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1 Introduction

Bidirectional Reflectance Distribution Functions (BRDFs) are the fundamental quantity
describing reflectance. After a brief introduction (by Pat), this lecture discusses common
features of BRDFs and possible representations (by Szymon), a few general constructions
(by Steve), and BRDF reparameterizations (by Szymon and Steve).

First, we consider L, the radiance. The radiance is roughly the power per unit di-
rection per unit area and is more formally defined as the power per unit projected area
perpendicular to the ray per unit solid angle in the direction of the ray.
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Figure 1: Radiance is the power per unit projected area per unit solid angle

We can also write the radiance in terms of the throughput as

L =
dΦ

dT
(1)

where Φ is the power and T is the throughput defined as

dT = d~ω · d ~A (2)

where ω is the solid angle, A is the area, and we consider ~ω and ~A as vectors—so their dot
product will include the cosine of the angle between them. The differential throughput
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dT is a measure of the number of lines in the beam; the size of the beam depends on the
throughput T =

∫
dT . For the same beam, the throughput remains constant. Therefore,

in geometric optics, both the throughput and the power (or energy) are conserved.
Thus, the limit for the radiance

L = lim
△T→0

△Φ

△T
(3)

will be well defined since both the numerator and denominator are invariant quantities.
Therefore, the radiance is a fundamental quantity, and the radiance along a ray remains
constant as it propagates, assuming there are no losses because of absorption in a medium.
Also, the response of a sensor is proportional to the radiance of the surface visible to the
sensor; the constant of proportionality is the throughput, a function only of the geometry
of the sensor.

As far as reflection is concerned, we want some measure of the ratio of outgoing to
incoming energy. However, it is important to define the limit properly in order for it to
make sense. Consider as a first attempt,

r =
△Φo

△Φi

=
△Lo( ~ωo) cos(θo) △ ωo △ A

Li(~ωi) cos(θi) △ ωi △ A

Taking the limit of this quantity as △A, △ωi and △ωo tend to 0 will lead to an inconsis-
tency. Basically, there are three differential quantities in the numerator and only two in
the denominator. Also, △Lo varies linearly and is related to △ωi which leaves △ωo not
cancelled by any term in the denominator. Similarly, an attempt to define r = △Lo/Li

will lead to an inconsistency.
In order to have a well-defined limit for the BRDF, we must first define the irradiance,

E as the radiant power per unit area incident on a surface. The differential irradiance
because of a small solid angle △ωi is then

△E = Li(~ωi) cos(θi) △ ωi (4)

Note that if we were to multiply by the differential area, this would simply be the incoming
radiance multiplied by the differential throughput i.e. the differential response of a sensor.

Finally, we define the BRDF fr as the ratio of the outgoing (differential) radiance to
the incoming differential irradiance that produces it.

fr(~ωi, ~ωo) = lim
△E,△Lo→0

△Lo( ~ωo)

Li(~ωi) cos θi △ ωi

= lim
△ωi,△ωo→0

△Lo( ~ωo)

Li(~ωi) cos(θi) △ ωi

(5)

Upon integrating the outgoing radiance over the the incoming hemisphere, we obtain
the reflection equation:

Lo( ~ωo) =
∫
Ωi

fr(~ωi, ~ωo)Li(~ωi) cos(θi)d ωi (6)
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Figure 2: Visualization of some common BRDFs. Top: Diffuse (left) and the
Hapke/Lommel-Seeliger lunar BRDF with retroreflection (right). Middle: Torrance-
Sparrow (left) and at grazing angles (right) with increased Fresnel reflection. This also
involves a significant off-specular component. Right: Anisotropic BRDF (left) and using
spherical harmonics to approximate (right) demonstrating ringing.
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2 Common Features of the BRDF

Visualizations of some common BRDFs discussed in this section are found in figure 2.
We briefly go thru some common BRDFs, discussing their key features.

Diffuse: The diffuse or Lambertian BRDF is just a constant and is the simplest BRDF.
Note that while the BRDF is constant, there is a cosine falloff of intensity toward graz-
ing incident angles with respect to the light source. While not physically realizable,
the Lambertian surface is often a good first-order approximation and is a widely used
phenomenological model.

