To Do

Computer Graphics Il: Rendering Final Project Milestones due on May 27
1-2 page PDF or website with at least one image
CSE 168 [Spr 26], Lecture 16: Precomputed Rendering Brief description of project, proposal for final version
Ravi Ramamoorthi [1-2 para proposal of what you hope to accomplish]
Must include image milestone of what's done so far

http://viscomp.ucsd.edu/classes/cse168/sp26 We may say ok or schedule time to meet, discuss
Talk to us if any difficulty finding project (Assignment
gives some well specified, loose, other options, you

can do anything else related to the course too).

Motivation My General Philosophy

Next lecture: Image-Based Rendering. Use measured data This general line of work is a large data management
(real photographs) and interpolate for realistic real-time and signal-processing problem

Why not apply to real-time rendering? Precompute high-dimensional complex data
Precompute (offline) some information (images) of interest
Must assume something about scene is constant to do so
Thereafter real-time rendering. Often accelerate hardware Render in real-time

Worry about systems issues like caching

Good signal-processing: use only small amount of

data but guarantee high fidelity

Store efficiently (find right mathematical represent.)

Easier and harder than conventional IBR
Easier because synthetic scenes give info re geometry,
reflectance (but CG rendering often longer than nature)
Harder because of more complex effects (lighting from all Many insights into structure of lighting, BRDFs, ...
directions for instance, not just changing view) Not just blind interpolation; signal processing

Representations and Signal-Processing crucial

Precomputation-Based Relighting Precomputation-Based Relighting
Analyze precomputed images of scene Analyze precomputed images of scene
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Assumptions

Static geometry

Precomputation

Real-Time Rendering (relight all-frequency effects)
Exploit linearity of light transport for this
Later, change viewpoint as well

Relighting as a Matrix-Vector Multiply

Matrix Columns (Images)

Why is This Hard?

Plain graphics hardware supports only simple (point)
lights, BRDFs (Phong) without any shadows

Shadow maps can handle point lights (hard shadows)

Environment maps complex lighting, BRDFs but no
shadows

IBR can often do changing view, fixed lighting

How to do complex shadows in complex lighting?

With dynamically changing illumination and view?

Relighting as a Matrix-Vector Multiply

Output Image
(Pixel Vector)

Input Lighting
(Cubemap Vector)
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Matrix

Precompute: Ray-Trace Image Cols
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Precompute 2: Rasterize Matrix Rows Problem Definition

Matrix is Enormous
512 x 512 pixel images
6 x 64 x 64 cubemap environments

Full matrix-vector multiplication is intractable
On the order of 10'° operations per frame

How to relight quickly?

Outline Precomputed Radiance Transfer

Motivation and Background Better light integration and

Compression methods transport '
dynamic, area lights

Low frequency linear spherical harmonic self-shadowing
approximation interreflections
Factorization and PCA

Local factorization and clustered PCA For diffuse and
Non-linear wavelet approximation glossy surfaces

Changing view as well as lighting (glossy objects) At real-time rates - b ﬁ
Sloan et al. 02 (most cited g h'ﬂﬁ__‘
rendering paper in last 20 L ]
years 1000+, widely used in ) ¥ |

games, movie production: —

Spherical Harmonic Lighting)

point light area light

area lighting, area lighting,

no shadows shadows

Precomputation: Spherical Harmonics Diffuse Transfer Results

Basis 16 Q

Basis 17 —_—
illuminate

Basis 18 7

No Shadows/Inter Shadows Shadows+Inter




Arbitrary BRDF Results

f -

Anisotropic BRDFs Other BRDFs Spatially Varying

Idea of Compression
The vector is projected onto low-frequency
components (say 25). Size greatly reduced.
Hence, only 25 matrix columns

But each pixel still treated separately (still have
300000 matrix rows for 512 x 512 image)

Actually, for each pixel, dot product of matrix row (25
elems) and lighting vector (25 elems) in hardware

Good technique (common in games, movies) but
useful only for broad low-frequency lighting

PCA or SVD factorization

* SVD:
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Relighting as a Matrix-Vector Multiply

Outline

Motivation and Background

Compression methods
Low frequency linear spherical harmonic
approximation
Factorization and PCA
Local factorization and clustered PCA
Non-linear wavelet approximation

Changing view as well as lighting (glossy objects)

Idea of Compression

Represent matrix (rather than light vector) compactly
Can be (and is) combined with low frequency vector

Useful in broad contexts.
BRDF factorization for real-time rendering (reduce 4D BRDF to
2D texture maps) McCool et al. 01 etc
Surface Light field factorization for real-time rendering (4D to 2D
maps) Chen et al. 02, Nishino et al. 01
Factorization of Orientation Light field for complex lighting and
BRDFs (4D to 2D) Latta et al. 02

Not too useful for general precomput. relighting
Transport matrix not low-dimensional!!




