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(a) (b)

Plate 11.38 Depth of field, implemented
by postprocessing (Sections 14.4.10 and
16.10). (a) Focused at cube (550 mm),
/11 aperture. (b) Focused at sphere
{290 mm), f/11 aperture. {Courtesy of
Michael Potmesil and Indranil
Chakravarty, RPL.)

Plate 11.39 Depth of field, implemented
by distributed ray tracing (Sections
14.4.10 and 16.12.4). (By Robert Cook,
Thomas Porter, and Loren Carpenter.
Copyright © Pixar 1984. All rights
reserved.)
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st as in real life. so the viewer's eyes focus differently on different objects, depending on
ich object’s proximity. Methods for producing and view ing stereo images are examined in
ore detail in Section 18.11.5; the mathematics of stereo projection is described in

Exercise 6.27

14.8 IMPROVED DISPLAYS

In addition to improvements in the software used to design and render objects, improve-
nents in the displays themselves have heightened the illusion of reality. The history ol
computer graphics is in part that of a steady improvement in the visual quality achieved by
display devices. Still, a modern monitor s color gamut and its dynamic intensity range arc
both u small subset of what we can see. We have a long way to go before the image on our
display can equal the crispness and contrast ol a well-printed professional photograph!
Limited display resolution makes it impossible to reproduce extremely fine detail. Artifacts
such as a visible phosphor pattern, glare from the screen, geometric distortion., and the
stroboscopic effect of frame-rate fhcker are ever-present reminders that we are viewing i
flisplay. The display s refatively small size, compared with our field of vision, also helps to

emind us that the display 1s a window on a world. rather than a world itsell,

14.9 INTERACTING WITH OUR OTHER SENSES

Perhaps the final step toward realism is the mtegration of realistic imagery with information
presented to our other senses. Computer graphics has a long history of programs that rely
on a variety of input devices to allow user interaction, Flight simulators are a current

example of the coupling of graphics with realistic engine sounds and motion, all offered ina

mocked-up cockpit to create an entire environment. The head-worn simulator of Color Pl
motion. making possible another important 3D depth cue callec

ate

[.16 monitors head
head-motion parallax: when the user moves her head from side to side, perhaps to try 1o see
more of a partially hidden object, the view changes as it would in real life, Other active
work on head-mounted displays centers on the exploration of virtual worlds, such as the
insides of molecules or of buildings that have not yet been constructed [CHUNSY|.
Many current arcade games [eature i car or plane that the player rides. mo ing in tme
1o a simulation that includes synthesized or digitized images, sound, and force feedback. as
shown in Color Plate 1.7. This use of additional output and input modalities points the wiy
to systems of the future that will provide complete immersion of all the senses, including

hearing, touch, taste, and smell.

14.10 ALIASING AND ANTIALIASING

In Section 3.17. we introduced the problem of aliasing and discussed some  basic
techniques for generating antialiased 2D primitives. Here we examine aliasing in more
detail so that we can understand when and why it occurs, laying the
incorporating antialiasing into the visible-surface and shading algorithms covered in the
[ollowing chapters. Additional material may be found in [CROWT77b; CROWSI]: an

excellent set of examples is included in [ BLINSY:@ BLINSYb].
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To Sy P T s
_ uqu\_I.nuI aliasing, we have to introduce some basic concepts from the field of
signal processing. We sl /i ; a8
e al pr LL'\.‘:H‘_. We start with the concept of a signal, which is a function that conveys
nformation. Signals are ofte ' i ‘ :
Signals are n thought of as tunctio
. o HE ns of time, but can equally we
functions of wvarinbles. Sina f s :  equally ve o
- I other variables. Since we can think of images as intensity variations over space
we will refe dignals i - ' une ol coe ; athd
: |1a fer 1o signals in the spatial domain (as Tunctions of spatial coordinates), rather
1an e { as functi i fumctioe
_lrllI e temporal donain (as functions of time), Although images are 21D functions of
two independe atial variables (x i 5 vl ;
- wley }mlg_nl spatial variables (v and v}, lor convenience our examples will often use the
case of a sinele spatial variable x. This ¢ :
s ; nl__lg spatial variable x. This case can be thought of as an infinitesimally thin
slice th y » ave  FeRTEsERting : : 3
< I ;uf_. 1 I:;l. image, representing intensity along a single horizontal line. Figure 14.8(a)
and (b) show 2D signals, and parts (¢ ' iun . : inte o
21 signals, and parts (¢) and (d) of the tigure show pl ‘the i i
\ : : e ‘ ots ol the inte &
the horizontal line a. I eIy long
Signals c: : classified by
| i \ can be classified by whether or not they have values at all points in the spatial
domain. A conti : signal' is defi i i I iscre
. !I_l | Immm.-m.ir.\ signal' is defined at a continuum of positions in space: a discrete
signal is defined at a se iscrete points i { : i e 0l :
lg ( I‘I;Lllil.it d at a set of discrete points in space. Before scan conversion, the projection
ol our . biec *VIC anc . .
objects onto the view plane may be treated as a continuous 2D signal whose value

