Motivation: Monte Carlo Path Tracing
Sampling and Reconstruction of T

= Key application area for sampling/reconstruction
Visual Appearance

Core method to solve rendering equation
CSE 274 [Fall 2018], Lecture 4

Ravi Ramamoorthi

Widely used in production (with sample/recon)
General solution to rendering, global illumination
hitp://www.cs. ucsd.edu/~ravir Suitable for a variety of general scenes

Based on Monte Carlo methods

Enumerate all paths of light transport

We mostly treat this as a black box, but
background is still important

Monte Carlo Path Tracing Monte Carlo Path Tracing

1000 paths/pixel

Monte Carlo Path Tracing Monte Carlo Path Tracing

Advantages ;)) Integrate radiance Specular
Any type of geometry (procedural, curved, ... f Surface
Any type of BRDF (specular, glossy, diffuse, ...) for each Plxel
Samples all types of paths (L(SD)*E) by sampling paths
Accuracy controlled at pixel level randomly
Low memory consumption
Unbiased - error appears as noise in final image

Disadvantages (standard Monte Carlo problems)
Slow convergence (square root of number of samples)
Noise in final image

Diffuse Surface
L, (W)= L, (x,W)+ j £(x, W W)L, (x, W)W’ ® i)

Simple Monte Carlo Path Tracer

Step 1: Choose a ray (u,v,6,9) [per pixel]; assign weight = 1
Step 2: Trace ray to find intersection with nearest surface

Step 3: Randomly choose between emitted and reflected light
Step 3a: If emitted,
return weight” * Le
Step 3b: If reflected,
weight’’ *= reflectance
Generate ray in random direction
Go to step 2

Outline

Motivation and Basic Idea
Implementation of simple path tracer
Variance Reduction: Importance sampling
Other variance reduction methods

Specific 2D sampling techniques

Simplest Monte Carlo Path Tracer

For each pixel,

Choose a ray with p=camera, d=(6,$) within pixel
Pixel color +=

TracePath(p, d) returns (r,g,b) [and calls itself recursively]:
Trace ray (p, d) to find nearest intersection p”
Select with probability (say) 50%:

Emitted:

return 2 * (Leeq, Legreens Lepie) // 2 = 1/(50%)
Reflected: '

generate ray in random direction d”

return 2 * f(d d’) * (n*d’) * TracePath(p’, d”)

Sampling Techniques

Problem: how do we generate random points/directions

during path tracing and reduce variance?

Importance sampling (e.g. by BRDF)
Stratified sampling

Eye
[}

Surface

Simplest Monte Carlo Path Tracer

For each pixel, cast n samples and average
Choose a ray with p=camera, d=(8,¢) within pixel
Pixel color += (1/n) * TracePath(p, d)

TracePath(p, d) returns (r,g,b) [and calls itself recursively]:
Trace ray (p, d) to find nearest intersection p”
Select with probability (say) 50%:
Emitted:

return 2 * (Leeq, L€greens Le4ie) // 2 = 1/(50%)
Reflected:

generate ray in random direction d”
return 2 * f(d »d’) * (n*d’) * TracePath(p’, d’)

Simplest Monte Carlo Path Tracer

For each pixel, cast n samples and average
Choose a ray with p=camera, d=(8,¢) within pixel
Pixel color += (1/n) * TracePath(p, d)

TracePath(p, d) returns (r,g,b) [and calls itself recursively]:
Trace ray (p, d) to find nearest intersection p

Select with probability (say) peight = Vprobabilly
Emitted: requires having f(x) / p(x)
return 7 (Leyeg, Legeem = 7

Reflected:
generate ray in random direction d”
return 2 * f(d d’) * (n*d’) * TracePath(p’, d’)

Simplest Monte Carlo Path Tracer

For each pixel, cast n samples and average
Choose a ray with p=camera, d=(6,$) within pixel
Pixel color += (1/n) * TracePath(p, d)

TracePath(p, d) returns (r,g,b) [and calls itself recursively]:
Trace ray (p, d) to find nearest intersection p’
Select with probability (say) 50%:

Emitted:
return 2 (Lereq, Legreen, Lepue) // 2 = 1/(50%)

Reflected: Path terminated when
generate ray in random direction o IS

return 2 * f(d d’) * (ned”) * TracePath(p’, d”)

Arnold Renderer (M. Fajardo)

Works well diffuse surfaces, hemispherical light

Advantages and Drawbacks

Advantage: general scenes, reflectance, so on
By contrast, standard recursive ray tracing only mirrors

This algorithm is unbiased, but horribly inefficient
Sample “emitted” 50% of the time, even if emitted=0
Reflect rays in random directions, even if mirror
If light source is small, rarely hit it

Goal: improve efficiency without introducing bias
Variance reduction using many of the methods
discussed for Monte Carlo integration last week
Subject of much interest in graphics in 90s till today

Path Tracing

C$348B Lecture 14 10 paths / pixel Pat Hanrahan, Spring 2009

From UCB class many years ago

.f;/ -
A DS
’

Outline

Motivation and Basic Idea

Implementation of simple path tracer
Variance Reduction: Importance sampling
Other variance reduction methods

Specific 2D sampling techniques

Importance Sampling Importance Sampling

Pick paths based on energy or expected contribution .
More samples for high-energy paths Can P'Ck_paths _however we want, _b_Ut
Don’ t pick low-energy paths contribution weighted by 1/probability

Already seen this division of 1/prob in weights to
At “macro” level, use to select between reflected vs emission, reflectance

emitted, or in casting more rays toward light sources

At “micro” level, importance sample the BRDF to pick

ray directions =((69)
Tons of papers in 90s on tricks to reduce variance in

Monte Carlo rendering

Importance sampling now standard in production. |
consulted on initial Pixar system for MU (2011).

