
1

Sampling and Reconstruction of
Visual Appearance

CSE 274 [Fall 2018], Special Lecture Ray Tracing

Ravi Ramamoorthi
http://www.cs.ucsd.edu/~ravir

Motivation
§  Ray Tracing is a core aspect of both offline and real-

time rendering today

§  Basic topic which I cover in CSE 167

§  But not everyone does, this class also covers 168
(ray tracing is a prelude to key path tracing algorithm)

§  Background for some (most?) of you, but critical topic
for those who haven’t seen it before, go over it fast

§  Important if you want to do the optional path tracer
assignment (includes a ray tracing assignment)

§  http://www.edx.org/course/computer-graphics

Effects needed for Realism

§  (Soft) Shadows

§  Reflections (Mirrors and Glossy)

§  Transparency (Water, Glass)

§  Interreflections (Color Bleeding)

§  Complex Illumination (Natural, Area Light)

§  Realistic Materials (Velvet, Paints, Glass)

§  And many more

Image courtesy Paul Heckbert 1983

Ray Tracing

§  Different Approach to Image Synthesis as
compared to Hardware pipeline (OpenGL)

§  Pixel by Pixel instead of Object by Object

§  Easy to compute shadows/transparency/etc

Outline
§  History

§  Basic Ray Casting (instead of rasterization)
§  Comparison to hardware scan conversion

§  Ray-Surface Intersection

§  Shadows / Reflections (core algorithm)

§  Optimizations

§  Current Research

2

Ray Tracing: History

§  Appel 68

§  Whitted 80 [recursive ray tracing]
§  Landmark in computer graphics

§  Lots of work on various geometric primitives

§  Lots of work on accelerations

§  Current Research
§  Real-Time raytracing (historically, slow technique)
§  Ray tracing architecture

Ray Tracing History

Ray Tracing History Outline

§  History

§  Basic Ray Casting (instead of rasterization)
§  Comparison to hardware scan conversion

§  Ray-Surface Intersection

§  Shadows / Reflections (core algorithm)

§  Optimizations

§  Current Research

Outline in Code
Image Raytrace (Camera cam, Scene scene, int width, int height)
{

 Image image = new Image (width, height) ;

 for (int i = 0 ; i < height ; i++)

 for (int j = 0 ; j < width ; j++) {

 Ray ray = RayThruPixel (cam, i, j) ;
 Intersection hit = Intersect (ray, scene) ;

 image[i][j] = FindColor (hit) ;

 }

 return image ;

}

Ray Casting

Produce same images as with OpenGL
§  Visibility per pixel instead of Z-buffer
§  Find nearest object by shooting rays into scene
§  Shade it as in standard OpenGL

3

Ray Casting

Virtual Viewpoint

Virtual Screen Objects

Ray misses all objects: Pixel colored black Ray intersects object: shade using color, lights, materials Multiple intersections: Use closest one (as does OpenGL)

Comparison to hardware scan-line

§  Per-pixel evaluation, per-pixel rays (not scan-convert
each object). On face of it, costly

§  But good for walkthroughs of extremely large models
(amortize preprocessing, low complexity)

§  More complex shading, lighting effects possible

Finding Ray Direction

§  Goal is to find ray direction for given pixel i and j

§  Many ways to approach problem
§  Objects in world coord, find dirn of each ray (we do this)
§  Camera in canonical frame, transform objects (OpenGL)

§  Basic idea
§  Ray has origin (camera center) and direction
§  Find direction given camera params and i and j

§  Camera params as in gluLookAt
§  Lookfrom[3], LookAt[3], up[3], fov

Similar to gluLookAt derivation
§  gluLookAt(eyex, eyey, eyez, centerx, centery, centerz, upx,

upy, upz)

§  Camera at eye, looking at center, with up direction being up

Eye

Up vector

Center

From OpenGL lecture on deriving gluLookAt (see edX MOOC)

Constructing a coordinate frame?