Local or Clustered PCA Image-Based Rendering

Exploit local coherence (in say 16x16 pixel blocks)
Idea: light transport is locally low-dimensional. Why?
Even though globally complex
See Mahajan et al. 07 for theoretical analysis

Original idea: Each triangle separately
Example: Surface Light Fields 3D subspace works well Human Face
Vague analysis of size of triangles
Instead of triangle, 16x16 image blocks [Nayar et al. 04]

Clustered PCA [Sloan et al. 2003]
Combines two widely used compression techniques: Vector

Quantization or VQ and Principal Component Analysis
For complex geometry, no need for parameterization / topology

Practical Case

Zickler. Enriaue. Ramamoorthi. Belhumeur 05. 06

Outline Sparse Matrix-Vector Multiplication

Motivation and Background Choose data representations with mostly zeroes

. Vector: Use non-linear wavelet approximation
Compression methods .
Low frequency linear spherical harmonic approximation on lighting
Factorization and PCA
Local factorization and clustered PCA

Non-linear wavelet approximation

Changing view as well as lighting (glossy objects)

Haar Wavelet Basis Non-linear Wavelet Approximation

Wavelets provide dual space / frequency locality
Large wavelets capture low frequency area lighting
Small wavelets capture high frequency compact features

Non-linear Approximation
Use a dynamic set of approximating functions (depends
on each frame ’s lighting)
By contrast, linear approx. uses fixed set of basis
functions (like 25 lowest frequency spherical harmonics)
We choose 10’ s - 100’ s from a basis of 24,576 wavelets




Non-linear Wavelet Light Approximation

Wavelet Transform

Error in Lighting: St Peter’ s Basilica

Sph. Harmonics

Non-linear Wavelets
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Approximation Terms
Ng, Ramamoorthi, Hanrahan 03

Video: Real Time Relighting

Non-linear Wavelet Light Approximation

Non-linear
Approximation

Retain 0.1% — 1% terms

Output Image Comparison

Top: Linear Spherical Harmonic Approximation
Bottom:  Non-linear Wavelet Approximation

2,000 20,000

Summary

Really a big data compression and signal-
processing problem

Apply many standard methods
PCA, wavelet, spherical harmonic, factor compression

And invent new ones
VQPCA, wavelet triple products

Guided by and gives insights into properties of

illumination, reflectance, visibility
How many terms enough? How much sparsity?




Subsequent Work Analytic SH Gradients

My survey 2009 (lecture only covers 2002-2004)

Varied lighting/view. What about dynamic scenes, BRDFs
Much subsequent work [Zhou et al. 05, Ben-Arizi et al. 06]. . ) . .
Bui still limited for dynamic scenes Analytic Spherical Harmonic Gradients

Must work on GPU to be practical for Real-Time Rendering with
Sampling on object geometry remains a challenge Many Polygonal Area Lights
Near-Field Lighting has had some work, remains a challenge Lifan Wu', Guangyan Cai", Shuang Zhao?, Ravi Ramamoorthi"
Applications to lighting design, direct to indirect transfer " UC San Diego, 2 UC Irvine

New basis functions and theory NO AUDIO

Newer methods do not require precompute, various GPU tricks

So far, low-frequency spherical harmonics used in games, all-
frequency techniques have had limited applicability

Glossy Precomputed Radiance Transfer Glossy Precomputed Radiance Transfer
Discretize over viewing direction Problem: this is huge!
and store a different vector for e alErEane] (s
each one.
. .. For 512x512 image, with
Thl;[ stortes a Lnatrllxtmstead ofa R, 128x128x6 cubemap, with R,
vector at each point. Direction 128128 view discretization, the T Direction
When rotating the camera, matrix is 105 terabytes!
discretize the direction. How can we compress this?
Vertex Position Vertex Position
Sloan, P-P, et al. Precomputed radiance transfer for real-time rendering in dynamic, low-frequency Sloan, P-P, et al. Precomputed radiance transfer for real-time rendering in dynamic, low-frequency
lighting environments. ACM Trans. Graph. 21-3 (2002) lighting environments. ACM Trans. Graph. 21-3 (2002)
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Direct Illumination with Haar Wavelets

Clustered PCA

Triple Product Wavelet Integrals
For All-Frequency Relighting
Ren Ng Stanford University
Ravi Ramamoorthi Columbia University ’
vQ PCA cpC

Pat Hanrahan Stanford University

A

slides borrowed from Peter-Pike Sloan’s CPCA slides (2003)
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Glossy Precomputed Radiance Transfer

Just apply this to light transport matrices instead.
1D -> 625D (25 x 25)

Slides borrowed from Peter-Pike Sloan’s CPCA slides (2003)

Cluster Discontinuity Problem

Blockwise PCA 2. 3. cl d PCA
T € R z R ustere:
[NNJOS] Y =@ [SHHO3]

slides borrowed from Ari Silvennoinen’s SIGGRAPH slides (2021)

Approaching Cluster Discontinuity

Back to basics: any function can be expanded in terms of basis
functions
PRT hinges on this to store each projection coefficient per vertex

But this basis decomposition may not be the best to compress.

