
An Improved Illumination Model for Shaded Display

Turner Whitted

Bell Laboratories
Holmdel, New Jersey 07733

ABSTRACT

To accurately render a scene, global illumi-
nation information that affects the intensity of
each pixel of the image must be known at the
time the intensity is calculated. In a simplified
form, this information is stored in a tree of "rays"
extending from the viewer to the first surface
encountered and from there to other surfaces and
to the light sources. The visible surface algo-
rithm creates this tree for each pixel of the
display and passes it to the shader. The shader
then traverses the tree to determine the intensity
of the light received by the viewer. Considera-
tion of all of these factors allows the shader to
accurately simulate true reflection, shadows, and
refraction as well as the effects simulated by con-
ventional shaders. Anti-aliasing is included as an
integral part of the visibility calculations. Sur-
faces displayed include curved as well as polygo-
nal surfaces.

KEY WORDS AND PHRASES: computer graphics,
computer animation, visible surface algorithms, shading,
raster displays
CR CATEGORIES: 8.2

Introduction
Since its beginnings, shaded computer graphics has

progressed toward greater realism. Even the earliest
visible surface algorithms included shaders that simu-
lated such effects as specular reflection [2], shadows
[1,3], and transparency [4]. The importance of illumi-
nation models is most vividly demonstrated by the real-
ism produced with newly developed techniques
[7,9,12,131.

The role of the illumination model is to determine
how much light is reflected to the viewer from a visible
point on a surface as a function of light source direction
and strength, viewer position, surface orientation, and
surface properties. The shading calculations can be per-
formed on three scales: microscopic, local, and global.
Although the exact nature of reflection from surfaces is
best explained in terms of microscopic interactions
between light rays and the surface [8], most shaders

produce excellent results using aggregate local surface
data. Unfortunately, these models are usually limited in
scope, i.e. they look only at light source and surface
orientations while ignoring the overall setting in which
the surface is placed. The reason that shaders tend to
operate on local data is that traditional visible surface
algorithms cannot provide the necessary global data.

A shading model is presented here that uses global
information to calculate intensities. Then, to support
this shader, extensions to a ray tracing visible surface
algorithm are presented.

Conventional Models
The simplest visible surface algorithms use shaders

based on Lambert's cosine law. The intensity of the
reflected light is proportional to the dot product of the
surface normal and the light source direction, simulating
a perfect diffuser and yielding a reasonable looking
approximation to a dull, matte surface. A more sophis-
ticated model is the one devised by Bui-Tuong Phong
[6]. Intensity from Phong's model is given by

where

/ = the reflected intensity
/„ = reflection due to ambient light
kd = diffuse reflection constant
N = unit surface normal
Li = the vector in the direction of

the jth light source
k, = the specular reflection coefficient
L'i = the vector in the direction

halfway between the viewer and
the jth light source, and

n = an exponent that depends on the
glossiness of the surface.

Phong's model assumes that each light source is located
at a point infinitely distant from the objects in the scene.
The model does not account for objects within a scene
acting as light sources or for light reflected from object
to object. As noted in [10], this drawback doesn't affect
the realism of diffuse reflection components very much,

1

but it seriously hurts the quality of specular reflections.
A method developed by Blinn and Newell [7] partially
solves the problem by modelling an object's environ-
ment and mapping it onto a sphere of infinite radius.
The technique yields some of the most realistic com-
puter generated pictures ever made, but its limitations
preclude its use in the general case.

In addition to the specular reflection, the simulation
of shadows is one of the more desireable features of an
illumination model. A point on a surface lies in shadow
if it is visible to the viewer but not visible to the light
source. Some methods [12,13] invoke the visible sur-
face algorithm twice, once for the light source and once
for the viewer. Others [1,3,14] use a simplified calcula-
tion to determine whether the point is visible to the
light source.

Transmission of light through transparent objects
has been simulated in algorithms that paint surfaces in
reverse depth order [4]. When painting a transparent
surface the background is only partially overwritten,
allowing previously painted portions of the image to
show through. While the technique has produced some
impressive pictures, it does not simulate refraction.

Improved Model

A simple model for reflection of light from per-
fectly smooth surfaces is provided by classical ray optics.
As shown in Figure 1, the light intensity, I, passed to
the viewer from a point on the surface consists primarily
of the specular reflection, S, and transmission, T, com-
ponents. These intensities represent light propagated
along the v, R, and P directions respectively. Since sur-
faces displayed are not always perfectly glossy, a term
must be added to model the diffuse component as well.
Ideally the diffuse reflection should contain components
due to reflection of nearby objects as well as predefined
light sources, but the computation required to model a
distributed light source is overwhelming. Instead, the
diffuse term from (1) is retained in the new model.
Then the new model is

Figure 1

of reflection must equal the angle of incidence. Simi-
larly, the P direction of transmitted light must obey
Snell's law. Then, R and P are functions of N and v
given by

and k, = the index of refraction.

