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Computer Graphics II: Rendering

CSE 168 [Spr 26], Lecture 16: Precomputed Rendering      
Ravi Ramamoorthi

http://viscomp.ucsd.edu/classes/cse168/sp26
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To Do

§ Final Project Milestones due on May 27
§ 1-2 page PDF or website with at least one image
§ Brief description of project, proposal for final version
§ [1-2 para proposal of what you hope to accomplish]
§ Must include image milestone of what’s done so far
§ We may say ok or schedule time to meet, discuss
§ Talk to us if any difficulty finding project (Assignment 

gives some well specified, loose, other options, you 
can do anything else related to the course too).  
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Motivation

§ Next lecture: Image-Based Rendering.  Use measured data   
(real photographs) and interpolate for realistic real-time

§ Why not apply to real-time rendering?
§ Precompute (offline) some information (images) of interest
§ Must assume something about scene is constant to do so
§ Thereafter real-time rendering.  Often accelerate  hardware

§ Easier and harder than conventional IBR
§ Easier because synthetic scenes give info re geometry, 

reflectance (but CG rendering often longer than nature)
§ Harder because of more complex effects (lighting from all 

directions for instance, not just changing view)
§ Representations and Signal-Processing crucial
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My General Philosophy

§ This general line of work is a large data management 
and signal-processing problem

§ Precompute high-dimensional complex data

§ Store efficiently (find right mathematical represent.)

§ Render in real-time
§ Worry about systems issues like caching
§ Good signal-processing: use only small amount of 

data but guarantee high fidelity
§ Many insights into structure of lighting, BRDFs, …

§ Not just blind interpolation; signal processing
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Precomputation-Based Relighting

§ Analyze precomputed images of scene

     

Jensen 2000
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Precomputation-Based Relighting

§ Analyze precomputed images of scene

     

Jensen 2000
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Assumptions

§ Static geometry 

§ Precomputation 

§ Real-Time Rendering (relight all-frequency effects)
§ Exploit linearity of light transport for this
§ Later, change viewpoint as well
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Why is This Hard?

§ Plain graphics hardware supports only simple (point) 
lights, BRDFs (Phong) without any shadows

§ Shadow maps can handle point lights (hard shadows)

§ Environment maps complex lighting, BRDFs but no 
shadows

§ IBR can often do changing view, fixed lighting

§ How to do complex shadows in complex lighting?

§ With dynamically changing illumination and view?
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Relighting as a Matrix-Vector Multiply
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Input Lighting
   (Cubemap Vector)

Output Image
(Pixel Vector)

Precomputed 
Transport

Matrix

Relighting as a Matrix-Vector Multiply
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Matrix Columns (Images)
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Precompute: Ray-Trace Image Cols
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Precompute 2: Rasterize Matrix Rows
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Problem Definition

Matrix is Enormous 
§ 512 x 512 pixel images
§ 6 x 64 x 64 cubemap environments

Full matrix-vector multiplication is intractable
§ On the order of 1010 operations per frame

How to relight quickly?
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Outline

§ Motivation and Background

§ Compression methods
§ Low frequency linear spherical harmonic 

approximation
§ Factorization and PCA
§ Local factorization and clustered PCA
§ Non-linear wavelet approximation

§ Changing view as well as lighting (glossy objects)
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Precomputed Radiance Transfer

§ Better light integration and 
transport 
§ dynamic, area lights 
§ self-shadowing 
§ interreflections 

§ For diffuse and 
glossy surfaces

§ At real-time rates
§ Sloan et al. 02 (most cited 

rendering paper in last 20 
years 1000+, widely used in 
games, movie production: 
Spherical Harmonic Lighting)

point light area light

area lighting,
no shadows

area lighting,
shadows
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Basis 16

Basis 17

Basis 18

illuminate result

...

...

Precomputation: Spherical Harmonics
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Diffuse Transfer Results

No Shadows/Inter                           Shadows                             Shadows+Inter
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Arbitrary BRDF Results

Other BRDFs Spatially VaryingAnisotropic BRDFs
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Relighting as a Matrix-Vector Multiply
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Idea of Compression

§ The vector is projected onto low-frequency 
components (say 25).  Size greatly reduced.