Torrance-Sparrow: The Torrance-Sparrow BRDF includes a peak in the direction of
specular reflection. For a perfect mirror, there would be a single spike in the mirror
direction. For general somewhat rough microgeometry, we instead get a lobe around
the specular direction, the width of which depends on how rough the surface is. Other
features are a sharp increase in the intensity of this specular reflection at grazing angles—
because of the Fresnel effect to be discussed below—and off-specular peaks in the BRDF
distribution because of similar effects.

Below, we present a derivation of the Fresnel term. This describes the amount of light
reflected in the specular direction by a surface and is responsible for increase reflection
as we approach grazing angles.
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Figure 3: Diagram for Fresnel reflection, E perpendicular to plane of incidence

We derive the equations from a number of continuity conditions. Here, we have only
shown the polarization with E coming out of the plane of the paper. We first define
r = E2/E1 and t = E3/E1. r and t are the amplitude coefficients for reflection and
transmission, respectively.
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Our first condition of continuity is that the perpendicular or tangential component
of E is continuous at the interface. This implies that E1 + E2 = E3. Note that this is
because of our sign convention. We can then write (dividing by E1)

1 + r = t (7)

Our second condition of continuity is on the normal component of the magnetic field
i.e. B1 sin(α) + B2 sin(γ) = B3 sin(β). Accounting for the index of refraction n of the
medium, and dividing by B1, this becomes

sin(α) + r sin(γ) = nt sin(β) (8)

It should be noted that B = E/v where v is the speed of light in the medium, and v = c/n
where c is the speed of light in free space. This accounts for the n on the right-hand side.

Next, we consider the continuity of the tangential component of the magnetic field.
Here, we must actually consider continuity of B/µ, but we assume as is common that
the magnetic permeability of the medium µ = 1. In that case, the equation is similar to
the one above viz. B1 cos(α) − B3 cos(γ) = B2 cos(β) and becomes

cos(α) − r cos(γ) = nt cos(β) (9)

Finally, we consider energy conservation viz. that energy does not build up at the
interface. Mathematically this is E1B1 cos(α) − E3B3 cos(γ) = E2B2 cos(β). Again,
dividing by E1B1 and accounting for the index of refraction, we obtain

cos(α) − r2 cos(γ) = nt2 cos(β) (10)

We can write the right-hand side of the equation above as t[nt cos(β)]. But the
bracketed term is the right-hand side of equation 9 and from equation 7, t = 1 + r.
Making the substitutions, we get

cos(α) − r2 cos(γ) = (1 + r)[cos(α) − r cos(γ)]

Upon simplifying and dividing by r, this reduces to

cos(α) = cos(γ) (11)

This is the law of reflection in wave optics stating that the angle of incidence is equal to
the angle of reflection.

Using the above result to substitute for γ in equation 8 and using t = 1 + r,

sin(α)(1 + r) = n(1 + r) sin(β)

from which we derive Snell’s Law

sin(α) = n sin(β) (12)
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Finally, we can use t = 1 + r in equation 9 to obtain

(1 − r) cos(α) = n(1 + r) cos(β)

from which we can derive

r⊥ =
cos(α) − n cos(β)

cos(α) + n cos(β)
(13)

A similar derivation for when the electric field is polarized parallel to the plane of
incidence yields

r‖ =
n cos(α) − cos(β)

n cos(α) + cos(β)
(14)

The reflectance, a measure of the ratio of the reflected power to the incident power is
given by the square of these quantities.
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Figure 4: Plots of Fresnel reflectance as a function of incident angle for a dielectric (left)
and a metal (right). Note Brewster’s angle when reflectance for one of the polarizations
vanishes.

Plots of the Fresnel coefficient as a function of the incident angle are given in figure 4.
It will be noted that for dielectrics with low n, the reflectance is substantially higher at
grazing angles. For metals with higher n, this effect also holds, but the difference between
normal incidence and grazing angles is less marked. Note that there is an angle, Brewsters
angle, given by tan−1(n) at which light is completely polarized, since the reflectance for
the other direction of polarization falls to 0.

