x, y) light field samples, using our proposed four-step fast
sheared filtering. Then we filter the resulting (x, u) light field from
the previous step according to the lens to get the depth of field
effect, again with our fast sheared filtering algorithm. Figure 12
shows the final result as well as different stages using our method.
Compared to the claimed running time of 3.61 seconds for the same
scene using axis-aligned filtering in Mehta et al. [2014], we achieve
a 6x speed up, yet achieving a visually convincing result, although
differences are noticeable as compared to the ground truth.

Note that, the approximation we proposed is almost as conser-
vative as that introduced in Mehta et al. [2014]. In practice, it also
guarantees accuracy. When the effect of u range is small, the ap-
proximated F is accurate. This indicates that the closer to the focal
plane, the more accurate the approximation is. For those areas far
from the focal plane, since the outer integral (lens filter) dominates,
the output image is largely blurred, so minor inaccuracies of the
visibility approximation could be neglected.

The time complexity of our separation scheme is still O(nl),
because we simply perform our fast sheared filtering twice. For the
storage, the approximation allows us to store the samples for each
effect separately; that is, the storage cost is still 4D rather than 6D.
So we consider it practical and efficient for our algorithm to handle
multiple effects.

ACKNOWLEDGMENTS
We thank the anonymous reviewers for their insightful comments.

ACM Transactions on Graphics, Vol. 35, No. 1, Article 7, Publication date: December 2015.

REFERENCES

T. Annen, Z. Z. Dong, T. Mertens, P. Bekaert, and H. Seidel. 2008. Real-
time all-frequency shadows in dynamic scenes. ACM Transactions on
Graphics 27, 3, Article 34, 1-8.

U. Assarsson and T. Moller. 2003. A geometry-based soft shadow volume
algorithm using graphics hardware. ACM Transactions on Graphics 22,
3, 511-520.

L. Belcour, C. Soler, K. Subr, N. Holzschuch, and F. Durand. 2013. 5D co-
variance tracing for efficient defocus and motion blur. ACM Transactions
on Graphics 32, 3, 31:1-31:18.

J.-X. Chai, X. Tong, S.-C. Chan, and H.-Y. Shum. 2000. Plenoptic sampling.
In Proceedings of SSIGGRAPH’00. 307-318.

P. Clarberg and J. Munkberg. 2014. Deep shading buffers on commodity
gpus. ACM Transactions on Graphics 33, 6,227:1-227:12.

C. Crassin, F. Neyret, M. Sainz, S. Green, and E. Eiseman. 2011. Interative
indirect illumination using voxel cone tracing. Computer Graphics Forum
30, 7, 1921-1930.

F. Crow. 1977. Shadow algorithms for computer graphics. In Proceedings
of SSIGGRAPH’77. 242-248.

H. Dammertz, D. Sewtz, J. Hanika, and H. P. A. Lensch. 2010. Edge-
avoiding A-trous wavelet transform for fast global illumination filtering.
In Proceedings of the Conference on High Performance Graphics. 67-75.

M. Delbracio, P. Musé, A. Buades, J. Chauvier, N. Phelps, and J.-M. Morel.
2014. Boosting Monte Carlo rendering by ray histogram fusion. ACM
Transactions on Graphics 33, 1, 8:1-8:15.

F. Durand, N. Holzschuch, C. Soler, E. Chan, and E. Sillion. 2005. A fre-
quency analysis of light transport. ACM Transactions on Graphics 24, 3,
1115-1126.

K. Egan, F. Durand, and R. Ramamoorthi. 2011a. Practical filtering for
efficient ray-traced directional occlusion. ACM Transactions on Graphics
30, 6.

K. Egan, F. Hecht, F. Durand, and R. Ramamoorthi. 2011b. Frequency
analysis and sheared filtering for shadow light fields of complex occluders.
ACM Transactions on Graphics 30, 2, 9:1-9:13.

K. Egan, Y. Tseng, N. Holzschuch, F. Durand, and R. Ramamoorthi. 2009.
Frequency analysis and sheared reconstruction for rendering motion blur.
ACM Transactions on Graphics 28, 3, 93:1-93:13.

G. Guennebaud, L. Barthe, and M. Paulin. 2006. Real-time soft shadow
mapping by backprojection. In Proceedings of EGSR’06. 227-234.

G. Guennebaud, L. Barthe, and M. Paulin. 2007. High-quality adaptive soft
shadow mapping. Computer Graphics Forum 26, 3, 525-533.

T. Hachisuka, W. Jarosz, R. Weistroffer, K. Dale, G. Humphreys, M.
Zwicker, and H. Jensen. 2008. Multidimensional adaptive sampling and
reconstruction for ray tracing. ACM Transactions on Graphics 27, 3,
33:1-33:10.

. Hasenfratz, M. Lapierre, N. Holzschuch, and F. Sillion, 2003. A survey
of real-time soft shadow algorithms. Computer Graphics Forum 22, 4,
753-774.

G. Johnson, W. Hunt, A. Hux, W. Mark, C. Burns, and S. Junkins, 2009. Soft
irregular shadow mapping: fast, high-quality, and robust soft shadows. In
Proceedings of I3D’09. 57-66.

N. K. Kalantari and P. Sen. 2013. Removing the noise in Monte Carlo
rendering with general image denoising algorithms. Computer Graphics
Forum 32,2, 93-102.

S. Laine, T. Aila, U. Assarsson, J. Lehtinen, and T. Moller. 2005. Soft
shadow volumes for ray tracing. ACM Transactions on Graphics 24, 3,
1156-1165.

S. S. Lee, E. Eisemann, and H.-P. Seidel. 2010. Real-time lens blur effects
and focus control. ACM Transactions on Graphics 29, 4, 65:1-65:7.

