

Computer Graphics II: Rendering

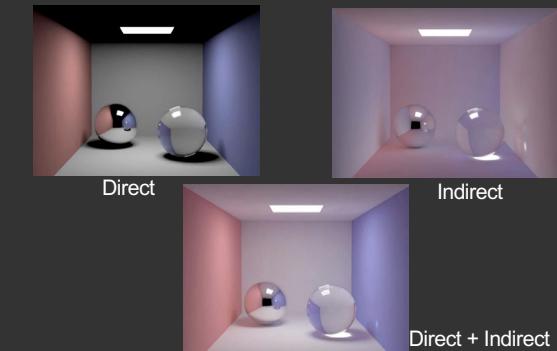
CSE 168 [Spr 26], Lecture 12: High Quality Rendering
Ravi Ramamoorthi

<http://viscomp.ucsd.edu/classes/cse168/sp26>

1

Motivation

- Rendering Equation since 86, Path Tracer in HW 3
- So, is Monte Carlo rendering solved?
- *Can it be made more efficient (90s until today)?*
 - Multiple Importance Sampling (Homework 4)
 - *Irradiance Caching takes advantage of coherence*
 - Correct sampling: Stratified, Multiple Importance, Bidirectional Path Tracing, Metropolis, VCM/UPS, ...
 - Photon Mapping
 - Modern adaptive sampling, cut-based integration
- Advanced topics (next time)
- Denoising (next time)


3

To Do

- Homework 4 (importance sampling) due May 18
- These lectures cover more advanced topics
 - May be relevant for your final project
 - Or curiosity in terms of frontiers of modern rendering

2

Smoothness of Indirect Lighting

4

Irradiance Caching

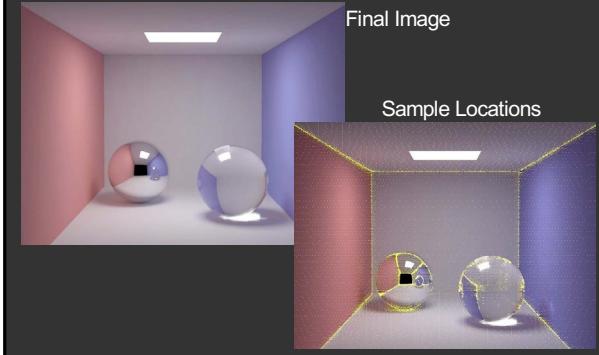
- Empirically, (diffuse) interreflections low frequency
- Therefore, should be able to sample sparsely
- Irradiance caching samples irradiance at few points on surfaces, and then interpolates
- Ward, Rubinstein, Clear. SIGGRAPH 88, *A ray tracing solution for diffuse interreflection*

5

Irradiance Calculation

$$\leq E_0 \left(\frac{4}{\pi} \frac{||x - x_0||}{x_{avg}} + \sqrt{2 - 2 \vec{N}(x) \cdot \vec{N}(x_0)} \right)$$

Derivation in Ward paper


6

Algorithm Outline

- Find all samples with $w(x) > q$
- if (samples found)
 - interpolate
- else
 - compute new irradiance
- N.B. Subsample the image first and then fill in

7

Irradiance Caching Example

8

Motivation

- Rendering Equation since 86, Path Tracer in HW 3
- So, is Monte Carlo rendering solved?
- Can it be made more efficient (90s until today)?
 - Multiple Importance Sampling (Homework 4)
 - Irradiance Caching takes advantage of coherence
 - Correct sampling: Stratified, Multiple Importance, Bidirectional Path Tracing, Metropolis, VCM/UPS, ...
 - Photon Mapping
 - Modern adaptive sampling, cut-based integration
- Advanced topics (next time)
- Denoising (next time)
- High level: refs on slides, ask if need to track down

9

Better Sampling

- Smarter ways to Monte Carlo sample
- Long history: Stratified, Importance, Bi-Directional, Multiple Importance, Metropolis
- Good reference is Veach thesis
- We only briefly discuss a couple of strategies