N S . i
Not to be confused with the definition of continuity in calculus

14.10

4t cach infinitesimal point in the plane indic
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ates the intensity at that point. In contrast. the

ray of pixel values in the graphics system’s frame buffer is a discrete 2D signal whose
salue is defined only at the positions in the array. Our rendering algorithms must determine
the intensities of the finite number of pixels in the array so that they best represent the
continuous 2D signal defined by the projection, The precise meaning of “hest represent”” is
however. We shall discuss this problem further.

not at all obvious.
arbitrarily fine detail in the form of very rapud

A continuous signal may contain
ons in its value as its continuous parameler is changed. Since a

1-frequency) variati
has a maximum rate ol

at discrete points, it clearly

Jiscrete signal can change value only
g & continuous signal to a finite array

ation. Therefore, it should be clear that convertin
ation. Our goal is to ensure that as little information

be used to display a picture that looks
able to display it directly

of values may result in a loss of inform
ble is lost. so that the resulting pixel array can
inal signal would look if we were
nal is known as sampling, and the

us 11{!\‘\"
as much as possible like the orig
1 a finite set of values from a sig
Once we have selected these samples,
attemplts to recreate the original

Ihe process of selectir
celected values are called samples. we must then
i Process, known as reconstruction, that
ay of pixels in the frame buffer is reconstructed

converts these discrete intensity values 1o

display them using
continuous signal from the samples. The arr
y the graphics system’s display hardware, which
analog voltages that are applied to the CRT's
of this pipeline is shown in Fig.
at which samples must be selected from a
. and specifies how to perform the

continuous, clectron gun (see Chapter 4). An
jdealized version 14.9, Signal-processing theory
(GONZS7] establishes the minimum frequency
copy of the signal

given signal to reconstruct an exact
_ this minimum sampling frequency will

reconstruction process. As we show later, however
be infinite for many kinds of signals in which we ar
lescribed in Section 14.10.5, the reconstruction

¢ interested, so perlect reconstruction

will often be impossible, Furthermore. as €
illy used by the display hardware
even properly sampled signals will not be

method typici differs from the approach preseribed by
theory. Therefore, peconstructed perfectly.

14.10.1 Point Sampling
ach pixel’s value 1s known as point sampling. In

he most straightforward way 1o select e
evaluate the original signal at this puint.

point sampling. we select one point for cach pixel,
The points that we select are typically arranged in a regular
Unlike the scan-conversion aleorithms of Chapter i
grid points, Because the signal’s

and assign its value to the pixel.
orid, as shown in Fig. 14.10.
projected vertices are not constrained to lie on integer
values at a finite set of points are sampled, however, important feutures of the signal may be
‘or example. objects A and C in Fig. 14.10 arc represented by the samples.
To make matters worse. il the viewing specification
objects may pop in or oul of visibility. What il we
enal, the more we Know

missed. |
whereas objects B and D are not.
changes slightly or if the objects move,
sample at a higher rate? The more samp
about it. For example, we can sec cusily
\ken horizontally and vertically in Fig. 14.
This is a necessary.

les we colleet from the si
that, by increasing sufficiently the number ol
10. we can make sure that no object 18

samples ki
but not a suflicient condition for

missed in that particular picture.
ampling. Nevertheless. sampling at a higher rate,
portion of the picture. We can also generate an image with

adequate s we cian generate images w ith
more pixels representing eich
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Fllg. ‘:43 The original signal is sampled, and the samples are used to reconstruct the
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_ i-aC.]l'Id. {_ dmpl‘t,q 2D image is an approximation, since point samples have no area.)
(Courtesy of George Wolberg, Columbia University.) .
fewer pixels, by combining several adjacent samples (e.g.. by averaging) to determine the
\; - !; - H 0) 3 » [ e P - | I ;i "

lue n!‘. each pixel of the smaller image. This means that all the features that would be
present in the larger image at least contribute to the smaller one.
: I'he approach of taking more than one sample for each pixel and combining them is
¥ « s - Py a . H ¥ :
| nown as supersampling. 1t actually corresponds to reconstructing the signal and

