Motivation

Sampling and Reconstruction of Ray Tracing is a core aspect of both offline and real-

Visual Appearance time rendering today

CSE 274 [Fall 2018], Special Lecture Ray Tracing Basic topic which | cover in CSE 167
Ravi Ramamoorthi But not everyone does, this class also covers 168

Rtip el Sl el Sranr (ray tracing is a prelude to key path tracing algorithm)

Background for some (most?) of you, but critical topic
for those who haven’t seen it before, go over it fast

Important if you want to do the optional path tracer
assignment (includes a ray tracing assignment)

http://www.edx.org/course/computer-graphics

Effects needed for Realism

(Soft) Shadows

Reflections (Mirrors and Glossy)
Transparency (Water, Glass)
Interreflections (Color Bleeding)

Complex lllumination (Natural, Area Light)
Realistic Materials (Velvet, Paints, Glass)

And many more

Image courtesy Paul Heckbert 1983

Ray Tracing Outline

Different Approach to Image Synthesis as A

compared to Hardware pipeline (OpenGL) Basic Ray Casting (instead of rasterization)
Comparison to hardware scan conversion

Ray-Surface Intersection
Pixel by Pixel instead of Object by Object i

Shadows / Reflections (core algorithm)

Optimizations
Easy to compute shadows/transparency/etc P
Current Research

Ray Tracing: History Ray Tracing History

Appel 68 Ray Tracing in Computer Graphics

Whitted 80 [recursive ray tracing]
Landmark in computer graphics Appel 1968 - Ray casting

Lots of work on various geometric primitives 1. Generate an image by sending one ray per pixel

. 2. Check for shadows by sending a ray to the light

Lots of work on accelerations

Current Research
Real-Time raytracing (historically, slow technique)
Ray tracing architecture

Pat Manrahan, Spring 2009

Ray Tracing History Outline

Ray Tracing in Computer Graphics History

“An improved Basic Ray Casting (instead of rasterization)
Illumination model Comparison to hardware scan conversion
for shaded display,” .
T. Whitted, Ray-Surface Intersection
CACM 1980
R _— /. Shadows / Reflections (core algorithm)
esolution: /
Tiaa X512 Optimizations
VAX 11/780 (1979) :
74 min. Current Research
PC (2006)
6 sec. .
Spheres and Checkerboard, T. Whitted, 1979

€S3488 Lacturs 2 Pat Hanrahan, Spring 2000

Outline in Code Ray Casting

Image Raytrace (Camera cam, Scene scene, int width, int height) . .
Produce same images as with OpenGL
{ Visibility per pixel instead of Z-buffer
Image image = new Image (width, height) ; Find nearest object by shooting rays into scene
for (inti=0 ;i< height ; i++) Shade it as in standard OpenGL

for (intj =0 ;j < width ; j++) {
Ray ray = RayThruPixel (cam, i, j) ;
Intersection hit = Intersect (ray, scene) ;
imageli][j] = FindColor (hit) ;
}

return image ;

Ray Casting

Virtual Viewpoint

Virtual Screen Objects

Finding Ray Direction

Goal is to find ray direction for given pixel i and j

Many ways to approach problem
Objects in world coord, find dirn of each ray (we do this)
Camera in canonical frame, transform objects (OpenGL)

Basic idea

Ray has origin (camera center) and direction
Find direction given camera params and i and j

Camera params as in gluLookAt
Lookfrom[3], LookAt[3], up[3], fov

Constructing a coordinate frame?

We want to associate w with a, and v with b
But a and b are neither orthogonal nor unit norm
And we also need to find u

e @
[El

bxw
u:‘

|b><w||

V=wXu

From basic math lecture - Vectors: Orthonormal Basis Frames

Comparison to hardware scan-line

Per-pixel evaluation, per-pixel rays (not scan-convert
each object). On face of it, costly

But good for walkthroughs of extremely large models
(amortize preprocessing, low complexity)

More complex shading, lighting effects possible

Similar to gluLookAt derivation

gluLookAt(eyex, eyey, eyez, centerx, centery, centerz, upx,
upy, upz)

Camera at eye, looking at center, with up direction being up

Up vector

From OpenGL lecture on deriving gluLookAt (see edX MOOC)

Camera coordinate frame
Vv=wXUu

We want to position camera at origin, looking down —Z dirn
Hence, vector a is given by eye — center

The vector b is simply the up vector
Up vector

Canonical viewing geometry

ou+pv-w

|ow+ Bv -w|

fovx] (j—(width/Z) fovy
a=tan| — (X| ——— X >
width / 2 height | 2

2

Ray/Object Intersections

Heart of Ray Tracer
One of the main initial research areas
Optimized routines for wide variety of primitives