10

Stratified Sampling

Stratified sampling like jittered sampling

Allocate samples per region

$$N = \sum_{i=1}^m N_i \quad F_N = \frac{1}{N} \sum_{i=1}^m N_i F_i$$

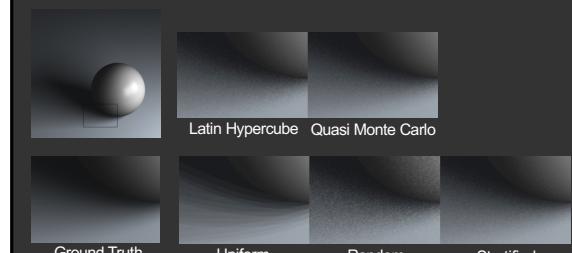
New variance

$$V[F_N] = \frac{1}{N^2} \sum_{i=1}^m N_i V[F_i]$$

Thus, if the variance in regions is less than the overall variance, there will be a reduction in resulting variance

For example: An edge through a pixel

$$V[F_N] = \frac{1}{N^2} \sum_{i=1}^N V[F_i] = \frac{V[F_i]}{N^{1.5}}$$

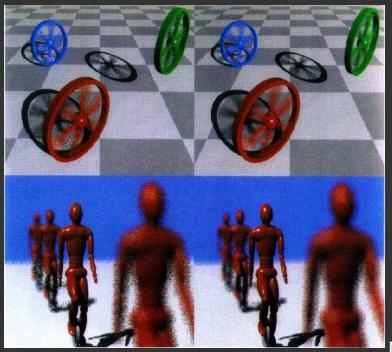

CS348B Lecture 9

Pat Hanrahan, Spring 2002

D. Mitchell 95, Consequences of stratified sampling in graphics

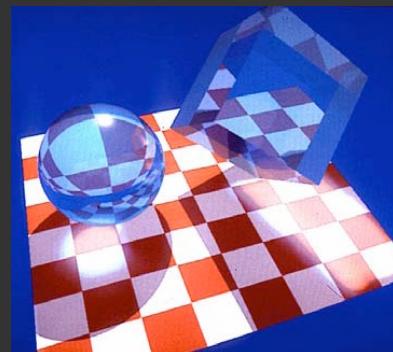
11

Comparison of simple patterns


16 samples for area light, 4 samples per pixel, total 64 samples

If interested, see my paper "A Theory of Monte Carlo Visibility Sampling"

Figures courtesy Tianyu Liu

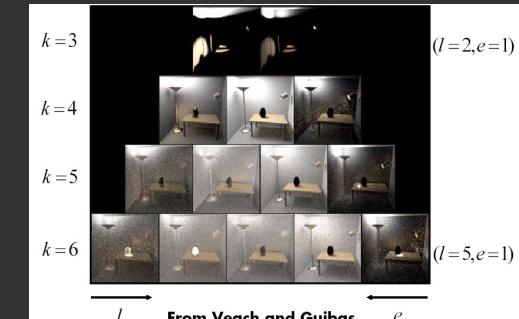

12

Spectrally Optimal Sampling

13

Light Ray Tracing

14


Path Tracing: From Lights

- Step 1. Choose a light ray
- Step 2. Find ray-surface intersection
- Step 3. Reflect or transmit
 $u \stackrel{\text{Uniform}}{=} \text{Uniform}()$
 if $u < \text{reflectance}(x)$
 Choose new direction $d \sim \text{BRDF}(O|I)$
 goto Step 2
- else if $u < \text{reflectance}(x) + \text{transmittance}(x)$
 Choose new direction $d \sim \text{BTDF}(O|I)$
 goto Step 2
- else // absorption=1-reflectance-transmittance
 terminate on surface; deposit energy

15

Bidirectional Path Tracing

Path pyramid ($k = l + e = \text{total number of bounces}$)

16

Comparison

17

Motivation

- Rendering Equation since 86, Path Tracer in HW 3
- So, is Monte Carlo rendering solved?
- *Can it be made more efficient (90s until today)?*
 - Multiple Importance Sampling (Homework 4)
 - Irradiance Caching takes advantage of coherence
 - Correct sampling: Stratified, Multiple Importance, Bidirectional Path Tracing, Metropolis, VCM/UPS, ...
 - *Photon Mapping*
 - Modern adaptive sampling, cut-based integration
- Advanced topics (next time)
- Denoising (next time)
- High level: refs on slides, ask if need to track down

18

Why Photon Map?