We want to associate w with a, and v with b
§  But a and b are neither orthogonal nor unit norm
§  And we also need to find u

u = b ×w

b ×w

 v = w × u

w = a

a

From basic math lecture - Vectors: Orthonormal Basis Frames

Camera coordinate frame

§  We want to position camera at origin, looking down –Z dirn

§  Hence, vector a is given by eye – center

§  The vector b is simply the up vector

u = b ×w

b ×w v = w × u

Eye

Up vector

Center

w = a

a

4

Canonical viewing geometry

-w αu

βv

α = tan fovx

2
⎛
⎝⎜

⎞
⎠⎟
× j − (width / 2)

width / 2
⎛
⎝⎜

⎞
⎠⎟

β = tan fovy
2

⎛
⎝⎜

⎞
⎠⎟
× (height / 2)− i

height / 2
⎛
⎝⎜

⎞
⎠⎟

ray = eye + αu + βv −w

αu + βv −w

Outline

§  History

§  Basic Ray Casting (instead of rasterization)
§  Comparison to hardware scan conversion

§  Ray-Surface Intersection

§  Shadows / Reflections (core algorithm)

§  Optimizations

§  Current Research

Ray/Object Intersections

§  Heart of Ray Tracer
§  One of the main initial research areas
§  Optimized routines for wide variety of primitives

§  Various types of info
§  Shadow rays: Intersection/No Intersection
§  Primary rays: Point of intersection, material, normals
§  Texture coordinates

§  Work out examples
§  Triangle, sphere, polygon, general implicit surface

Outline in Code
Image Raytrace (Camera cam, Scene scene, int width, int height)
{

 Image image = new Image (width, height) ;

 for (int i = 0 ; i < height ; i++)

 for (int j = 0 ; j < width ; j++) {

 Ray ray = RayThruPixel (cam, i, j) ;

 Intersection hit = Intersect (ray, scene) ;
 image[i][j] = FindColor (hit) ;

 }

 return image ;

}

Ray-Sphere Intersection

ray ≡

P =


P0 +


P1t

sphere ≡ (

P −

C) i (


P −

C)− r 2 = 0

C

P0

Ray-Sphere Intersection

ray ≡

P =


P0 +


P1t

sphere ≡ (

P −

C) i (


P −

C)− r 2 = 0

Substitute

ray ≡

P =


P0 +


P1t

sphere ≡ (

P0 +


P1t −


C) i (


P0 +


P1t −


C)− r 2 = 0

Simplify

 t
2(

P1 i

P1)+ 2t


P1 i (


P0 −


C)+ (


P0 −


C) i (


P0 −


C)− r 2 = 0

5

Ray-Sphere Intersection

 t
2(

P1 i

P1)+ 2t


P1 i (


P0 −


C)+ (


P0 −


C) i (


P0 −


C)− r 2 = 0

Solve quadratic equations for t

§  2 real positive roots: pick smaller root

§  Both roots same: tangent to sphere

§  One positive, one negative root: ray
origin inside sphere (pick + root)

§  Complex roots: no intersection (check
discriminant of equation first)

Ray-Sphere Intersection

§  Intersection point:

§  Normal (for sphere, this is same as coordinates
in sphere frame of reference, useful other tasks)

 ray ≡

P =


P0 +


P1t

normal =

P −

C


P −

C

Ray-Triangle Intersection

§  One approach: Ray-Plane intersection, then
check if inside triangle

§  Plane equation:
A

B

C

n = (C − A)× (B − A)

(C − A)× (B − A)

 plane ≡

P i

n −

A i

n = 0

Ray-Triangle Intersection

§  One approach: Ray-Plane intersection, then
check if inside triangle

§  Plane equation:

§  Combine with ray equation:

A
B

C

n = (C − A)× (B − A)

