

Computer Graphics II: Rendering

CSE 168 [Spr 26], Lectures 18/19: Real-Time Rendering
Ravi Ramamoorthi

<http://viscomp.ucsd.edu/classes/cse168/sp26>

1

Motivation

- Today, create photorealistic computer graphics
 - Complex geometry, lighting, materials, shadows
 - Computer-generated movies/special effects (difficult or impossible to tell real from rendered...)

CSE 168 images from rendering competition (2011)

But algorithms were very slow (hours to days)

2

Real-Time Rendering

- Goal: interactive rendering. Critical in many apps
 - Games, visualization, computer-aided design, ...
- Until 20-25 years ago, focus on complex geometry

Chasm between interactivity, realism

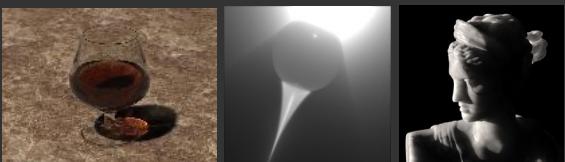
3

Evolution of 3D graphics rendering

Interactive 3D graphics pipeline as in OpenGL

- Earliest SGI machines (Clark 82) to today
- Most of focus on more geometry, texture mapping
- Some tweaks for realism (shadow mapping, accum. buffer)

SGI Reality Engine 93
(Kurt Akeley)


4

Offline 3D Graphics Rendering

Ray tracing, radiosity, photon mapping

- High realism (global illum, shadows, refraction, lighting...)
- But historically very slow techniques

"So, while you and your children's children are waiting for ray tracing to take over the world, what do you do in the meantime?" Real-Time Rendering

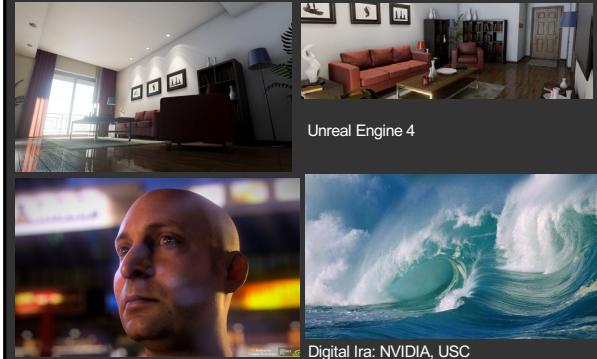


Pictures courtesy Henrik Wann Jensen

5

New Trend: Acquired Data

- Image-Based Rendering: Real/precomputed images as input
- Also, acquire geometry, lighting, materials from real world
- Easy to obtain or precompute lots of high quality data. But how do we represent and reuse this for (real-time) rendering?



6

25 years ago

- High quality rendering: ray tracing, global illumination
 - Little change in CSE 168 syllabus, from 2003 to today
- Real-Time rendering: Interactive 3D geometry with simple texture mapping, fake shadows (OpenGL, DirectX)
- Complex environment lighting, real materials (velvet, satin, paints), soft shadows, caustics often omitted in both
- *Realism, interactivity at cross purposes*

7

Today: Real-Time Game Renderings

Unreal Engine 4

Digital Ira: NVIDIA, USC

8

Today

- Vast increase in CPU power, modern instrs (SSE, Multi-Core)
 - Real-time raytracing techniques are possible (even on hardware: NVIDIA OptiX, RTX Raytracing)
- 4th generation of graphics hardware is *programmable*
 - (First 3 gens were wireframe, shaded, textured)
 - Modern NVIDIA, ATI cards allow vertex, fragment shaders
- Great deal of current work on acquiring and rendering with realistic lighting, materials... [Especially at UCSD]
- *Focus on quality of rendering, not quantity of polygons, texture*

9

Goals

- Overview of basic techniques for high-quality real-time rendering
- Survey of important concepts and ideas, but do not go into details of writing code
- Some pointers to resources, others on web
- One possibility for final project, will need to think about some ideas on your own

10

To Do

- Final Projects due Jun 9
- PLEASE FILL OUT SET EVALUATIONS!!
- KEEP WORKING HARD

11

Outline

- *Motivation and Demos*
- Shadow Maps
- Environment Mapping
- ReSTIR (briefly)

12

High quality real-time rendering

- Photorealism, not just more polygons
- Natural lighting, materials, shadows

Interiors by architect Frank Gehry. Note rich lighting, ranging from localized sources to reflections off vast sheets of glass.