- Some visual effects like caustics hard with standard path tracing from eye
- May usually miss light source altogether
- Instead, store “photons” from light in kd-tree
- Look-up into this as needed
- Combines tracing from light source, and eye
- Similar to bidirectional path tracing, but compute photon map only once for all eye rays
- *Global Illumination using Photon Maps H. Jensen. Rendering Techniques (EGSR 1996), pp 21-30. (Also book: Realistic Image Synthesis using Photon Mapping)*

19

Caustics

Path Tracing: 1000 paths/pixel
Note noise in caustics

Slides courtesy Henrik Wann Jensen

20

Caustics


Photon Mapping: 10000 photons
50 photons in radiance estimate

21

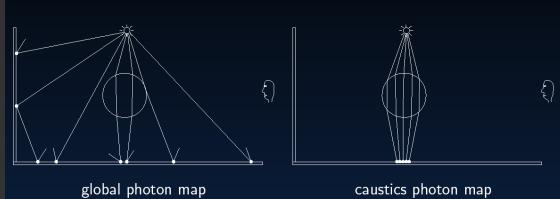
Reflections Inside a Metal Ring

50000 photons
50 photons to estimate radiance

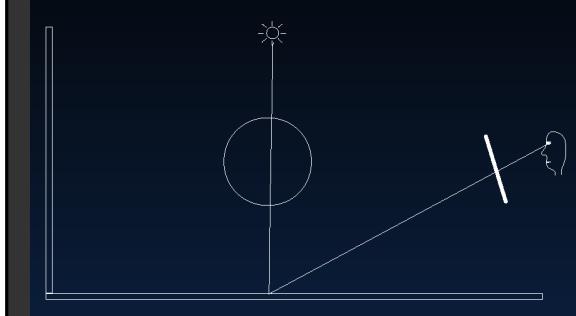
22

Caustics on Glossy Surfaces

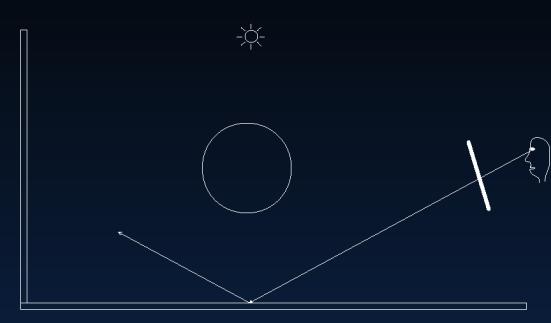
340000 photons, 100 photons in radiance estimate