L —— ino . . s H " H = > .

resampling the reconstructed signal, For reasons described later, sampling the reconstruct-

ed signal is often better than sampling the original signal. This technique is popular in
computer graphics precisely because it is so casy and often achieves good results llc: ite
the obvious increase in computation. But. how many samples are t:nnua:h'I 'il;\.\ -J\I!I we
= kngu- Eh;n lhlu':rw are no features that our samples are I.Ii-l_‘\HiI'!}.".' Merely h.'.\'liI.IL: ;vln‘thcr every

‘ ul'\|ccl. s prfur\--.'linn is sampled is not sutficient. The projection may have a L'lllll'll'lll._“ shape or
- vartations in shading itensity that the samples do not reflect. We would like some way to
guarantee that the samples we take are spaced close enough to reconstruct the m'i:_'_in;ll
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Fig. 14.10 Point-sampling problems. Samples are shown as black dots (e). Objects A

and C are sampled, but corresponding objects B and D are not.

denal. As we shall see, sampling theory tells us that, on the basis of a particulas signal’s

ill be adequate. Unfortunately.

a minimum sampling rate that w
ng the signal shown in

properties, we can compute
infinite for certain kinds of signals, includi

he rate urns oul o be
1 more detail later; for now, We Cin see that

Fio. 14.10! We shall explain the reason for this i
annol guarantee o capture the exact
feurc 1'llll!tt'll|h!!'('. even il we
¢ can always

(aking a finite number of samples ¢ v coordinate al
intensity jumps front one value 1o another in the
 all of the current objects are sampled, w
ples that will be missed

vhich the
find a finite sampling rate at whic
imagine adding just onc more object positioned between sam

entirely.

14.10.2 Area Sampling
and heing missed suggests another

e problem of objects “falling between™ samples
dividing by

iare centered about each grid pomt,

ipproach: integrating the signal over a sq
This technique, called

the square’s area, and using this average intensity as that of the pixel.
3. The array of nonoverlapping

unweighted area sampling, was introduced in Chapter
ly thought ol as representing the pixels
contain it. in strict proportion (o the
area in the

squares is typical Fach object’s projection, no
matter how small. contributes 1o those pixels that
wrs. and without regard to the location of that
14.11(a). No objects arc missed. as

ceral requires evaluating

amount of each pixel’s area it COV
pixel, as shown by the equal weighting function of Fig.
The definition of the definite int

may happen with point sampling.
and then taking the limit as the number of points

4 function at many points of an interval,
o a kind of mfinite sampling process.

increases. Thus, integrating amounts |
ledness with which

1 sampling has drawbiacks caused by this evenhan
object wholly contained inside of one of the
14.11(hy1. This small object maty

Unweighted ares
objects are reated. Consider a small black
surrounded by a white background, as in Fig.
ach position the value co
As soon as the object crosses over into an
{ and the adjoining pixel are hoth alfected.

pixels and

move freely inside the pixel, and for ¢ mputed for the pixel (shown

as the pixel’s shade) remains the same. adjoining

pixel, however, the values of the original pixe
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Fig. 14.11 pnweighted area sampling. (a) All points in the pixel are weighted equally.
{b) Changes in computed intensities as an object moves between pixels.

Thus, the object causes the image to change only when it crosses pixel boundaries. As the
object moves farther from the center of one pixel and closer to the center of another,
however. we would like this change to be represented in the image. In other words, we
would like the object’s contribution to the pixel’s intensity to be weighted by its distance
from the pixel’s center: the farther away it is, the less it should ccmtfibute‘

In Chapter 3, we noted that weighted area sampling allows us to assign different weights
to different parts of the pixel, and we suggested that the weighting functions of adja:-unl
pixels should overlap. To see why the overlap is needed. we consider a weighting function
consisting of an upright pyramid erected over a single pixel. as shown in ‘Fig.VM.IZ(uJ‘
Under this weighting, as desired, an object contributes less to a pixel as it moves away from
the pixel’s center. But a drawback of unweighted area sampling still remains: An object
contributes to only the single pixel that contains it. Consider a subpixel-sized black obﬁiccl
moving over a white background from the center of one pixel to the center of an adja{‘cm
pixel, as shown in Fig. 14.12(b). As the object moves away from the center of the f"irs;t\pixel.
its contribution to the first pixel decreases as it nears its edge. It begins to contribute to the
pixel it enters only after it has crossed its border, and reaches its maximum contribution
.when it reaches the center of the new pixel. Thus, even though the black object has constant
intensity. the first pixel increases in intensity before the second pixel decreases in intensity.