Various types of info
Shadow rays: Intersection/No Intersection
Primary rays: Point of intersection, material, normals
Texture coordinates

Work out examples
Triangle, sphere, polygon, general implicit surface

Ray-Sphere Intersection

(height [2)— i

|

Outline

History

Basic Ray Casting (instead of rasterization)
Comparison to hardware scan conversion

Ray-Surface Intersection
Shadows / Reflections (core algorithm)
Optimizations

Current Research

Outline in Code

Image Raytrace (Camera cam, Scene scene, int width, int height)

{
Image image = new Image (width, height) ;
for (inti=0;i<height; i++)
for (intj =0 ;j <width ; j++) {

Ray ray = RayThruPixel (cam, i, j) ;
Intersection hit = Intersect (ray, scene) ;
imageli][j] = FindColor (hit) ;
}

return image ;

Ray-Sphere Intersection

ray = ﬁ’:/50+[51t
sphere =(P—-C)«(P-C)-r>=0
Substitute
ray = ﬁ:ﬁo+[31t
sphere = (P, +Pt—C)+ (P, +Pt—C)-r>=0
Simplify
(B« P)+2t P,+(B,~C)+ (P, ~C)+(B,~C)-r* =0

Ray-Sphere Intersection
t2(P+P)+2t P,+(P,~C)+(P,~C)+(P,-C)~-r*=0

0
Solve quadratic equations for t

2 real positive roots: pick smaller roo

Both roots same: tangent to sphere /O

One positive, one negative root: ray
origin inside sphere (pick + root)

Complex roots: no intersection (check

discriminant of equation first) /O

Ray-Triangle Intersection

One approach: Ray-Plane intersection, then

check if inside triangle b A (BA)
_A)x(B—

Plane equation: " C=Ax(BE=A)

plane=P+ii—A«ii=0

Ray inside Triangle

Once intersect with plane, still need to find if in
triangle

Many possibilities for triangles, general polygons
(point in polygon tests)

We find parametrically [barycentric coordinates]. Also
useful for other applications (texture mapping)

B
P=aA+pB+yC

20,420,720
o+B+y=1

Ray-Sphere Intersection

Intersection point: ray = P= 150 4 ét

Normal (for sphere, this is same as coordinates
in sphere frame of reference useful other tasks)
—©
-C

normal =

Ray-Triangle Intersection

One approach: Ray-Plane |ntersect|on then
check if inside trlang\le

Plane equation:

plane=P+fi—A+fi=0
Combine with ray equation:

Ray inside Triangle

B P=aA+pB+yC
20,420,720
a+f+y=1

P—A=B(B-A)+7(C—A)
0<B<1,0<y<1
B+y <1

Other primitives
Much early work in ray tracing focused on ray-
primitive intersection tests
Cones, cylinders, ellipsoids
Boxes (especially useful for bounding boxes)
General planar polygons

Many more

Transformed Objects

E.g. transform sphere into ellipsoid

Could develop routine to trace ellipsoid
(compute parameters after transformation)

May be useful for triangles, since triangle after
transformation is still a triangle in any case

But can also use original optimized routines

Transformed Objects

Consider a general 4x4 transform M
Will need to implement matrix stacks like in OpenGL

Apply inverse transform M- to ray
Locations stored and transform in homogeneous
coordinates

Ray Scene Intersection

Intersection FindIntersection(Ray ray. Scene scene)
¢
i

min_t = infinity
min_primitive = NULL
For cach primitive in scene § \
t= Intersect(ray, primitive):
if (1> 0 && t< min_t) then
min_primitive = primitive
min_t =t

|
f

retum Intersection(min_t, min_primitive)

We have an optimized ray-sphere test
But we want to ray trace an ellipsoid...

Solution: Ellipsoid transforms sphere
Apply inverse transform to ray, use ray-sphere
Allows for instancing (traffic jam of cars)
Same idea for other primitives

Outline

History

Basic Ray Casting (instead of rasterization)
Comparison to hardware scan conversion

Ray-Surface Intersection

Vectors (ray directions) have homogeneous coordinate

set to 0 [so there is no action because of translations] Shadows / Reflections (core algorithm)

Do standard ray-surface intersection as modified Optimizations

Transform intersection back to actual coordinates
Intersection point p transforms as Mp
Distance to intersection if used may need recalculation
Normals n transform as Mn. Do all this before lighting

Current Research

Outline in Code
Image Raytrace (Camera cam, Scene scene, int width, int height)
{
Image image = new Image (width, height) ;
for (inti=0;i<height; i++)
for (intj =0 ;j < width ; j++) {
Ray ray = RayThruPixel (cam, i, j) ;
Intersection hit = Intersect (ray, scene) ;
imageli][j] = FindColor (hit) ;
}

return image ;