23

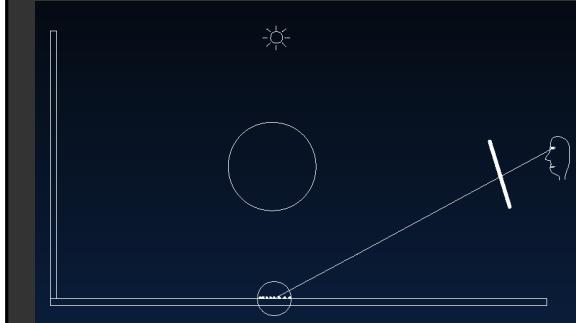
HDR Environment Illumination


24

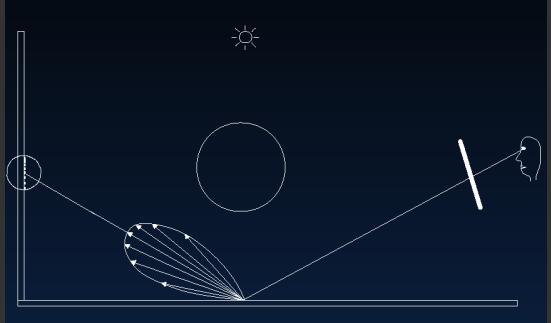
Global Illumination


25

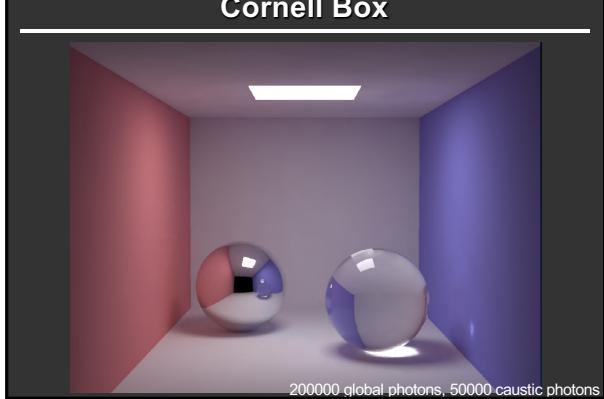
Direct Illumination


26

Specular Reflection


27

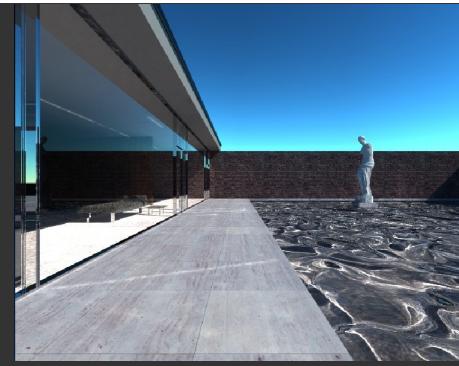
Caustics


28

Indirect Illumination

29

Cornell Box


30

Box: Global Photons

31

Mies House: Swimming Pool

32

Motivation

- Rendering Equation since 86, Path Tracer in HW 3
- So, is Monte Carlo rendering solved?
- *Can it be made more efficient (90s until today)?*
 - Multiple Importance Sampling (Homework 4)
 - Irradiance Caching takes advantage of coherence
 - Correct sampling: Stratified, Multiple Importance, Bidirectional Path Tracing, Metropolis, VCM/UPS, ...
 - Photon Mapping
 - *Modern adaptive sampling, cut-based integration*
- Advanced topics (next time)
- Denoising (next time)
- High level: refs on slides, ask if need to track down

33

Lightcuts

- Efficient, accurate complex illumination

Environment map lighting & indirect
Time 111s

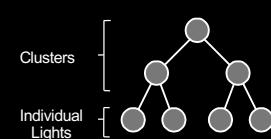
Textured area lights & indirect
Time 98s
(640x480, Anti-aliased, Glossy materials)

From Walter et al. SIGGRAPH 05

34

Complex Lighting

- Simulate complex illumination using point lights
 - Area lights
 - HDR environment maps
 - Sun & sky light
 - Indirect illumination
- Unifies illumination
 - Enables tradeoffs between components