Retroreflection: As an example, consider images of the moon. Interesting features
include no large falloff in intensity towards grazing angles as in a diffuse BRDF, and
that the full moon is significantly brighter. The Hapke/Lommel-Seeliger model of the
BRDF for the moon has been postulated to take these features into account. This BRDF
includes a strong retroreflective peak. Since the surface is very rough, only areas with
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Illuminated Areas

LIGHT direction

Dark Areas

Figure 5: Showing retroreflection from a very rough surface (left). Only areas with
normals close to the light direction are well lit, so there is a strong retroreflective peak.
On the right, we see a corner reflector (the inside corner of 3 planes is the 3D analog)
which produces the same effect.

normals close to the light direction are well lit. These in turn are visible only when
the viewing direction is close to the direction of the light source, which explains the
retroreflective peak. A similar effect is obtained from a corner reflector, shown on the
right of figure 5, and this effect is utilized in bicycle reflectors and highway paint.

Dusty Surfaces: These types of surfaces appear brighter towards grazing angles. This
is a similar phenomenological effect as what we saw earlier for the Fresnel effect, although
the cause is different. At a normal viewing angle, we see the surface directly, with not
much scattering off the dust. However, at grazing angles, we see increased scattering
because of the dust and this makes the surface appear brighter. For the same reason,
the earth when viewed from space appears brighter near the edges, because of increased
scattering of the atmosphere.

Anisotropy: For the most part, BRDFs are isotropic. This means that if we rotate
the surface about its normal, leaving the light and viewing vectors unchanged, there is
no change in the BRDF. Alternatively, if we rotate both incident and exitant directions
about the surface normal by the same amount, we get the same result i.e. there is no
preferred tangential direction. This is important for representation because it allows us
to use 3 parameters instead of 4 (2 for each of the incident and outgoing angles), with one
parameter made redundant because of isotropy. However, BRDFs may in certain cases
be anisotropic. This happens, for instance, in machined aluminium, where the scratches
lie in particular directions. Anisotropic BRDFs must be represented considering all 4
dimensions.
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3 BRDF representations

There are three principal ways to obtain a BRDF. We can derive an analytic formula
using physical principles, use simulation given an assumed or measured model of the
surface microgeometry, or measure the BRDF based on empirical observation. In any
case, we need a method to represent and store the BRDF. This section considers the
merits and demerits of various BRDF representations, followed by a discussion of some
general representation schemes. We must keep in mind the features discussed already
when choosing a representation.

Tabular Representation: The advantage of a table is simplicity, However, general
BRDFs are 4 dimensional quantities which can make the table occupy a large amount
of storage. Further, quadralinear interpolation of samples must be performed to find
an intermediate value. Another troubling aspect of this representation is that BRDFs
often have peaks which concentrate a large part of the energy of the BRDF in a very
small region, while remaining relatively constant elsewhere. In order to capture this
correctly, we will need a very high resolution. It is possible to build schemes with adaptive
resolution; see the paragraph on wavelets.

Splines: The benefit of splines over a tabular representation is that it should be possible
to represent the smooth parts with fewer control points. However, splines are relatively
complicated and can be difficult to sample correctly.

Analytical Formulae: A number of analytic formulae have been proposed for BRDFs.
These may be purely ad-hoc or phenomenological, as in the Phong model where we use
the specular term (Re ·L)n with Re being the reflection of the eye or viewing vector about
the surface normal, L being the light vector, and n being an exponent which controls the
width of the highlight. Perhaps the best known phenomenological model is the diffuse
or Lambertian model with a constant BRDF. Alternatively, formulae may be derived
from physical principles. A number of models such as the Torrance-Sparrow model have
been derived from the distribution of microfacet orientations. Finally, one may postulate
a certain microgeometry for the surface, and simulate the resulting BRDF by using a
software raytracer. The disadvantage of all these approaches is lack of generality; features
of only a particular class of BRDFs are captured. However, this representation can be
very compact—only a few parameters need be stored, although the parameters are often
not inutuitive.

Basis Functions: Just as the Fourier basis can be used to represent functions over the
real line, Spherical Harmonics or Zernike Polynomials—these will be discussed in more
detail under general constructions—can be used to represent BRDFs. These bases are
designed to work well for smooth functions. The individual basis functions can generally
be assigned intuitive meanings; for instance, the lowest order Zernike polynomial or
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spherical harmonic merely gives the Lambertian or diffuse BRDF. However, BRDFs
have sharp specular peaks which require many basis functions to represent. Further,
these peaks are compact in angular space but not compact in frequency space, and
representing them by basis functions compact in frequency space, but not angular space,
has repercussions over the entire BRDF, leading to undesirable ringing effects.