13

High quality real-time rendering

- Photorealism, not just more polygons
- Natural lighting, materials, shadows

Glass Vase Glass Star (courtesy Intel) Peacock feather
Real materials diverse and not easy to represent by simple parameteric models. Want to support measured reflectance.

14

High quality real-time rendering


- Photorealism, not just more polygons
- Natural lighting, materials, shadows

Natural lighting creates a mix of soft diffuse and hard shadows.

15

Today: Full Global Illumination

16

Applications

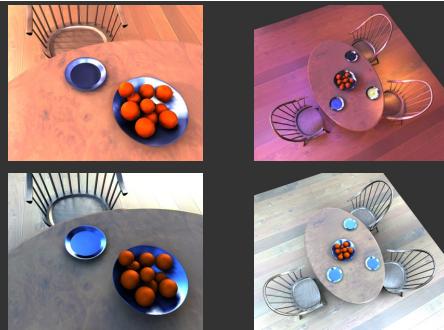
- Entertainment: Lighting design
- Architectural visualization
- Material design: Automobile industry
- Realistic Video games
- Electronic commerce

17

Programmable Graphics Hardware

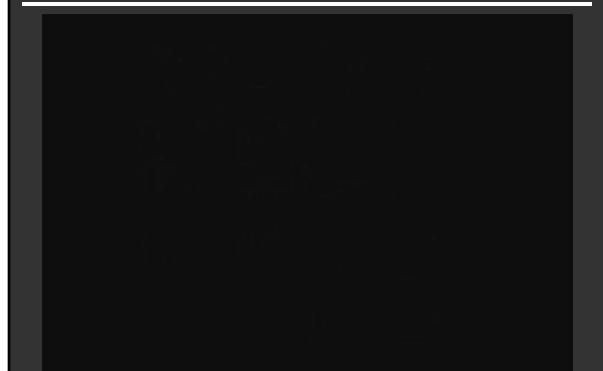
NVIDIA a new dawn demo (may need to type URL)
▪ https://www.youtube.com/watch?v=bl1_quVr_3w

19


Precomputation-Based Methods

- Static geometry
- Precomputation
- Real-Time Rendering (relight all-frequency effects)
- Involves sophisticated representations, algorithms

20


Relit Images

Ng, Ramamoorthi, Hanrahan 04

21

Video: Real Time Relighting

22

Spherical Harmonic Lighting

Avatar 2010, based on Ramamoorthi and Hanrahan 01, Sloan 02

23

Interactive RayTracing

Advantages

- Very complex scenes relatively easy (hierarchical bbox)
- Complex materials and shading for free
- Easy to add global illumination, specularities etc.

Disadvantages

- Hard to access data in memory-coherent way
- Many samples for complex lighting and materials
- Global illumination possible but expensive

Modern developments: Leverage power of modern CPUs, develop cache-aware, parallel implementations

Recent developments make real-time raytracing mainstream (NVIDIA OptiX 5 in 2017, RTX chips in 2018, denoise, DLSS)

<https://www.youtube.com/watch?v=kcP1NzB49zU>

24

NVIDIA RTX Real-Time RayTracing

"RTX will change PC gaming forever. Ray tracing and DLSS make the impossible, possible." - Robert Bagratuni, CEO, Mundfish

27

Impact: Real-Time

- Extend AAF, FSF, MAAF: Predict Filter based on Deep Learning (sample and AI-based denoising)
- NVIDIA software (OptiX 2017), hardware (RTX 2018)
- 40-year journey: ray tracing curiosity to every pixel

Whitted 79 (74 min 512x512)

NVIDIA RTX 2018, OptiX: Pixar real-time previewer

28

From SIGGRAPH 18

Real Photo: Speaker and Turner Whitted at SIGGRAPH 18

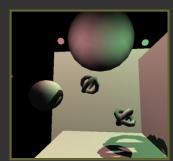
29

Outline

- Motivation and Demos
- *Shadow Maps*
- Environment Mapping
- ReSTIR (briefly)

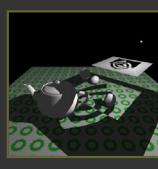
30

Shadow and Environment Maps


- Basic methods to add realism to interactive rendering
- Shadow maps: image-based way hard shadows
 - Very old technique. Originally Williams 78
 - Many recent (and older) extensions
 - Widely used even in software rendering (RenderMan)
 - Simple alternative to raytracing for shadows
- Environment maps: image-based complex lighting
 - Again, very old technique. Blinn and Newell 76
 - Huge amount of recent work (some covered in course)
- Together, give most of realistic effects we want
 - **But cannot be easily combined!!**
 - See Annen 08 [real-time all-frequency shadows dynamic scenes] for one approach: convolution soft shadows