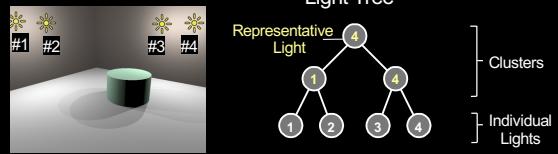
Area lights + Sun/sky + Indirect

35

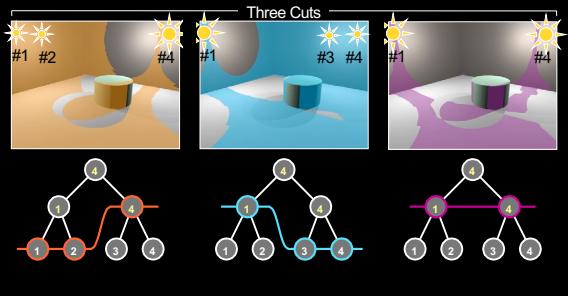
Key Concepts

- Light Cluster
- Light Tree
 - Binary tree of lights and clusters

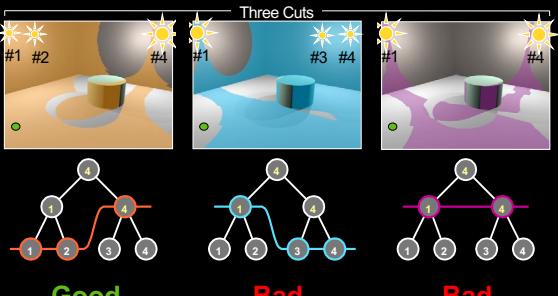
36


Key Concepts

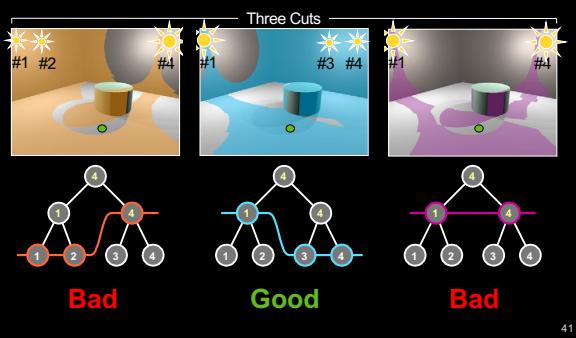
- Light Cluster
- Light Tree
- A Cut
 - A set of nodes that partitions the lights into clusters