= Z c;¥i()
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Solution: Moving Basis Decomposition
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slides borrowed from Ari Silvennoinen’s SIGGRAPH slides (2021)
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Solution: Moving Basis Decomposition

Just represent the projection coefficients themselves as functions
of x!
f@) = cix)¥(x)
i
These are both separately represented as a bilinear interpolation
over a texture (so we maintain piecewise- contlnmtj&

Z Sm()em,q Ui(z) = Z Xm(2) ¥
m=1
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Moving Basis Decomposition for PRT

Densely sample the PRT matrices at each vertex

Use gradient descent or another optimization algorithm to learn
two differentiable textures: one for coefficient and one for basis

Optimize over the reconstruction loss 7"(1’) = f(x) - f(x)

End up with two piecewise-linear textures that can be smoothly
interpolated anywhere.
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Large Scale PRT

Activision Publishing. Inc.

Final image

slides borrowed from Ari Silvennoinen’s SIGGRAPH slides (2021)

Neural Networks

Neural networks are a class of
differentiable functions

1 1 1
Defined as a composition of gé )(x) = O'I(Wg( )x + bé )>
affine transformations and @
nonlinearities gy (

2) (1 2
i) = U](Wé )gg )(x) + bg ))
Universal function approximation
(o)
Yy (2)
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Radiance Regression Functions

How do we input an environment map to our network?

Hard: instead, just consider directional lights

Inputs to our neural network: view dir, light dir, position, normal, albedo

*

input layer  1*hidden layer 2" hidden layer output layer

Peiran Ren, Jiaping Wang, Minmin Gong, Stephen Lin, Xin Tong, and Baining Guo. 2013.
Global illumination with radiance regression functions. ACM Trans. Graph. 32, 4, Article 130
(July 2013), 12 pages. https://doi.org/10.1145/2461912.2462009
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Hard to learn Glossy Elements

Moving Basis Decomposition is
independent of the choice of PRT
method used.

Traditional PRT technique; hard
to implement glossy materials!

Other data-driven methods may
have to be used.
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Neural Networks as PRT Regressors

Can we directly learn the view-dependent glossy transport by
training a neural network directly?

Yes! (to an extent)

Peiran Ren, Jiaping Wang, Minmin Gong, Stephen Lin, Xin Tong, and Baining Guo. 2013.
Global illumination with radiance regression functions. ACM Trans. Graph. 32, 4, Article 130
(July 2013), 12 pages. https://doi.org/10.1145/2461912.2462009

Radiance Regression Functions

Works well! Gets diffuse caustics and even gets glossy reflections too!

But it’s too slow to render a full environment.

Peiran Ren, Jiaping Wang, Minmin Gong, Stephen Lin, Xin Tong, and Baining Guo. 2013.
Global illumination with radiance regression functions. ACM Trans. Graph. 32, 4, Article 130
(July 2013), 12 pages. https://doi.org/10.1145/2461912.2462009
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Neural Precomputed Radiance Transfer

Idea: encode the entire environment map as a learned neural feature
vector.

Combine this with the G-buffer information via another learned operator
to produce the final rendered color

B
g
z
g
Rainer, G., Bousseau, A., Ritschel, T. and Drettakis, G 022) Neura recomputed Radiance
1111/cgf,14480

Transfer. Computer Graphics Forum, 41: 365-378. 1,
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Neural Precomputed Radiance Transfer

However, this doesn’t generalize well to 1) novel environment maps, and
2) view directions far from training

Color shifts and other artifacts (lack of reflections) are seen

Raghavan, N., Xiao, Y., Lin, K-E., Sun, T., B, S., Xu, Z., Li, T-M. and Ramamoorthi, R. (2023), Neural
Free-Viewpoint Relighting for Glossy Indirect lllumination. Computer Graphics Forum, 42: e14885.
https://doi.org/10.1111/cgf.14885
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Neural Precomputed Radiance Transfer

This also produces good results!

Rainer, G., Bousseau, A., Ritschel, T. and Drettakis, G. (. 022 Neura\ Precomputed Radiance]
Transfer. Computer Graphics Forum, 41: 365-378. I (( 0rg/10.1111/cef 14480
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