44

Common Real-time Shadow Techniques


Projected planar shadows

Shadow volumes

Light maps

Hybrid approaches

This slide, others courtesy Mark Kilgard

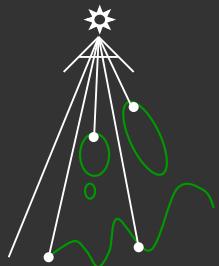
45

Problems

Mostly tricks with lots of limitations

- Projected planar shadows
 - works well only on flat surfaces
- Stenciled shadow volumes
 - determining the shadow volume is hard work
- Light maps
 - totally unsuited for dynamic shadows
- In general, hard to get everything shadowing everything

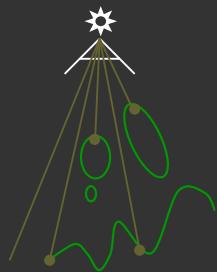
46


Shadow Mapping

- Lance Williams: Brute Force in image space (shadow maps in 1978, but other similar ideas like Z buffer, bump mapping using textures and so on)
- Completely image-space algorithm
 - no knowledge of scene's geometry is required
 - must deal with aliasing artifacts
- Well known software rendering technique
 - Basic shadowing technique for Toy Story, etc.

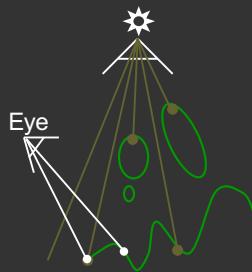
47

Phase 1: Render from Light


- Depth image from light source

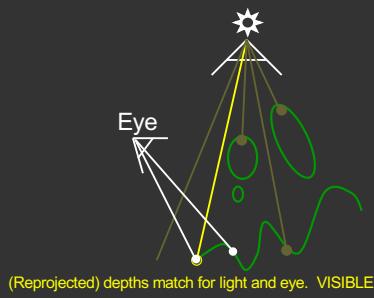
48

Phase 1: Render from Light


- Depth image from light source

49

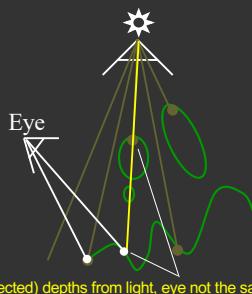
Phase 2: Render from Eye


- Standard image (with depth) from eye

50

Phase 2+: Project to light for shadows

- Project visible points in eye view back to light source

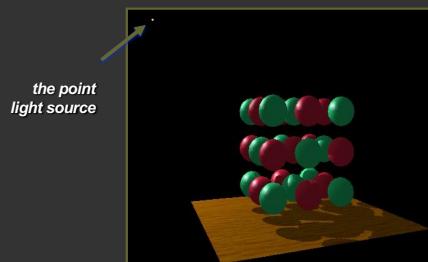


(Reprojected) depths match for light and eye. VISIBLE

51

Phase 2+: Project to light for shadows

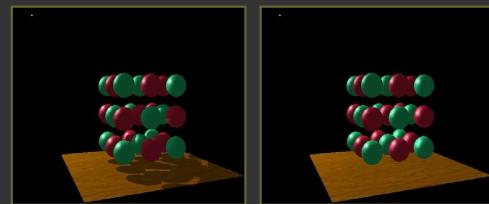
- Project visible points in eye view back to light source



(Reprojected) depths from light, eye not the same. BLOCKED!!