37

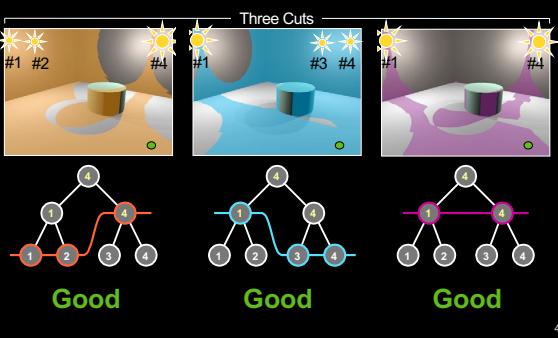
Simple Example


38

Three Example Cuts


39

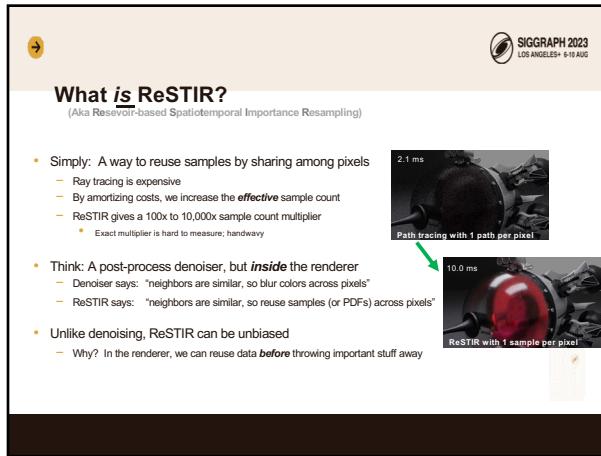
Three Example Cuts

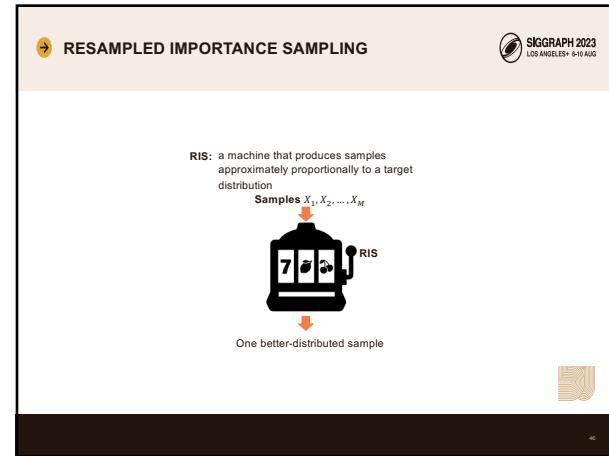

40

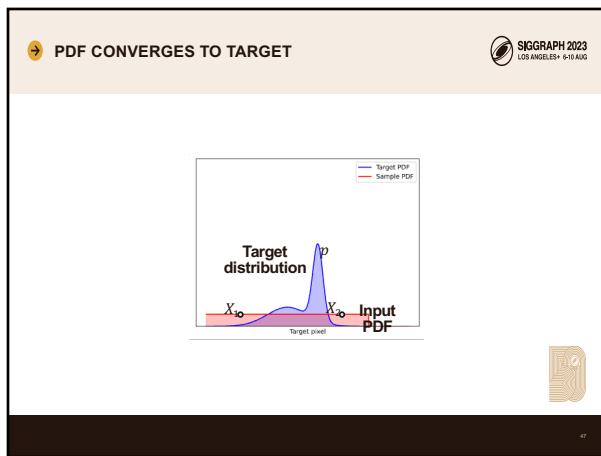
Three Example Cuts

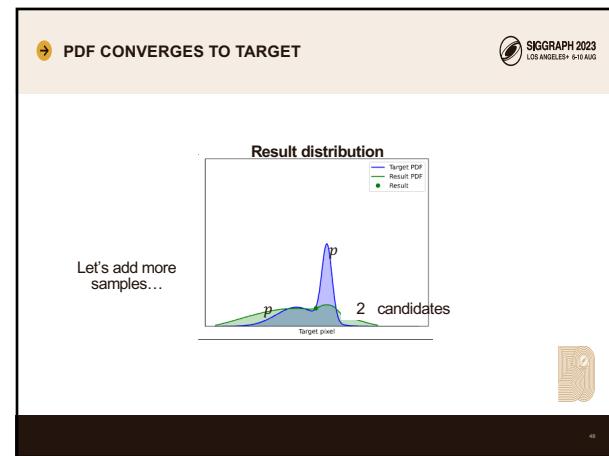
41

Three Example Cuts

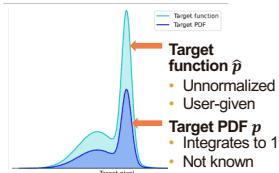

42


43


44


45

46


47

48

RIS: CONCEPTS

SIGGRAPH 2023
LOS ANGELES+ 6-10 AUG

Used in selection probabilities

Result PDF approximately p

49

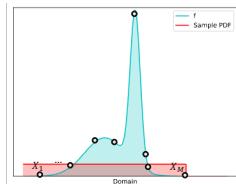
RIS: ALGORITHM

SIGGRAPH 2023
LOS ANGELES+ 6-10 AUG

```

* function ResampledImportanceSampling(M)
  // Generate candidates  $(X_1, \dots, X_M)$ 
  for  $i \leftarrow 1$  to  $M$  do
    generate  $X_i$ 
     $w_i \leftarrow m_i(X_i) \hat{p}(X_i) W_{X_i}$ 
  // Select  $Y$  from the candidates
   $Y, W_Y \leftarrow \emptyset, 0$ 
   $s = \text{randomIndex}(w_1, \dots, w_M)$ 
  if  $s \neq \emptyset$  then
     $Y \leftarrow X_s$ 
     $W_Y \leftarrow \frac{1}{p(Y)} \sum_i w_i$ 
  else
    4. Choose  $Y$  randomly from the  $X_i$  proportionally to  $w_i$  [see course notes]
  5. Evaluate the UCW:  $W_Y = \frac{1}{p(Y)} \sum_{j=1}^M w_j$ 
  return  $Y, W_Y$ 