> »

.- _;_ —
VA | .

(a) (b)

Fig. 14.12 AWeighted area sampling. (@) Points in the pixel are weighted differently.
(b) Changes in computed intensities as an object moves between pixels.
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Fig. 14.13 Weighted area sampling with overlap. (a) Typical weighting function.
{b) Changes in computed intensities as an object moves between pixels.

The net effect is that the display changes in intensity depending on the object’s position, a
change that gives rise to flickering as the object moves across the screen. 1t is clear that, to
correct this problem, we must allow our weighting functions to overlap. so that a point on
an object can simultaneously influence more than one pixel, as shown in Fig. 14. 13. This
figure also uses a radially symmetric weighting function. Here, it is appropriate to turn to
sampling theory to discover the underlying reasons for increasing the weighting function’s
size. and to find out exactly what we need to do to sample and reconstruct a signal.

14.10.3 Sampling Theory

Sampling theory provides an elegant mathematical framework to describe the relationship
between a continuous signal and its samples. So far, we have considered signals in the
spatial domain; that is, we have represented each of them as a plot of amplitude against
spatial position. A signal may also be considered in the frequency domain; that is, we may
represent it as a sum of sine waves, possibly offset from each other (the offset is called phase
shift), and having different frequencies and amplitudes. Fach sine wave represents a
component of the signal’s frequency spectrum. We sum these components in the spatial
domain by summing their values at each point in space.

Periodic signals, such as those shown in Fig. 14.14, can each be represented as the sum
of phase-shifted sine waves whose frequencies are integral multiples (harmonics) of the
signal’s fundamental frequency. But what of nonperiodic signals such as images? Since an
image is of finite size, we can define its signal to have a value of zero outside the area of the
image. Such a signal, which is nonzero over a finite domain, and, more generally, any
signal f{x) that tapers off sufficiently fast (faster than 1/x for large values of x) can also be
represented as a sum of phase-shifted sine waves. Its frequency spectrum, however, will not
consist of integer multiples of some fundamental frequency, but may contain any frequency
at all. The original signal cannot be represented as a sum of countably many sine waves, but
instead must be represented by an integral over a continuum of frequencies. It is often the
case, however, that an image (perhaps padded with surrounding zeros) is treated as one
cycle of a periodic signal. This was done in Fig. 14.14(b), which shows the first ten
components of Fig. 14.8(d). Each signal in the spatial domain has one representation in the
frequency domain, and vice versa. As we shall see later, using two representations for a
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Fig. 14.14 A signal in the spatial domain is the sum of phase-shifted sines.
Each component is shown with its effect on the signal shown at its right. (a) Approx-
imation of a square wave. (b) Approximation of Fig. 14.8(d). (Courtesy of George
Wolberg, Columbia University.) ‘

domain are relatively easy to do in the other.
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jenal is advantageous. because some useful operations that are difficult to carry out in one

Determining which sine waves must be used (o represent a particular signal is the
entral topic of Fourier analysis |[GONZ87|. Starting from an original signal. flx), we can
senerate a different function, the Fourier transform of f, called Ftu), whose argument u

represents [requency. The value F(u), for each frequency . tells how much (i.e.. the
amplitude) of the frequency « appears in the original signal flx). The function F(u) is
therefore also called the representation of [ (or of the vignal) in the frequency domain; f(x)
itself s called the representation of the signal in the spatial domain. The Fourier transform
of a continuous, integrable signal fx) from the spatial domain to the frequency domain is

defined by

Fluy = ' flo)[cos 2amux — isin 2amex|dy, (14.1)

where i = V —1 and u represents the frequency of a sine and cosine pair. (Note that this
applies only 1o functions that taper ofl sufficiently fast.) Recall that the cosine is just the
sine. phase shifted by 7772, Together they can be used to determine the amplitude and phase
shift of their frequency’s component. For each u, the value of Flu) is therefore a complex
number. This is a clever way of encoding the phase shift and amplitude of the frequency u
component of the signal: The value F(u) may be written as Riu) + il(u), where R(u) and
I} are the real and imaginary parts, respectively. The amplitude (or magnitude) of Fu) is

defined by
(Fao)| = VR ) + P(u). (14.2)

and the phase shift (also known as the phase angle) is given by

dlu) = tan 1]:::::}]. (14.3)