Wavelets: Wavelets are an alternative multiresolution construction which are compact
in both angular and frequency space. As such, they are a good basis for approximating
BRDFs. The disadvantage of wavelets as compared to more traditional basis functions is
that they are harder to analyze as functional objects in order to derive analytic formulae,
or to assign intuitive meaning to. However, for many representational tasks, they appear
to be the basis of choice.

General Constructions

We now discuss a few general constructions in terms of basis functions that can be used
to represent arbitrary BRDFs.

Spherical Harmonics: Spherical harmonics are an orthogonal basis over the sphere,
denoted by Ylm(θ, φ), where l ≥ 0 is the degree, and m with −l ≤ m ≤ l is the order of
the spherical harmonic. An important property is that if a spherical harmonic is rotated,
the rotated version can be expressed as a linear combination of spherical harmonics of
the same degree l i.e. the degree is invariant to rotation. Spherical harmonics are used
in other contexts, for instance, in describing the wave functions of electron orbitals. The
functions can be written as Ylm(θ, φ) = Plm(cos θ)eImφ where Plm is an appropriately
normalized associated Legendre function, and I =

√
−1.

For the purpose of representing BRDFs, we collapse the indices, defining a single
index u = l2 + l + m. We also consider the product of two spherical harmonic basis
functions to give a mapping S2 × S2 → R from the product of spheres to real numbers.
We can define a combined basis function:

Ỹuv(~ωi, ~ωo) = Yu(~ωi)Yv( ~ωo)

To preserve reciprocity, this expression should also be symmetrized with respect to inci-
dent and outgoing angles. We can do this by making

Ỹuv(~ωi, ~ωo) = N(Yu(~ωi)Yv( ~ωo) + Yv(~ωi)Yu( ~ωo)) (15)

where N is an appropriate normalizing constant.
A potentially difficult issue is that ~ωi and ~ωo are defined over only the upper hemi-

sphere while the spherical harmonics are defined over the whole sphere. Further, Fresnel
effects cause BRDFs to increase toward grazing angles, causing a spherical harmonic
approximation to exhibit ringing throughout the domain.
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To work around these issues, we may first multiply the BRDF by cos(θi) cos(θo) and
represent this new function instead. This goes to 0 at grazing angles, reducing the effects
of the Fresnel term, and ensuring continuity at the edges of the hemisphere. To get
C1 continuity everywhere, we may also extend the BRDF to the lower hemisphere, so
that it has the same value as the antipodal point in the upper hemisphere. Specifically,
fr(−~ωi, ~ωo) = fr(~ωi, ~ωo). This makes the BRDF an even function of angle. Since the
multiplying cosine term is an odd function, the cosine-multiplied BRDF becomes an odd
function of angle, giving us C1 continuity. A related benefit is that we need only use
odd spherical harmonics to express this new function, which means we need not store
coefficients of the even spherical harmonics. Isotropy can be maintained as discussed
below for Zernike polynomials.

Zernike Polynomials: While spherical harmonics can be used, we need several tricks
to convert them from a basis on the sphere to one over the hemisphere on which BRDFs
are defined. This motivates us to look for a basis defined on the hemisphere. Zernike
polynomials have been used to express spherical aberration in optics. They are functions
over the unit disk D2 → R.

Since, the hemisphere has the same topology as the disk, they can be extended to
the hemisphere H2 → R. The Zernike functions on the hemisphere can be written
as Km

n (θ, φ) = Rm
n (

√
2 sin(θ/2))azm(φ) where R is an appropriately normalized Zernike

polynomial of degree at least m and azm is a real version of the complex exponential,
being given by cos(mφ) when m > 0,

√
2 when m = 0 and − sin(mφ) when m < 0.

The extension to a product of hemispheres is very similar to that for spherical har-
monics.

H lk
mn(~ωi, ~ωo) = N(K l

m(~ωi)K
k
n( ~ωo) + Kk

n( ~ωo)K
l
m(~ωi)) (16)

Again, N is a normalization constant.
To maintain isotropy, we require that adding a constant phase △φ to both incident

and outgoing angles does not change the function. The φ dependence of the above basis
function is the real part of eIlφieIkφo plus the symmetrized version with the subscripts
swapped. It can be seen that this should depend on φi −φo for the additive phase to not
play a role. Thus, l + k = 0. For isotropic BRDFs, only basis functions with l + k = 0
need be taken into account, so there are only three relevant indices instead of four.