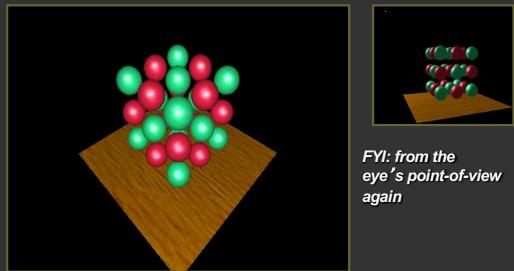
52

Visualizing Shadow Mapping


- A fairly complex scene with shadows

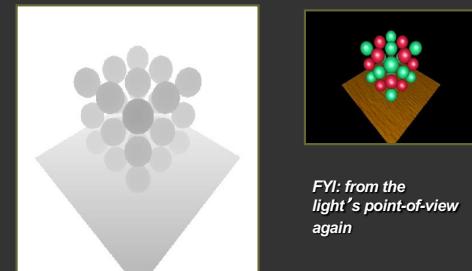
53

Visualizing Shadow Mapping


- Compare with and without shadows

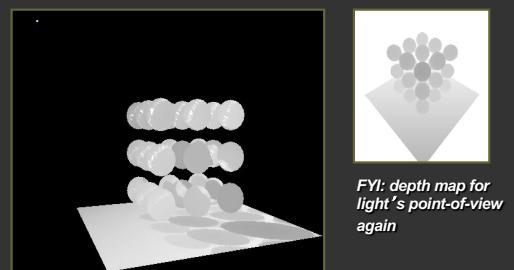
54

Visualizing Shadow Mapping


- The scene from the light's point-of-view

55

Visualizing Shadow Mapping


- The depth buffer from the light's point-of-view

56

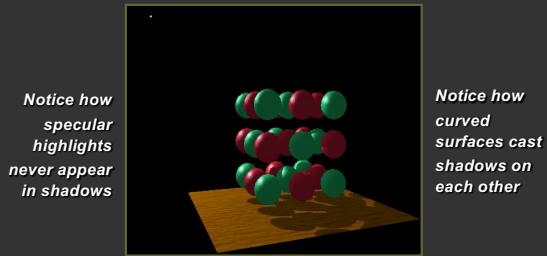
Visualizing Shadow Mapping

- Projecting the depth map onto the eye's view

57

Visualizing Shadow Mapping

- Comparing light distance to light depth map

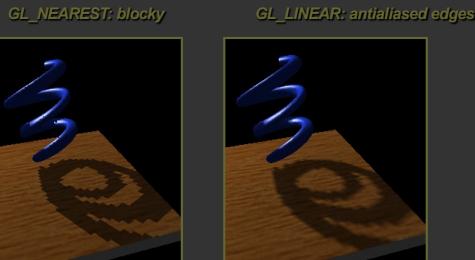

Green is where the light planar distance and the light depth map are approximately equal

58

Visualizing Shadow Mapping

- Scene with shadows

59


Hardware Shadow Map Filtering

“Percentage Closer” filtering

- Normal texture filtering just averages color components
- Averaging depth values does NOT work
- Solution [Reeves, SIGGRAPH 87]
 - Hardware performs comparison for each sample
 - Then, averages results of comparisons
- Provides anti-aliasing at shadow map edges
 - Not soft shadows in the umbra/penumbra sense

60

Hardware Shadow Map Filtering

Low shadow map resolution used to heighten filtering artifacts

61

Problems with shadow maps

- Hard shadows (point lights only)
- Quality depends on shadow map resolution (general problem with image-based techniques)
- Involves equality comparison of floating point depth values means issues of scale, bias, tolerance

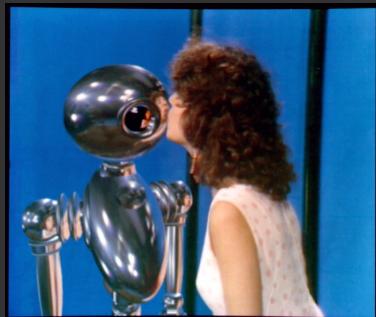
62

Outline

- Motivation and Demos
- Shadow Maps
- Environment Mapping*
- ReSTIR (briefly)

63

Reflection Maps


64

Environment Maps

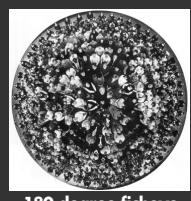
Miller and Hoffman, 1984

Environment Maps

Interface, Chou and Williams (ca. 1985)

65

66


Environment Maps

Cylindrical Panoramas

Cubical Environment Map

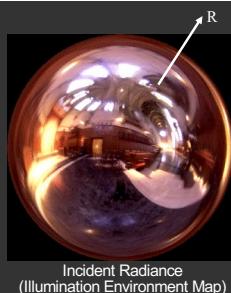
180 degree fisheye
Photo by R. Packo

Reflectance Maps

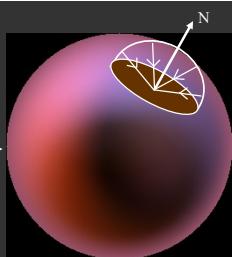
- Reflectance Maps (Index by N)
- Horn, 1977
- Irradiance (N) and Phong (R) Reflection Maps
- Miller and Hoffman, 1984

Mirror Sphere

Chrome Sphere



Matte Sphere


67

68

Irradiance Environment Maps

Incident Radiance
(Illumination Environment Map)