In ten. an integrable signal Fr) may be transformed from the frequency domain to the

spatial domain by the inverse Fourier transform

flx) = J Fuolcos 2mux + isin 27ux|di. (14.4)

The Fourier transform of a signal is often plotted as magnitude against frequency,
ignoring phase angle. Figure 14.15 shows representations of several signals in both
domains. In the spatial domain, we label the abscissa with numbered pixel centers; in the
frequency domain, we label the abscissa with cycles per pixel (or more precisely. cycles per
interval between pixel centers). In each case, the spike at w = 0 represents the DC (direct

current) component of the spectrum. Substituting cos 0 = 1 and sin 0 = 0 in Eq. (14.1)

reveals that this corresponds to integrating flx). If .5 were subtracted from each value of

fix) in Fig. 14.15 (a) or (b), the magnitude of the signal’s DC component would be 0.

Most of the figures in this chapter that show signals and their Fourier transforms were
actually computed using discrete versions of Eqs. (14.1) and (14.4) that operate on signals
represented by N regularly spaced samples. The discrete Fourier transform is

4

Fan = | }'..\ | foleos QamuexiN) — isin QN 0= u=N— |, (14.5)
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Fig. 14.1_5 Signals in the spatial and frequency domains. (a) Sine. (b) Square Wave.
{c) Mandr!ll. The DC value in the frequency domain is truncated to make the other
values legible and should be 129. (Courtesy of George Wolberg, Columbia Univeristy )

and the inverse discrete Fourier transform is

o o
flo = No= 2\ Fanoleos QmuxiNy + isin QaudN)], 0 = x = N — 1. (14.6)

By c'hoosing a sufficiently high sampling rate, a good approximation to the behavior of the
continuous Fourier transform is obtained for most signals. (The discrete Fourier transform
may also be computed more efficiently than Eqs. (14.5) and (14.6) would imply, by using a
clever reformulation known as the fast Fourier transform [BRIG74].) The disérete Fourier
trgn_sform always yields a finite spectrum. Note that, if a signal is symmetric about the
origin, t.he‘n I(u) = 0. This is true because the contribution of each sine term on one side of
the origin is canceled by its equal and opposite contribution on the other side. In this case,

14.10 Aliasing and Antialiasing 627

following [BLIN89a], we will plot the signed function R(u), instead of the magnitude
EF{L{)I.

Sampling theory tells us that a signal can be properly reconstructed from its samples if
the original signal is sampled at a frequency that is greater than twice 1, the highest-
frequency component in its spectrum. This lower bound on the sampling rate is known
as the Nyquist rate. Although we do not give the formal proof of the adequacy of
sampling above the Nyquist rate, we can provide an informal justification. Consider
one cycle of a signal whose highest-frequency component is at frequency fi- This
component is a sine wave with f, maxima and f, minima, as shown in Fig. 14.16. Therefore,
at least 2f, samples are required to capture the overall shape of the signal’s highest-
frequency component. Note that exactly 2f, samples is, in fact, a special case that succeeds
only if the samples are taken precisely at the maxima and minima (Fig. 14.16a). If they are
taken anywhere else, then the amplitude will not be represented correctly (Fig. 14.16bj and
may even be determined to be zero if the samples are taken at the zero crossings (Fig.
14.16¢). 1If we sample below the Nyquist rate, the samples we obtain may be identical
to what would have been obtained from sampling a lower-frequency signal, as demonstrated
in Fig. 14.17. This phenomenon of high frequencies masquerading as low frequencies in
the reconstructed signal is known as afiasing: The high-frequency components appear as
though they were actually lower-frequency components. Another example of aliasing i8
demonstrated in Fig. 14.18. Figure 14.18(a) shows an image and a plot of its intensity
across a horizontal line, representing a set of intensity fluctuations that increase in spatial
frequency from left to right. The image in Fig. 14.18(b) was created by selecting every 8th
pixel from each line of Fig. 14.18(a) and replicating it eight times. It shows aliasing as the

bands increase in spatial frequency.