§ Hence, only 25 matrix columns

§ But each pixel still treated separately (still have 
300000 matrix rows for 512 x 512 image)

§ Actually, for each pixel, dot product of matrix row (25 
elems) and lighting vector (25 elems) in hardware

§ Good technique (common in games, movies) but 
useful only for broad low-frequency lighting 
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Outline

§ Motivation and Background

§ Compression methods
§ Low frequency linear spherical harmonic 

approximation
§ Factorization and PCA
§ Local factorization and clustered PCA
§ Non-linear wavelet approximation

§ Changing view as well as lighting (glossy objects)
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• Absorbing Sj values into CiT:

PCA or SVD factorization
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Idea of Compression

§ Represent matrix (rather than light vector) compactly

§ Can be (and is) combined with low frequency vector

§ Useful in broad contexts. 
§ BRDF factorization for real-time rendering (reduce 4D BRDF to 

2D texture maps)  McCool et al. 01 etc
§ Surface Light field factorization for real-time rendering (4D to 2D 

maps) Chen et al. 02, Nishino et al. 01
§ Factorization of Orientation Light field for complex lighting and 

BRDFs (4D to 2D) Latta et al. 02

§ Not too useful for general precomput. relighting
§ Transport matrix not low-dimensional!! 

24
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Local or Clustered PCA

§ Exploit local coherence (in say 16x16 pixel blocks)
§ Idea: light transport is locally low-dimensional.  Why?
§ Even though globally complex
§ See Mahajan et al. 07 for theoretical analysis

§ Original idea: Each triangle separately
§ Example: Surface Light Fields 3D subspace works well
§ Vague analysis of size of triangles
§ Instead of triangle, 16x16 image blocks [Nayar et al. 04]

§ Clustered PCA [Sloan et al. 2003]
§ Combines two widely used compression techniques: Vector 

Quantization or VQ and Principal Component Analysis
§ For complex geometry, no need for parameterization / topology
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Image-Based Rendering

Zickler, Enrique, Ramamoorthi, Belhumeur 05, 06
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Outline

§ Motivation and Background

§ Compression methods
§ Low frequency linear spherical harmonic approximation
§ Factorization and PCA
§ Local factorization and clustered PCA
§ Non-linear wavelet approximation

§ Changing view as well as lighting (glossy objects)
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Sparse Matrix-Vector Multiplication
Choose data representations with mostly zeroes

 Vector: Use non-linear wavelet approximation 
  on lighting 

 Matrix:  Wavelet-encode transport rows
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Haar Wavelet Basis
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Non-linear Wavelet Approximation

Wavelets provide dual space / frequency locality
§ Large wavelets capture low frequency area lighting
§ Small wavelets capture high frequency  compact features

Non-linear Approximation
§ Use a dynamic set of approximating functions (depends 

on each frame’s lighting)
§ By contrast, linear approx. uses fixed set of basis 

functions (like 25 lowest frequency spherical harmonics)
§ We choose 10’s - 100’s from a basis of 24,576 wavelets

30
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Non-linear Wavelet Light Approximation

Wavelet Transform
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Non-linear
Approximation

Retain 0.1% – 1% terms 

Non-linear Wavelet Light Approximation
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Error in Lighting: St Peter’’s Basilica

Approximation Terms
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Sph. Harmonics

Non-linear Wavelets

Ng, Ramamoorthi, Hanrahan 03
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Output Image Comparison
Top: Linear Spherical Harmonic Approximation
Bottom: Non-linear Wavelet Approximation

25 200 2,000 20,000
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Video: Real Time Relighting
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Summary

§ Really a big data compression and signal-
processing problem

§ Apply many standard methods
§ PCA, wavelet, spherical harmonic, factor compression

§ And invent new ones
§ VQPCA, wavelet triple products

§ Guided by and gives insights into properties of 
illumination, reflectance, visibility
§ How many terms enough?  How much sparsity?

36
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Subsequent Work
§ My survey 2009 (lecture only covers 2002-2004)
§ Varied lighting/view.  What about dynamic scenes, BRDFs

§ Much subsequent work [Zhou et al. 05, Ben-Artzi et al. 06].  
But still limited for dynamic scenes

§ Must work on GPU to be practical
§ Sampling on object geometry remains a challenge
§ Near-Field Lighting has had some work, remains a challenge
§ Applications to lighting design, direct to indirect transfer
§ New basis functions and theory
§ Newer methods do not require precompute, various GPU tricks
§ So far, low-frequency spherical harmonics used in games, all-

frequency techniques have had limited applicability
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Analytic SH Gradients
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Glossy Precomputed Radiance Transfer

Sloan, P.-P., et al. Precomputed radiance transfer for real-time rendering in dynamic, low-frequency 
lighting environments. ACM Trans. Graph. 21-3 (2002)

Discretize over viewing direction 
and store a different vector for 
each one. 
This stores a matrix instead of a 
vector at each point.
When rotating the camera, 
discretize the direction.

Vertex Position

Viewing 
Direction
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Dire
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on

39

Glossy Precomputed Radiance Transfer

Sloan, P.-P., et al. Precomputed radiance transfer for real-time rendering in dynamic, low-frequency 
lighting environments. ACM Trans. Graph. 21-3 (2002)

Problem: this is huge!
Six-dimensional tensor
For 512x512 image, with 
128x128x6 cubemap, with 
128x128 view discretization, the T 
matrix is 105 terabytes!
How can we compress this?