Since these equations assume that V.N is less than zero,
the intersection processor must adjust the sign of N so
that it points to the side of the surface from which the
intersecting ray is incident. It must likewise adjust the
index of refraction to account for the sign change. If
the denominator of the expression for k, is imaginary, T
is assumed to be zero because of total internal
reflection.

By making k, smaller and kd larger, the surface can
be made to look less glossy. However, the simple

2

where

S = the intensity of light incident
from the R direction

k, = the transmission coefficient, and
T = the intensity of light from the P

direction.

The coefficients k, and k, are held constant for the
model used to make pictures in this report, but for the
best accuracy they should be functions that incorporate
an approximation of the Fresnel reflection law (i.e. the
coefficients should vary as a function of incidence angle
in a manner that depends on the material's surface pro-
perties). In addition, these coefficients must be care-
fully chosen to correspond to physically reasonable
values if realistic pictures are to be generated. The R
direction is determined by the simple rule that the angle

model will not spread the specular term as Phong's
model does by reducing the specular exponent n. As
pointed out in [8], the specular reflection from a
roughened surface is produced by microscopic mirror-
like facets. The intensity of the specular reflection is
proportional to the number of these microscopic facets
whose normal vector is aligned with the mean surface
normal value at the region being sampled. To generate
the proper looking specular reflection a random pertur-
bation is added to the surface normal to simulate the
randomly oriented micro-facets. (A similar normal per-
turbation technique is used by Blinn [9] to model tex-
ture on curved surfaces.) For a glossy surface, this per-
turbation has a small variance; with greater variances,
the surface will begin to look less glossy. This same
perturbation will cause a transparent object to look pro-
gressively more frosted as the variance is increased.
While providing a good model for microscopic surface
roughness, this scheme relies on sampled surface nor-
mals and will show the effects of aliasing for larger vari-
ances. Since this scheme also requires entirely too
much additional computing, it is avoided whenever pos-
sible. For instance in the case of specular reflections
caused directly by a point light source, Phong's model is
used at the point of reflection instead of the perturba-
tion scheme.

The simple model approximates the reflection from
a single surface. In a scene of even moderate complex-
ity, light will often be reflected from several surfaces
before reaching the viewer. For one such case, shown
in Figure 2, the components of the light reaching the
viewer from point A are represented by the tree in Fig-
ure 3. Creating this tree requires calculating the point
of intersection of each component ray with the surfaces
in the scene. The calculations require that the visible
surface algorithm (described in the next section) be
called recursively until all branches of the tree are ter-
minated. For the case of surfaces aligned in such a way
that a branch of the tree has infinite depth, the branch
is truncated at the point where it exceeds the allotted
storage. Degradation of the image from this truncation
is not noticeable.

In addition to rays in the R and P direction, rays
corresponding to the L, terms in (2) are associated with
each node. If one of these rays intersects some surface
in the scene before it reaches the light source, the point
of intersection represented by the node lies in shadow
with respect to that light source. That light source's
contribution to the diffuse reflection from the point is
then attenuated.

After the tree is created, the shader traverses the
tree, applying equation (2) at each node to calculate
intensity. The intensity at each node is then attenuated
by a linear function of the distance between intersection
points on the ray represented by the node's parent
before it is used as an input to the intensity calculation
of the parent. (Since one cannot always assume that all
the surfaces are planar and all the light sources are point
sources, square law attenuation is not always appropri-
ate. Instead of modelling each unique situation, linear
attenuation with distance is used as an approximation.)

Figure 3

Visible Surface Processor
Since illumination returned to the viewer is deter-

mined by a tree of "rays", a ray tracing algorithm is
ideally suited to this model. In an obvious approach to
ray tracing, light rays eminating from a source are traced
through their paths until they strike the viewer. Since
only a few will reach the viewer, this approach is waste-
ful. In a second approach suggested by Appel [1] and
used successfully by MAGI [5], rays are traced in the
opposite direction - from the viewer to the objects in the
scene.