Generalized Cosine Lobes: The previous models have started with a general well-
known set of basis functions, and have manipulated them to be able to represent the
BRDFs reasonably well. However, these linear models are often ill-equipped to deal
with the special features of BRDFs, a point noted in our earlier discussion of using
basis functions to represent BRDFs. The generalized cosine lobe model starts from
a phenomenological model—the Phong model—and generalizes it to represent a fairly
large class of common BRDFs. The phong model specular lobe can be viewed as

(~ωi
TR ~ωe)

n
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where R is a 3x3 matrix that reflects the eye-vector ωe about the surface normal. The
idea is to generalize R to M , a general matrix. However, to preserve reciprocity, we
require M to be symmetric. This still leaves a 6 parameter family of functions, but 3
parameters serve merely to rotate the entire lobe, leaving 3 interesting parameters. We
can decompose M = QTDQ where D is a diagonal matrix to write

fr(~ωi, ~ωe) = (~ωi
TQTDQ~ωe)

n (17)

The Q matrices merely serve to set the coordinate frame while the diagonal D matrix with
parameters cx,cy,cz actually has the interesting parameters. Together with n, this gives
a phong lobe parameterized with 4 parameters. If z is the normal direction, the original
phong model has cx = −1, cz = 1. A positive cx represents retroreflection. Off-specular
peaks and increased reflection at grazing angles are obtained by setting cx < −1, cz = 1.
Thus, many features of real BRDFs can be represented using only a few parameters. By
summing several lobes, more complex BRDFs can be represented.

Reparameterization

The BRDF is defined over a product of two hemispheres H2 × H2. Therefore, four pa-
rameters are required, and the traditional parameterization is by incident angle (θi, φi)
and exitant angle (θe, φe). Thus, the BRDF is a function of (θi, φi, θe, φe). This param-
eterization is good for measurement since all variables correspond directly to physical
quantities. However, it can miss several symmetries of the BRDF. For instance, there
is the phenomenon of off-specular reflection at near-grazing angles, which seems rather
strange in the conventional parameterization; refer to figure 6. Also, reciprocity—the
symmetry between incident and reflected angles— is not explicit.

The reason for reparameterization is to provide a better understanding of the BRDF,
to make the symmetries more explicit, and also to help in creating a more compact
representation. A problem of the standard representation with respect to compactness
is that there are peaks all over the distribution, since the specular direction varies with
incident angle. We seek reparameterizations where variation occurs in a smaller number
of dimensions, ideally only 1, and where the BRDF varies slowly with respect to the
other parameters. The rest of the lecture briefly discusses various parameterizations.

Difference from Mirror Direction: If we make one of the variables the angle to the
ideal mirror direction, we allow the specular peak to remain stationary at 0, thus reduc-
ing somewhat the complexity or dimensionality of the space. However, for anisotropic
BRDFs, the specular lobes will spin or rotate as we move the incident angle. Retroreflec-
tive peaks are not localized, either. Off-specular peaks will remain, since the distribution
has only been shifted.

Half-Angle Parameterization: We may also base our reparameterization on H, the
half-angle midway between the incident and exitant angles. If the exitant angle is in the
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Figure 6: A depiction of off-specular reflection. There is a ridge where incident and
reflected angles are equal, but the ridge is steeper toward grazing angles. For a given in-
cident angle, this creates off-specular peaks. A half-angle reparameterization as discussed
below is more natural and does not have these counter-intuitive results.