\\"//

(a)

A -

N /- LN
N ZNVAN4

Fig. 14.16 Sampling at the Nyquist rate {a) at peaks, (b} between peaks, (c) at zero
crossings.  {Courtesy of George Wolberg, Columbia University.)
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I\ ignal’s shape is determined by its frequency spectrum. The sharper and more
ANgULET A WIVE 1 v AW :
gular a wavelorm s, the richer it is in high-frequency components; signals with

discontintities have o — :
continuities have an infinite frequency spectrum. Figure 14,10 reveals the sharp edges of

the objects” projections that our algorithms attempt to represent. This signal has an infinite
I]‘\_’{llll.'ll_\'_\ -|‘.l.".fllll1!. since the image intensity changes l“\t'(!rltlIllJllll\l-\ at object bound-
IET'I\'H. herefore, the signal cannot be represented properly with a finite number of samples
Computer graphics images thus exhibit two major Kinds of aliasing. First, "].‘t"-'i-:;-" 'zlnn;
edges are caused by discontinuities at the projected edges ol nhjc;-lxr a point :‘.;npiv u.l'ithebr
does or does not lie in an object’s projection. Even the presence of a single such edge in an
CRVIronment's projection means that the projection has an infinite Ircqm:n.:\ \|u'c'1r1;n T;'IL?
:'L'qu-;m'_\ spectrum tapers off quite rapidly, however, like those of Fig. 14.15(h) :mni (c)
:‘:]:I“[f;::; !‘:H‘;{[Illl:;: -i‘:l‘"[ ":.‘I:j;.‘.'k-»i I‘-‘Ir“rl."ll.[‘-I-fll“|-‘:'1"\|!.L'L."1.I\'t.-' may cause .'n.ln!r.-ui]_\- many ill'x_cunliuuilics

. nment’s projection, making it possible for objects whose
projections are oo small and too close together to be alternately missed and sampled, as in
the right hand side of Fig. 14.18(b). The high frequency n‘uupnm'nl\- I'i.’|1lL"\L‘II.II'I;L'.IIhC
frequency at which these projections cross a scan line may have high ;mlpl.ilmlc (c.g
alternating black and white checkerboard squares). This .1Ilu-n alfects ‘m‘mr' :i'. st
seriously than jaggies do. ‘ PR R

14.10.4 Filtering

here is a partial solution to the problems discussed in the previous section. If we could
create a new signal by removing the offending high frequencies [rom the original signal

(a) (b)

f:|?-lni‘-4.-18 z‘-‘-.lld?sum_ [;3}_ Image 5'111(1 intensity plot of a scan line. (b) Sampled image and
intensity plot of a scan line. (Courtesy of George Wolberg, Columbia Unrw.-rsify.}
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then the new signal could be reconstructed properly from a finite number of samples. The

more high frequencies we remove, the lower the sampling frequency needed, but the less the
This process is known as handwidth limiting or band limiting

signal resembles the original.
since filtering a signal changes its

the signal. It is also known as low-pass filtering,
frequency spectrum; in this case, high frequencies are filtere
s liliering causes blurring in the spatial domain, since fine

-d out and only low frequencies

are allowed to pass. Low-pi
visual detail is captured in the
shown in Fig. 14.19. We shall revise the pipeline of Fig.
as shown in Fig. 14.20,

A perfect low-pass filter completely suppresses all frequency components above some
specified cut-off point, and lets those below the cut-off point pass untouched. We can easily
do this filtering in the frequency domain by multiplying the signal’s spectrum by a pulse
14.21. We can multiply two signals by taking their product at

high frequencies that are attenuated by low-pass filtering, as
14.9 (o include an optional filter,

function, as shown in Fig.
each point along the paired signals. The pulse function

P A
x“”___[l.\\i:m k w=k (14.7)

0, elsewhere

cuts off all components of frequency higher than k. Therefore, if we were to low-pass lilter
Id be left with only its DC value.

the signal so as to remove all variation, we wou
¢ a signal in the spatial domain

o far. it would seem that a recipe for low-pass filterin
e the signal into the frequency domain. multiplying it by an
wsforming the product back into the spatial domain.
ignals in the two domains, however, make this

would involve transformir
appropriate pulse function, and then trar
Some important relationships between s

procedure unnecessary. It can be shown th
to performing an operation called convelution on

The convolution of two signals fix)

at multiplying two Fourier transtorms in the

frequency domain corresponds exactly
their inverse Fourier transforms in the spatial domain.