```

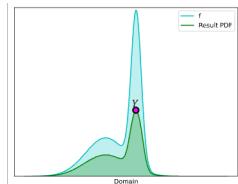


50

EXAMPLE: SIMPLE INTEGRATION (RIS IS SAMPLE AGGREGATION)

SIGGRAPH 2023
LOS ANGELES+ 6-10 AUG

1. Take the M samples
2. Evaluate resampling weights $w_i = m_i(X_i) \hat{p}(X_i) W_{X_i}$
All samples identically distributed: $\frac{1}{M}$
Best if we can afford it: $\hat{p}(x) = f(x)$
We know $p: W_{X_i} = \frac{1}{M p(X_i)}$
3. Choose Y proportionally to $w_i = \frac{1}{M p(X_i)}$



51

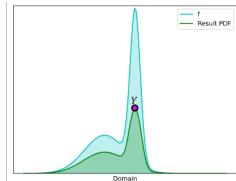
EXAMPLE: SIMPLE INTEGRATION (RIS IS SAMPLE AGGREGATION)

SIGGRAPH 2023
LOS ANGELES+ 6-10 AUG

1. Take candidates (X_1, X_2, \dots, X_M)
2. Evaluate resampling MIS weights: $m_i(X_i)$ e.g. $\frac{1}{M}$
3. Evaluate resampling weights w_i e.g. $W_{X_i} = \frac{1}{p(X_i)}$
4. Evaluate contribution weight $W_Y = \frac{1}{p(Y)} \sum_{i=1}^M w_i$
We chose: $f(Y) = \frac{1}{M p(X_i)}$
5. Integrate: $\langle f \rangle = f(Y) W_Y = \dots = \frac{1}{M} \sum_{i=1}^M \frac{f(X_i)}{p(X_i)}$

52

RIS IS AN AGGREGATION MACHINE

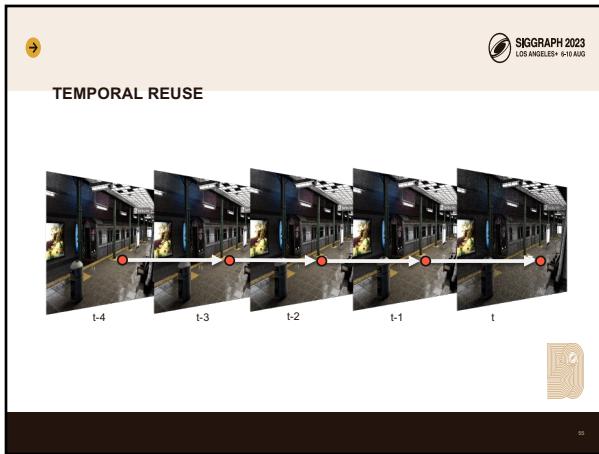

SIGGRAPH 2023
LOS ANGELES+ 6-10 AUG

We got single sample that's as good as the inputs combined!

How? Improved PDF! (By weighted selection)

RIS is an aggregation machine

With $\hat{p} \neq f$, the result is somewhat worse due to $\text{Var}(\hat{f})$


53

TEMPORAL REUSE

SIGGRAPH 2023
LOS ANGELES+ 6-10 AUG

54

55

TEMPORAL REUSE

```

1 void reuseTemporally()
2   Reservoir r
3   Sample cur = pixelSample[q]
4   w = mTime(cur.x) · p(cur.x) · cur.W
5   r.addSample(cur, w)
6   Sample prev = lastFramePixelSample[q]
7   w = mTime(prev.x) · p(prev.x) · prev.W
8   r.addSample(prev, w)
9   y = r.sampleOut
10  W = 1/p(y) · r.wSum
11  pixelSample[q] = Sample {y, W}

```

Render passes:

- generateSamples()
- reuseTemporally()
- reuseSpatially()
- ...
- shadePixel()

56