Assumptions

- Diffuse surfaces
- Distant illumination
- No shadowing, interreflection

Hence, Irradiance a function of surface normal

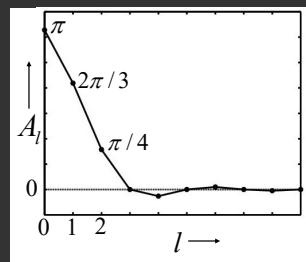
69

70

Diffuse Reflection

$$B = \rho E$$

Radiosity (image intensity) Reflectance (albedo/texture) Irradiance (incoming light)

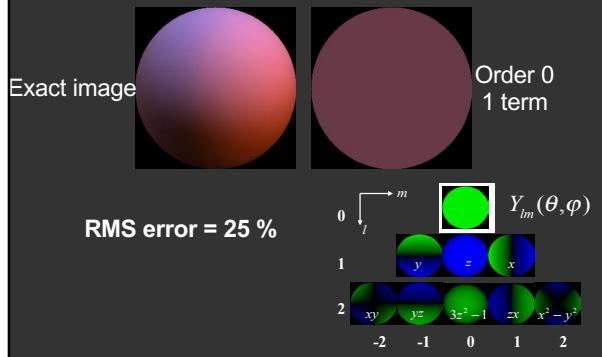

= \times

71

Analytic Irradiance Formula

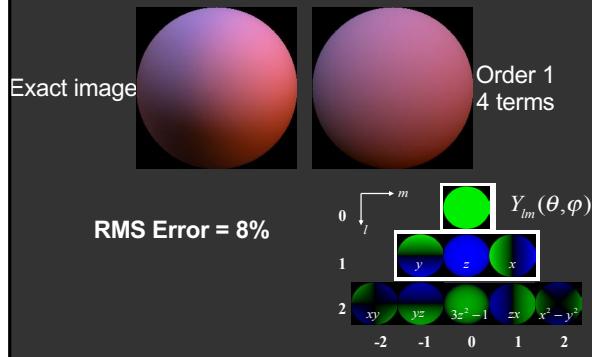
Lambertian surface acts like low-pass filter

$$E_{lm} = A_l L_{lm}$$

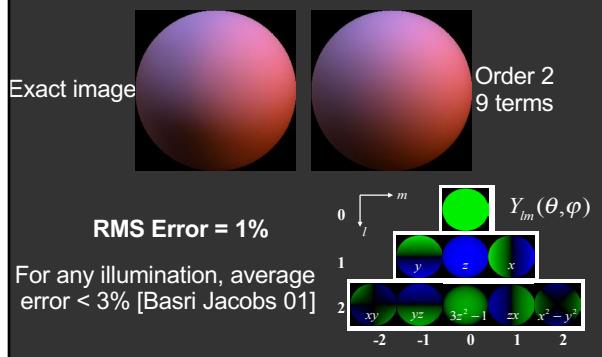


Ramamoorthi and Hanrahan 01
Basri and Jacobs 01

$$A_l = 2\pi \frac{(-1)^{\frac{l-1}{2}}}{(l+2)(l-1)} \left[\frac{l!}{2^l \left(\frac{l}{2}\right)!} \right] \quad l \text{ even}$$


72

9 Parameter Approximation


73

9 Parameter Approximation

74

9 Parameter Approximation

75

Real-Time Rendering

$$E(n) = n^t M n$$

Simple procedural rendering method (no textures)

- Requires only matrix-vector multiply and dot-product
- In software or NVIDIA vertex programming hardware

Widely used in Games (AMPED for Microsoft Xbox), Movies (Pixar, Framestore CFC, ...)

```
surface float1 irradmat (matrix4 M, float3 v) {
    float4 n = {v, 1};
    return dot(n, M*n);
}
```

76

Environment Map Summary

- Very popular for interactive rendering
- Extensions handle complex materials
- Shadows with precomputed transfer
- But cannot directly combine with shadow maps
- Limited to distant lighting assumption

77

Resources

- OpenGL red book (latest includes GLSL)
- Web tutorials: <http://www.lighthouse3d.com/tutorials/>
- Older books: OpenGL Shading Language book (Rost), The Cg Tutorial, ...
- <http://www.realtimerendering.com>
 - Real-Time Rendering by Moller and Haines
- Debevec <http://www.debevec.org/ReflectionMapping/>
 - Links to Miller and Hoffman original, Haeberli/Segal
- <http://www.cs.ucsd.edu/~ravir/papers/envmap>
 - Also papers by Heidrich, Cabral, ...
- Lots of information available on web...
- Look at resources from CSF 274 website (Wi Fa 15)

78

Outline

- Motivation and Demos
- Shadow Maps
- Environment Mapping
- *ReSTIR (briefly)*

79