—

Fast 4D Sheared Filtering for Interactive Rendering of Distribution Effects . 7:13

J. Lehtinen, T. Aila, J. Chen, S. Laine, and F. Durand. 2011. Temporal light
field reconstruction for rendering distribution effects. ACM Transactions
on Graphics 30, 4, 55:1-55:12.

J. Lehtinen, T. Aila, S. Laine, and F. Durand. 2012. Reconstructing the
indirect light field for global illumination. ACM Transactions on Graphics
31,4, 51:1-51:10.

K. Lei and J. F. Hughes. 2013. Approximate depth of field effects using few
samples per pixel. In Proceedings of the ACM SIGGRAPH Symposium on
Interactive 3D Graphics and Games. I3D’13. ACM, 119-128.

T.-M. Li, Y.-T. Wu, and Y.-Y. Chuang, 2012. SURE-based optimization for
adaptive sampling and reconstruction. ACM Transactions on Graphics 31,
6, 186:1-186:9.

M. McCool. 1999. Anisotropic diffusion for Monte Carlo noise reduction.
ACM Transactions on Graphics 18,2, 171-194.

S. Mehta, B. Wang, and R. Ramamoorthi. 2012. Axis-aligned filtering for
interactive sampled soft shadows. ACM Transactions on Graphics 31, 6,
163:1-163:10.

S. Mehta, YAO, J., R. Ramamoorthi, and F. Durand. 2014. Factored axis-
aligned filtering for rendering multiple distribution effects. ACM Trans-
actions on Graphics 33, 5.

S. Mehta, B. Wang, R. Ramamoorthi, and F. Durand. 2013. Axis-aligned
filtering for interactive physically-based diffuse indirect lighting. ACM
Transactions on Graphics 32, 4, 96:1-96:12.

D. Mitchell. 1991. Spectrally Optimal Sampling for Distribution Ray Trac-
ing. In Proceedings of SSIGGRAPH’91. 157-164.

J. Munkberg, K. Vaidyanathan, J. Hasselgren, P. P. Clarberg, and T. Akenine-
Moller. 2014. Layered reconstruction for defocus and motion blur. In
Computer Graphics Forum. Vol. 33. Wiley Online Library, 81-92.

R. Overbeck, C. C. Donner, and R. Ramamoorthi. 2009. Adaptive wavelet
rendering. ACM Transactions on Graphics 28, 5.

S. Paris and F. Durand. 2006. A fast approximation of the bilateral filter
using a signal processing approach. In Proceedings of the 9th European
Conference on Computer Vision (ECCV’06). 568-580.

G. Petschnigg, R. Szeliski, M. Agrawala, M. Cohen, H. H. Hoppe, and K.
Toyama. 2004. Digital photography with flash and no-flash image pairs.
In SIGGRAPH’04: ACM SIGGRAPH 2004 Papers. ACM, New York,
664-672.

M. Potmesil and I. Chakravarty. 1981. A lens and aperture camera model for
synthetic image generation. In Proceedings of SIGGRAPH’81. 297-305.

R. Ramamoorthi, J. Anderson, M. Meyer, and D. Nowrouzezahrai. 2012. A
theory of Monte Carlo visibility sampling. ACM Transactions on Graphics
3L,5.

R. Ramamoorthi and P. Hanrahan. 2001. A signal-processing frame-
work for inverse rendering. In Proceedings of SIGGRAPH'0I. 117-
128.

T. Ritschel, C. Dachsbacher, T. Grosch, and J. Kautz. 2012. The state of the
art in interactive global illumination. Computer Graphics Forum 31, 1,
160-188.

T. Ritschel, T. Engelhardt, T. Grosch, H.-P. Seidel, J. Kautz, and C.
Dachsbacher. 2009. Micro-rendering for scalable, parallel final gather-
ing. ACM Transactions on Graphics 28, 5.

F. Rouselle, C. Knaus, and M. Zwicker. 2012. Adaptive rendering with
non-local means filtering. ACM Transactions on Graphics 31, 6, 195:1—
195:11.

H. Rushmeier and G. Ward. 1994. Energy preserving non-linear filters.
131-138.

P.Senand S. Darabi. 2012. On filtering the noise from the random parameters
in Monte Carlo rendering. ACM Transactions on Graphics 31, 3, 18:1—
18:15.

P. Shirley, T. Aila, J. Cohen, E. Enderton, S. Laine, D. Luebke, and M.
McGuire. 2011. A local image reconstruction algorithm for stochastic
rendering. In Proceedings of the ACM Symposium on Interactive 3D
Graphics. 9-14.

P. Sloan, J. Kautz, and J. Snyder. 2002. Precomputed radiance transfer for
real-time rendering in dynamic, low-frequency lighting environments.
ACM Transactions on Graphics 21, 3, 527-536.

C. Soler and F. Sillion. 1998. Fast calculation of soft shadow textures using
convolution. In Proceedings of SIGGRAPH’98. 321-332.

C. Soler, K. Subr, F. Durand, N. Holzschuch, and F. Sillion. 2009. Fourier
depth of field. ACM Transactions on Graphics 28, 2, 18:1-18:12.

K. Vaidyanathan, J. Munkberg, P. Clarberg, and M. Salvi. 2015. Layered
light field reconstruction for defocus blur. ACM Transactions on Graphics
34,2,23:1-23:12.

X. Yu, R. Wang, and J. Yu. 2010. Real-time depth of field rendering via
dynamic light field generation and filtering. Computer Graphics Forum
29, 7,2099-2107.

Received October 2014; revised April 2014, August 2015; accepted August 2015

ACM Transactions on Graphics, Vol. 35, No. 1, Article 7, Publication date: December 2015.