direction of mirror specular reflection, the half-angle coincides with the surface normal.
Thus, the deviation of the half-angle from the normal direction, indicates the strength of
the specular reflection, and is a fundamental quantity in many analytic BRDF models,
which are exponential in N ·H where N is the normal direction, or include a phong-like
lobe (N · H)n. Furthermore, incident and exitant angles are explicitly symmetric with
respect to the halfway vector. We write the BRDF as a function of (H, D) where D is
a difference vector. The BRDF is often factorizable as a function of H times a function
of D, where the D dependence takes care of Fresnel-effects at grazing angles, and where
the H dependence takes care of the specular peak. There are many symmetries exposed
by this parameterization. For instance, different specular peaks correspond to the same
H for different values of D, and remain stationary in H as D is varied. The effects of the
Fresnel term depend only on D, not H, and so off-specular reflection is folded into the
model, and does not appear explicitly. For a given D, the peak is always at H = 0. The
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Figure 7: The half-angle, halfway between incident and exitant angles is a key quantity
in BRDF representation

orientations of anisotropic peaks also remain fixed. Retroreflection for different angles
corresponds to changing H while keeping D fixed, and is therefore also easily factorizable,
and the retroreflective peaks remain stationary. In fact, retroreflection can be seen as
essentially the dual to ordinary reflection, under an exchange of D and H.

Factorized Representations: Many BRDF models can be reparameterized so they
can be written as the product of several terms, each of which depends on different param-
eters. Each of these product terms can be stored as a texture, with texture co-ordinates
being the appropriate parameters. These parameters are usually computable in terms of
dot-products of vectors generated by the graphics system e.g. N · H. Therefore, such a
representation is very efficient for hardware rendering. Simple dot-products index into a
texture map, and the various terms are multiplied together to compute the appropriate
products in hardware. This allows a wide variety of BRDFs to be efficiently rendered
with standard graphics hardware.

Isotropic BRDFs: This paragraph introduces a more intuitive parameterization for
isotropic BRDFs. In general, BRDFs are defined over a product of hemispheres H2×H2.
However, isotropic BRDFs have an equivalence relation in that rotations of the surface
about the normal should result in the same BRDF and so the topology is H2 × H2\E
where E is the equivalence class. The usual parameterization is with (θi, θe,△φ) where
△φ = φr − φi. The goal is to map these 3 parameters into 3-space so as to preserve the
topology of the BRDF space.

A first attempt is to use cylindrical coordinates with

r = θi

x = r cos△φ

y = r sin△φ

z = θe
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Figure 8: A first attempt at a 3-space mapping of isotropic BRDF parameters into
cylindrical coordinates.

Some good properties of the above parameterization, depected in figure 8 are that normal
incidence corresponds to the z axis and is described by only 1 parameter , θe, since only
the angle of exitance matters. However, the reciprocity condition is a reflection about a
cone and is not simple. Normal exitance maps to an entire plane (the xy plane), instead
of a line as for normal incidence. Finally, for a constant incident direction, the parameter
space is a cylinder, not a hemisphere.

A second, more sophisticated attempt is to use

r = sin θi sin θe

x = r cos△φ

y = r sin△φ

z = cos θe − cos θi (18)

Reciprocity now translates into a simple reflection about the origin. Normal incidence
and exitance both correspond to lines since r vanishes, and so too do retro and specular
reflection for which z vanishes.
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Figure 9: A second, more sophisticated attempt at a 3-space mapping of isotropic BRDF
parameters into cylindrical coordinates.

4 Further Reading

This lecture has skimmed a lot of material fairly briefly. Introductory material on Ra-
diometry and BRDFs can be found in the chapter on Rendering Concepts by Pat Han-
rahan in Cohen and Wallace [1]. Nicodemus’ article [8] first introduces the BRDF as a
unified description of reflection. The derivation of Fresnel reflectance and a discussion
of spherical harmonics can be found in a standard Physics textbook, for instance, [3].
BRDF modeling and representation has a long history. The original paper by Torrance-
Sparrow [10] first introduces that model. Spherical harmonics have been used to simulate
reflectance from microgeometry by Westin, Arvo and Torrance [11]. Koenderink and van
Doorn [5] introduce the phenomenological model based on Zernike polynomials. The
generalized cosine lobe model is introduced in a paper by LaFortune et al. [6]. The
later papers also have pointers to some of the earlier literature. The half-angle pa-
rameterization is due to Rusinkiewicz [9]. BRDF factorizations have been explored by
Heidrich and Seidel [2], and by Kautz and McCool [4]. Marschner’s [7] thesis intro-
duces the mappings we discuss for isotropic BRDFs. The BRDF plots shown during this
lecture were done using a BRDF viewer written by Szymon Rusinkiewicz available at
http://graphics.stanford.edu/˜smr/brdf/bv/
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