Shadows: Numerical Issues

* Numerical inaccuracy may cause intersection to be
below surface (effect exaggerated in figure)

¢ Causing surface to incorrectly shadow itself
* Move a little towards light before shooting shadow ray

x

Mirror Reflections/Refractions

Virtual Viewpoint

Virtual Screen Objects
Generate reflected ray in mirror direction,
Get reflections and refractions of objects

Light Source

Virtual Viewpoint

Virtual Screen Objects

Shatlow agyddifiyhisiattiboked: objettisibhadow

Shading Model

I=K,+K,+Y L(K,max(l,+n0)+K_ (max(h n,0)))

i=1
Global ambient term, emission from material
For each light, diffuse specular terms
Note visibility/shadowing for each light (not in OpenGL)

Evaluated per pixel per light (not per vertex)

Turner Whitted 1980

Recursive Ray Tracing

Recursive Shading Model

For each pixel _ ¢ 6
Trace Primary Eye Ray, find intersection I=K+K+ ; iLi(Kgmax (1, +n,0)+ K (max(h, - n,0))")

Trace Secondary Shadow Ray(s) to all light(s)

Color = Visible ? llumination Model : 0 Highlighted terms are recursive specularities [mirror

Trace Reflected Ray
Color += reflectivity * Color of reflected ray

Problems with Recursion

Reflection rays may be traced forever

Generally, set maximum recursion depth

Same for transmitted rays (take refraction into
account)

Outline

History

Basic Ray Casting (instead of rasterization)
Comparison to hardware scan conversion

Ray-Surface Intersection
Shadows / Reflections (core algorithm)
Optimizations

Current Research

reflections] and transmission (latter is extra credit)

Trace secondary rays for mirror reflections and
refractions, include contribution in lighting model

GetColor calls RayTrace recursively (the | values in
equation above of secondary rays are obtained by
recursive calls)

Effects needed for Realism

(Soft) Shadows

Reflections (Mirrors and Glossy)
Transparency (Water, Glass)
Interreflections (Color Bleeding)

Complex lllumination (Natural, Area Light)
Realistic Materials (Velvet, Paints, Glass)

Discussed in this lecture
Not discussed but possible with distribution ray tracing
Hard (but not impossible) with ray tracing; path tracing next time

Some basic add ons

Area light sources and soft shadows: break into
grid of n x n point lights
Use jittering: Randomize direction of shadow ray
within small box for given light source direction
Jittering also useful for antialiasing shadows when
shooting primary rays

More complex reflectance models
Simply update shading model
But at present, we can handle only mirror global
illumination calculations

Acceleration

Testing each object for each ray is slow
Fewer Rays
Adaptive sampling, depth control
Generalized Rays
Beam tracing, cone tracing, pencil tracing etc.
Faster Intersections
Optimized Ray-Object Intersections
Fewer Intersections

We just discuss some approaches at high level

Acceleration Structures: Grids

Outline

History

Basic Ray Casting (instead of rasterization)
Comparison to hardware scan conversion

Ray-Surface Intersection
Shadows / Reflections (core algorithm)
Optimizations

Current Research

Acceleration Structures

Bounding boxes (possibly hierarchical)
If no intersection bounding box, needn’ t check objects

Bounding Box

Spatial Hierarchies (Oct-trees, kd trees, BSP trees)

Acceleration and Regular Grids

Simplest acceleration, for example 5x5x5 grid
For each grid cell, store overlapping triangles

March ray along grid (need to be careful with
this), test against each triangle in grid cell

More sophisticated: kd-tree, oct-tree bsp-tree
Or use (hierarchical) bounding boxes

Some acceleration is critical for path tracing

Interactive Raytracing

Ray tracing historically slow

Now viable alternative for complex scenes
Key is sublinear complexity with acceleration;
need not process all triangles in scene

Allows many effects hard in hardware
NVIDIA OptiX ray-tracing API like OpenGL

Recent NVIDIA OptiX release major advance
Ray tracing now practical for games
Integration with Microsoft’s DirectX
Dedicated Hardware
Machine Learning for denoising (later in course)

— Ring - Stencil Routing

Glass Ball - Stencil Routing

— Cornell Box - Bitonic Sort

Cornell Box - Increased Search Radius

Raytracing on Graphics Hardware

Modern Programmable Hardware general
streaming architecture

Can map various elements of ray tracing

Kernels like eye rays, intersect etc.

In vertex or fragment programs

Convergence between hardware, ray tracing
[Purcell et al. 2002, 2003]
http://graphics.stanford.edu/papers/photongfx

10