Simplest Monte Carlo Path Tracer Importance sample Emit vs Reflect

For each pixel, cast n samples and average TracePath(p, d) returns (r,g,b) [and calls itself recursively]:
Choose a ray with p=camera, d=(8,¢) within pixel Trace ray (p, d) to find nearest intersection p”
Pixel color += (1/n) * TracePath(p, d)

TracePath(p, d) returns (r,g,b) [and calls itself recursively]: Emitted:
Trace ray (p, d) to find nearest intersection p” retumn ()" (Lereq: Legroen: Lebie)

i m Reflected:
0/ -
Selsctnw;th probability (say) 50%: SETEE S Y I e G 67
ittea:

return ()) * f(d =>d’) * (n*d’) * TracePath(p’, d")
return 2 * (L& eq, Legreens Le4ie) // 2 = 1/(50%)
Reflected:

generate ray in random direction d”
return 2 * f(d »d’) * (n=d”) * TracePath(p’, d”)

Importance sample Emit vs Reflect Outline

TracePath(p, d) returns (r,g,b) [and calls itself recursively]: Motivation and Basic Idea
Trace ray (p, d) to find nearest intersection p”
Implementation of simple path tracer

C be 1 unl . . .
Emitted: Variance Reduction: Importance sampling

return R ([TC T | FC R— T q 0
Reflecte(d; eSS Other variance reduction methods

generate ray in random direction d” s o q
retun () * £(d Dd’) * (ned’) * TracePath(p’, d’) Specific 2D sampling techniques

More variance reduction
Discussed “macro” importance sampling
Emitted vs reflected

How about “micro” importance sampling
Shoot rays towards light sources in scene
Distribute rays according to BRDF

Russian Roulette

Maintain current weight along path
(need another parameter to TracePath)

Terminate ray iff |weight| < const.

Be sure to weight by 1/probability

One Variation for Reflected Ray

Pick a light source
Trace a ray towards that light

Trace a ray anywhere except for that light
Rejection sampling

Divide by probabilities
1/(solid angle of light) for ray to light source
(1 — the above) for non-light ray
Extra factor of 2 because shooting 2 rays

Russian Roulette

Terminate photon with probability p
Adjust weight of the result by 1/(1-p)

E(X
E(X)=p-0+(l—p)l(_—;=E(X)

Intuition:

Reflecting from a surface with R=.5
100 incoming photons with power 2 W
1. Reflect 100 photons with power 1 W
2 Reflect 50 photons with power 2 W

CS348B Lecture 14 Pat Hanrahan, Spring 2009

Path Tracing: Include Direct Lighting

Step 1. Choose a camera ray r given the
(x,y,u,v,t) sample
weight = 1;
L=0
Step 2. Find ray-surface intersection
Step 3.
L += weight * Lr(light sources)
weight *= reflectance(r)
Choose new ray r’ ~ BRDF pdf(r)

Go to Step 2.
CS348B Lecture 14 Pat Hanrahan, Spring 2009

Monte Carlo Extensions

Unbiased
Bidirectional path tracing
Metropolis light transport

Biased, but consistent

Noise filtering
Adaptive sampling
Irradiance caching

Unbiased

Monte Carlo Extensions

Bidirectional path tracing
Metropolis light transport

Biased, but consistent
Noise filtering
Adaptive sampling Unfiltered
Irradiance caching

Filtered

Monte Carlo Extensions

Unbiased
Bidirectional path tracing
Metropolis light transport

Biased, but consistent
Noise filtering
Adaptive sampling
Irradiance caching

Stratified Sampling

Stratified sampling like jittered sampling

Allocate samples per region

N=SN, R 7%2 NF

New variance

x'm]—%j\‘lru-‘]

Thus, if the variance in regions is less than
the overall variance, re will be a
reduction in resulting variance

For example: An edge through a pixel

& -
ME)= 211 =2

Pat Hanrahan, Spring 2002

D. Mitchell 95, Consequences of stratified sampling in graphics

Monte Carlo Extensions

Unbiased
Bidirectional path tracing
Metropolis light transport

Biased, but consistent
Noise filtering
Adaptive sampling
Irradiance caching

Adaptive

Irradiance Caching Example

Final Image

Sample Locations

Comparison of simple patterns

‘ Latin Hypercube Quasi Monte Carlo

Ground Truth Uniform Random Stratified

16 samples for area light, 4 samples per pixel, total 64 samples.

Bidirectional Path Tracing Comparison

Path pyramid (k = | + e = total number of bounces)

Bidirectional path tracing Path tracing

From Veach and Guibas

Mies House: Swimming Pool Optional Path Tracing Assignment
A (strictly optional) path tracing assignment is
provided (also covers material in CSE 168)
Includes guide for raytracing if not already done

For your benefit only, optional do not turn in (since
many people wanted it for knowledge)

You can use it in final project, but don’t need to,
and may be better off using off-the-shelf renderer

If you do use it in final project, document it

Again, it is optional and not directly graded

Summary

Monte Carlo methods robust and simple (at least
until nitty gritty details) for global illumination

Must handle many variance reduction methods in
practice

Importance sampling, Bidirectional path tracing,
Russian roulette etc.

Rich field with many papers, systems researched
over last 30 years

For rest of the course, we largely take this as a
black box, focusing on sampling and reconstruction