(C − A)× (B − A)

 plane ≡

P i

n −

A i

n = 0

ray ≡

P =


P0 +


P1t

(

P0 +


P1t) i


n =

A i

n

t =

A i

n −

P0 i

n

P1 i

n

Ray inside Triangle
§  Once intersect with plane, still need to find if in

triangle

§  Many possibilities for triangles, general polygons
(point in polygon tests)

§  We find parametrically [barycentric coordinates]. Also
useful for other applications (texture mapping)

A
B

C

P
α β

γ

P = αA+ βB + γC
α ≥ 0,β ≥ 0,γ ≥ 0
α + β + γ = 1

Ray inside Triangle

A
B

C

P
α β

γ

P = αA+ βB + γC
α ≥ 0,β ≥ 0,γ ≥ 0
α + β + γ = 1

 P − A = β(B − A)+ γ (C − A)

0 ≤ β ≤1 , 0 ≤ γ ≤1
β + γ ≤1

6

Other primitives

§  Much early work in ray tracing focused on ray-
primitive intersection tests

§  Cones, cylinders, ellipsoids

§  Boxes (especially useful for bounding boxes)

§  General planar polygons

§  Many more

Ray Scene Intersection

Transformed Objects

§  E.g. transform sphere into ellipsoid

§  Could develop routine to trace ellipsoid
(compute parameters after transformation)

§  May be useful for triangles, since triangle after
transformation is still a triangle in any case

§  But can also use original optimized routines

Ray-Tracing Transformed Objects

We have an optimized ray-sphere test
§  But we want to ray trace an ellipsoid…

Solution: Ellipsoid transforms sphere
§  Apply inverse transform to ray, use ray-sphere
§  Allows for instancing (traffic jam of cars)
§  Same idea for other primitives

Transformed Objects

§  Consider a general 4x4 transform M
§  Will need to implement matrix stacks like in OpenGL

§  Apply inverse transform M-1 to ray
§  Locations stored and transform in homogeneous

coordinates
§  Vectors (ray directions) have homogeneous coordinate

set to 0 [so there is no action because of translations]

§  Do standard ray-surface intersection as modified

§  Transform intersection back to actual coordinates
§  Intersection point p transforms as Mp
§  Distance to intersection if used may need recalculation
§  Normals n transform as M-tn. Do all this before lighting

Outline

§  History

§  Basic Ray Casting (instead of rasterization)
§  Comparison to hardware scan conversion

§  Ray-Surface Intersection

§  Shadows / Reflections (core algorithm)

§  Optimizations

§  Current Research

7

Outline in Code
Image Raytrace (Camera cam, Scene scene, int width, int height)
{

 Image image = new Image (width, height) ;

 for (int i = 0 ; i < height ; i++)

 for (int j = 0 ; j < width ; j++) {

 Ray ray = RayThruPixel (cam, i, j) ;

 Intersection hit = Intersect (ray, scene) ;

 image[i][j] = FindColor (hit) ;
 }

 return image ;

}

Shadows

Virtual Viewpoint

Virtual Screen Objects

Light Source

Shadow ray to light is unblocked: object visible Shadow ray to light is blocked: object in shadow

Shadows: Numerical Issues
  Numerical inaccuracy may cause intersection to be

 below surface (effect exaggerated in figure)

  Causing surface to incorrectly shadow itself
  Move a little towards light before shooting shadow ray

Shading Model

§  Global ambient term, emission from material

§  For each light, diffuse specular terms

§  Note visibility/shadowing for each light (not in OpenGL)

§  Evaluated per pixel per light (not per vertex)

I = Ka +Ke + Vi

i=1

n

∑ Li (Kd max (li i n,0)+Ks(max(hi i n,0))s)

Mirror Reflections/Refractions

Virtual Viewpoint

Virtual Screen Objects
Generate reflected ray in mirror direction,
Get reflections and refractions of objects