Unlike previous ray tracing algorithms, the visibility
calculations do not end when the nearest intersection of
a ray with objects in the scene is found. Instead, each
visible intersection of a ray with a surface produces
more rays in the R direction, the P direction, and in
the direction of each light source. The intersection pro-
cess is repeated for each ray until none of the new rays
intersects any object.

3

Because of the nature of the illumination model,
some traditional notions must be discarded. Since
objects may be visible to the viewer through reflections
in other objects, even though some other object lies
between it and the viewer, the measure of visible com-
plexity in an image is larger than for a conventionally
generated image of the same scene. For the same rea-
son, clipping and eliminating backfacing surface ele-
ments are not applicable with this algorithm. Because
these normal preprocessor stages that simplify most visi-
ble surface algorithms cannot be used, a different
approach is taken. Using a technique similar to one
described by Clark [11], the object description includes
a bounding volume for each item in the scene. If a ray
does not intersect the bounding volume of an object,
then the object can be eliminated from further process-
ing for that ray. For simplicity of representation and
ease of performing the intersection calculation, spheres
are used as the bounding volumes.

Since a sphere can serve as its own bounding
volume, initial experiments with the shading processor
used spheres as test objects. For non-spherical objects,
additional intersection processors must be specified
whenever a ray does intersect the bounding sphere for
that object. For polygonal surfaces, the algorithm solves
for the point of intersection of the ray and the plane of
the polygon and then checks to see if the point is on the
interior of the polygon. If the surface consists of bi-
cubic patches, bounding spheres are generated for each
patch. If the bounding sphere is pierced by the ray,
then the patch is subdivided using a method described
by Catmull and Clark [17] and bounding spheres are
produced for each subpatch. The subdivision process is
repeated until either no bounding spheres are inter-
sescted (i.e. the patch is not intersected by the ray) or
the intersected bounding sphere is smaller than a
predetermined minimum. This scheme is suggested for
simplicity rather than efficiency; it is not implemented in
the current program.

The visible surface algorithm also contains the
mechanism to perform anti-aliasing. Since aliasing is
the result of undersampling during the display process,
the most straightforward cure is to low pass filter the
entire image before sampling for display [15]. A consid-
erable amount of computing can be saved, however, if a
more economical approach is taken. Aliasing in com-
puter generated images is most apparent to the viewer
in three cases: 1) at regions of abrupt change in inten-
sity such as the silhouette of a surface, 2) at locations
where small objects fall between sampling points and
disappear, and 3) whenever a sampled function (such as
texture) is mapped onto the surface. The visible surface
algorithm looks for these cases, and performes the
filtering function only in these regions.

For this visible surface algorithm, a pixel is defined
in the manner described in [16] as the rectangular
region whose corners are four sample points as shown in
Figure 4a. If the intensities calculated at the four points
have nearly equal values, and no small object lies in the
region between them, the algorithm assumes that the
average of the four values is a good approximation of

the intensity over the entire region. If the intensity
values are not nearly equal (figure 4b), the algorithm
subdivides the sample square and starts over again.
This process runs recursively until the computer runs
out of resolution or until an adequate amount of infor-
mation about the detail within the sample square is
recovered. The contribution of each single subregion is
weighted by its area, and all such weighted intensities
are summed to determine the intensity of the pixel.
This approach amounts to performing a Warnock [2]
type visibility process for each pixel. In the limit it is
equivalent to area sampling, yet it remains a point sam-
pling technique. A better method, currently being
investigated, considers volumes defined by each set of
four corner rays and applies a containment test for each
volume.

To insure that small objects are not lost, a
minimum radius (based on distance from the viewer) is
allowed for bounding spheres of objects. This minimum
is chosen so that no matter how small the object, its
bounding sphere will always be intersected by at least
one ray. If a ray passes within a minimum radius of a
bounding sphere, but does not intersect the object, the
algorithm will know to subdivide each of the four sam-
ple squares that share the ray until the missing object is
found. Although adequate for rays that reach theviewer
directly, this scheme will not always work fo rays being
reflected from curved surfaces.

4

Figure 5

Figure 6

Results
A version of this algorithm has been programmed

in C, running under UNIXTM on both a PDP- 1l/45 and a
VAX/11-780. To simplify the programming, all calcula-
tions are performed in floating point (at a considerable
speed penalty). The pictures are displayed at a resolu-
tion of 480 by 640 pixels with 9-bits per pixel. Since
only 3 bits of intensity resolution are available for each
of the three primary colors, ordered dither [18] is
applied to the color pictures to produce 111 effective
levels per primary. Consequently, the pictures shown
here are degraded by the dither pattern.