Vertex Position
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Direct Illumination with Haar Wavelets
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Clustered PCA

Slides borrowed from Peter-Pike Sloan’s CPCA slides (2003)

VQ PCA CPC
A

42
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Glossy Precomputed Radiance Transfer

Just apply this to light transport matrices instead.
1D -> 625D (25 x 25)

Slides borrowed from Peter-Pike Sloan’s CPCA slides (2003)
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Cluster Discontinuity Problem

Slides borrowed from Ari Silvennoinen’s SIGGRAPH slides (2021)

Blockwise PCA Clustered PCA
[SHH03][NNJ05]
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Approaching Cluster Discontinuity

Back to basics: any function can be expanded in terms of basis 
functions
PRT hinges on this to store each projection coefficient per vertex
But this basis decomposition may not be the best to compress.

45

Solution: Moving Basis Decomposition

Just represent the projection coefficients themselves as functions 
of x!

These are both separately represented as a bilinear interpolation 
over a texture (so we maintain piecewise-continuity)

46

Solution: Moving Basis Decomposition

Slides borrowed from Ari Silvennoinen’s SIGGRAPH slides (2021)

f(x) ŷ(x)

φi(x)

χi(x)

47

Moving Basis Decomposition for PRT

Densely sample the PRT matrices at each vertex
Use gradient descent or another optimization algorithm to learn 
two differentiable textures: one for coefficient and one for basis
Optimize over the reconstruction loss
End up with two piecewise-linear textures that can be smoothly 
interpolated anywhere.

48
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Large Scale PRT

Slides borrowed from Ari Silvennoinen’s SIGGRAPH slides (2021)
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Hard to learn Glossy Elements

Moving Basis Decomposition is 
independent of the choice of PRT 
method used.
Traditional PRT technique; hard 
to implement glossy materials!
Other data-driven methods may 
have to be used.
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Neural Networks

Neural networks are a class of 
differentiable functions
Defined as a composition of 
affine transformations and 
nonlinearities
Universal function approximation
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Neural Networks as PRT Regressors

Can we directly learn the view-dependent glossy transport by 
training a neural network directly?
Yes! (to an extent)

Peiran Ren, Jiaping Wang, Minmin Gong, Stephen Lin, Xin Tong, and Baining Guo. 2013. 
Global illumination with radiance regression functions. ACM Trans. Graph. 32, 4, Article 130 
(July 2013), 12 pages. https://doi.org/10.1145/2461912.2462009
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Radiance Regression Functions

How do we input an environment map to our network?
Hard: instead, just consider directional lights
Inputs to our neural network: view dir, light dir, position, normal, albedo 

Peiran Ren, Jiaping Wang, Minmin Gong, Stephen Lin, Xin Tong, and Baining Guo. 2013. 
Global illumination with radiance regression functions. ACM Trans. Graph. 32, 4, Article 130 
(July 2013), 12 pages. https://doi.org/10.1145/2461912.2462009
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Radiance Regression Functions

Works well! Gets diffuse caustics and even gets glossy reflections too!
But it’s too slow to render a full environment.

Peiran Ren, Jiaping Wang, Minmin Gong, Stephen Lin, Xin Tong, and Baining Guo. 2013. 
Global illumination with radiance regression functions. ACM Trans. Graph. 32, 4, Article 130 
(July 2013), 12 pages. https://doi.org/10.1145/2461912.2462009
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Neural Precomputed Radiance Transfer

Idea: encode the entire environment map as a learned neural feature 
vector.
Combine this with the G-buffer information via another learned operator 
to produce the final rendered color

Rainer, G., Bousseau, A., Ritschel, T. and Drettakis, G. (2022), Neural Precomputed Radiance 
Transfer. Computer Graphics Forum, 41: 365-378. https://doi.org/10.1111/cgf.14480
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Neural Precomputed Radiance Transfer

This also produces good results!

Rainer, G., Bousseau, A., Ritschel, T. and Drettakis, G. (2022), Neural Precomputed Radiance 
Transfer. Computer Graphics Forum, 41: 365-378. https://doi.org/10.1111/cgf.14480
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Neural Precomputed Radiance Transfer

However, this doesn’t generalize well to 1) novel environment maps, and 
2) view directions far from training
Color shifts and other artifacts (lack of reflections) are seen

Raghavan, N., Xiao, Y., Lin, K.-E., Sun, T., Bi, S., Xu, Z., Li, T.-M. and Ramamoorthi, R. (2023), Neural 
Free-Viewpoint Relighting for Glossy Indirect Illumination. Computer Graphics Forum, 42: e14885. 
https://doi.org/10.1111/cgf.14885
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