Turner Whitted 1980

8

Recursive Ray Tracing

For each pixel
§  Trace Primary Eye Ray, find intersection

§  Trace Secondary Shadow Ray(s) to all light(s)
§  Color = Visible ? Illumination Model : 0 ;

§  Trace Reflected Ray
§  Color += reflectivity * Color of reflected ray

Recursive Shading Model

§  Highlighted terms are recursive specularities [mirror
reflections] and transmission (latter is extra credit)

§  Trace secondary rays for mirror reflections and
refractions, include contribution in lighting model

§  GetColor calls RayTrace recursively (the I values in
equation above of secondary rays are obtained by
recursive calls)

I = Ka +Ke + Vi

i=1

n

∑ Li (Kd max (li i n,0)+Ks(max(hi i n,0))s)+KsIR +KTIT

Problems with Recursion

§  Reflection rays may be traced forever

§  Generally, set maximum recursion depth

§  Same for transmitted rays (take refraction into
account)

Effects needed for Realism
  (Soft) Shadows
  Reflections (Mirrors and Glossy)
  Transparency (Water, Glass)
  Interreflections (Color Bleeding)
  Complex Illumination (Natural, Area Light)
  Realistic Materials (Velvet, Paints, Glass)

Discussed in this lecture
Not discussed but possible with distribution ray tracing
Hard (but not impossible) with ray tracing; path tracing next time

Outline

§  History

§  Basic Ray Casting (instead of rasterization)
§  Comparison to hardware scan conversion

§  Ray-Surface Intersection

§  Shadows / Reflections (core algorithm)

§  Optimizations

§  Current Research

Some basic add ons

§  Area light sources and soft shadows: break into
grid of n x n point lights
§  Use jittering: Randomize direction of shadow ray

within small box for given light source direction
§  Jittering also useful for antialiasing shadows when

shooting primary rays

§  More complex reflectance models
§  Simply update shading model
§  But at present, we can handle only mirror global

illumination calculations

9

Acceleration

Testing each object for each ray is slow
§  Fewer Rays

Adaptive sampling, depth control
§  Generalized Rays

Beam tracing, cone tracing, pencil tracing etc.
§  Faster Intersections

§  Optimized Ray-Object Intersections
§  Fewer Intersections

We just discuss some approaches at high level

Acceleration Structures

Bounding boxes (possibly hierarchical)
 If no intersection bounding box, needn’t check objects

Bounding Box

Ray

Spatial Hierarchies (Oct-trees, kd trees, BSP trees)

Acceleration Structures: Grids Acceleration and Regular Grids

§  Simplest acceleration, for example 5x5x5 grid

§  For each grid cell, store overlapping triangles

§  March ray along grid (need to be careful with
this), test against each triangle in grid cell

§  More sophisticated: kd-tree, oct-tree bsp-tree

§  Or use (hierarchical) bounding boxes

§  Some acceleration is critical for path tracing

Outline

§  History

§  Basic Ray Casting (instead of rasterization)
§  Comparison to hardware scan conversion

§  Ray-Surface Intersection

§  Shadows / Reflections (core algorithm)

§  Optimizations

§  Current Research

Interactive Raytracing

§  Ray tracing historically slow

§  Now viable alternative for complex scenes
§  Key is sublinear complexity with acceleration;

need not process all triangles in scene

§  Allows many effects hard in hardware

§  NVIDIA OptiX ray-tracing API like OpenGL

§  Recent NVIDIA OptiX release major advance
§  Ray tracing now practical for games
§  Integration with Microsoft’s DirectX
§  Dedicated Hardware
§  Machine Learning for denoising (later in course)

10

Raytracing on Graphics Hardware

§  Modern Programmable Hardware general
streaming architecture

§  Can map various elements of ray tracing

§  Kernels like eye rays, intersect etc.

§  In vertex or fragment programs

§  Convergence between hardware, ray tracing

[Purcell et al. 2002, 2003]

http://graphics.stanford.edu/papers/photongfx