Table 1 lists user times for various pictures shown
in this report. All times given are for the VAX which is
nearly three times faster than the PDP-11/45 for this
application. The image of figure 5 shows three glossy
objects with shadows and object-to-object reflections.
The texturing is added using Blinn’s wrinkling tech-

TMUNIX is a trademark of Bell Laboratories.

Figure 7

Figure 8

nique. Figure 6 illustrates the effect of refraction
through a transparent object. The algorithm has also
been used to produce a short animated sequence. The
enhancements provided by this illumination model are
more readily apparent in the animated sequence than in
the still photographs. A breakdown of where the pro-
gram spends its time for simple scenes is:

Overhead - 13%
Intersection - 75%
Shading - 12%

For more complex scenes the percentage of time
required to compute the intersections of rays and sur-
faces increases to over 95%. Since the program makes
almost no use of image coherence, these figures are
actually quite promising. They indicate that a more
efficient intersection processor will greatly improve the
algorithm’s performance. This distribution of process-
ing times also suggests that a reasonable division of
tasks between processors in a multiprocessor system is

IMAGING IDTC XEROX
5

Table 1.

to have one or more processors dedicated to intersection
calculations with ray generation and shading operations
performed by the host.

Summary
This illumination model draws heavily on techniques
derived previously by Phong [6] and Blinn [7,8,9], but
it operates recursively to allow the use of global illumi-
nation information. It is implemented through a visible
surface algorithm that is very slow, but which shows
some promise of becoming more efficient. When better
ways of using picture coherence to speed the display
process are found, this algorithm may find use in the
generation of realistic animated sequences.

References
[1] Appel, A. Some techniques for shading machine renderings of

solids. AFIPS 1968 SJCC, 37-45.
[2] Warnock, J.E. A hidden line algorithm for halftone picture

representation. Technical Report TR 4-15, Computer Science
Dept., University of Utah, 1969.

[3] Bouknight,W.K. and Kelley, K.C. An algorithm for producing
half-tone computer graphics presentations with shadows and
movable light sources. AFIPS 1970 SJCC,I-10.

[4] Newell, M.E., Newell,R.G., and Sancha, T.L., A solution to
the hidden surface problem. Proc. ACM Annual Conf., 1972,
443-450.

[5] Goldstein, R.A. and Nagel, R. 3-D visual simulation. Simula-
tion, January 1971, 25-31.

[6] Bui-Tuong Phong. Illumination for computer generated
images. Comm. ACM 18,6(June 1975),311-317.

[7] Blinn, J.F. and Newell, M.E. Texture and reflection in com-
puter generated images. Comm. ACM 19,10(October 1976),
542-547.

[8] Blinn, J.F. Models of light reflection for computer synthesized
pictures. Proceedings of the 4th Annual Conf. on Computer
Graphics and Interactive Techniques, 1977.

[9] Blinn, J.F. Simulation of wrinkled surfaces. Proceedings of
the 5th Annual Conference on Computer Graphics and
Interactive Techniques, 1978.

[10] Blinn, J.F. and Newell, M.E. The progression of realism in
computer generated images. Proc. of the ACM Annual Conf.,
1977, 444-448.

[11] Clark, J.H. Hierarchical geometric models for visible surface
algorithms. Comm. ACM 19,10(October 1976), 547-554.

[12] Atherton, P., Weiler, K., and Greenburg, D. Polygon shadow
generation. Proceedings of the 5th Annual Conference on
Computer Graphics and Interactive Techniques, 1978.

[13] Williams, L. Casting curved shadows on curved surfaces.
Proceedings of the 5th Annual Conference on Computer
Graphics and Interactive Techniques, 1978.

[14] Crow, F.C. Shadow algorithms for computer graphics.
Proceedings of the 4th Annual Conference on Computer
Graphics and Interactive Techniques, 1977.

[15] Crow, F.C. The aliasing problem in computer-generated
shaded images. Comm. ACM20,11 (Nov. 1977), 799-805.

[16] Catmull, E. A subdivision algorithm for computer display of
curved surfaces. UTEC CSc-74-133, Computer Science
Dept., University of Utah, 1974.

[17] Catmull, E. and Clark, J. Recursively generated B-spline sur-
faces on arbitrary topological meshes. Computer Aided Design.
10 6 (Nov 1978) pp 350-355.

[18] Jarvis, J.F., Judice, C.N., and Ninke, W.H. A survey of tech-
niques for the display of continuous tone pictures on bilevel
displays. Comp. Graphics and Image Proc., 5, pp. 13-40, 1976.

6