-'Fs_} 7 ; . I |

Fig. 14.19 Figure 14.8(b) after low-pass filtering (Courtesy of George Wolberg,

Columbia University.)
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Fig. 14.20 The sampling pipeline h filteri 5
o s o pling pip with filtering. (Courtesy of George Wolbery,

and 8, \\.r'illun as flx) * g(x). is a new signal h(x) defined as follows. The value of h(x) at
cuch point is the integral of the product of fix) with the filter function g(x) flipped :|I1ut.|| its
vcr.ucul axis and shifted such that its origin is at that point. This curlr-:.xpmult. to taking "1
“_L'Ig_lhk‘l' average of the neighborhood around each point of the signal flx)—weighted hLv ji
flipped copy of filter g(x) positioned at the point—and using it l'u‘r th" value of }:(.: ) at Eh::

14.10 Aliasing and Antialiasing 631

point. The size of the neighborhood is determined by the size of the domain over which the
filter is nonzero. This is known as the filter’s support, and a filter that is nonzero over a
finite domain is said to have finite support. We use 7 as a dummy variable of integration
when defining the convolution. Thus,

hix) = flx) * glx) = ]_ﬂ Tels — 7idr. (14.8)
Conversely. convolving two Fourier transforms in the frequency domain corresponds
exactly to multiplying their inverse Fourier transforms in the spatial domain. The filter
function is often called the convolution kernel or filter kernel.
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Fig. 14.21 Low-pass filtering in the frequency domain. (a) Original spectrum.
(b) Low-pass filter. (c) Spectrum with filter. (d) Filtered spectrum.  (Courtesy of George
Wolberg, Columbia University.)
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Convolution can be illustrated graphicallv, We will convolve the function flx) = 1,0 =
v = |, with the filter kernel g(x) = ¢, 0 =< x = |, shown in Figs. 14.22(a) and (b). By using
functions of 7, we can vary x to move the filter relative to the signal being filtered. To create
the function gix — 7, we first flip g(7) about the origin to yield g( —7), and then offset it by
xto form g(x — 7). as depicted in Figs. 14.22(c) and (d). The integral, with respect to 7, ol (a)
the product fir)g(x — 7), which is the arca of the shaded portions of the figures, is 0 for
—w =y <0, xcfor0=x=1(Fig. 14.22¢), (2 — x)e lor 1 = x = 2 (Fig. 14.221), and 0
for 2 < x = 2. The convolution fix) * g(x) is illustrated in Fig. 14.22(g). Note how
convolution with this kernel smooths the discontinuities of f(x) while it widens the area over

3 which fix) 1s nonzero,
. Multiplying by a pulse function in the [requency domain has the same ellect as e e AT NN S |
convolving with the signal that corresponds to the pulse in the spatial domain. This signal is 7
known as the sine function. which is defined as sin(mx)/my. Figure 14.23 shows the sine (b) 3“
. function and an example of the result of convolving it with another signal. Convolving with {1
a sinc function therefore low-pass filters the signal. How do we choose the height and width ,I.'
F of the sinc used in Fig. 14.23(¢)? As shown in Fig. 14.24, there is a relationship (that we do r-
' not prove) between the height and width of the perfect low-pass filter in the spatial and | I'
. frequency domains. In Fig. 14.24(a). if W is the cutofl’ frequency and A is the amplitude, | q
then it must be the case that A2W = 1 for all frequencies up to the cutoff frequency to be IR S | S . i
passed unattenuated. Theretore, A = 2W. Both the amphitude and width of the sinc in Fig. (c) !J
| 14.24(a) vary with W. When W =.5 cycles per pixel (the highest frequency that can be E
. represented when sampling once per pixel), A = | and the sinc has zero crossings at pixel
centers. As the cutofl frequency W is made lower or higher, the sinc becomes shorter and H
broader, or taller and narrower, respectively. This makes sense because we would like the '[l
integral of a filter in the spatial domain to be 1, a necessary restriction if the filter is to ﬂ
maintain the gray level (DC value) of the image, neither brightening nor dimming it. (We Tl
| fit) _ﬁ‘i‘.’] T (d) !
% IT Fig. 14.23 Low-pass filtering in the spatial domain. (a) Original signal. (b) Sl'l'IC filter. !
3 : & (c) Signal with filter, with value of filtered signal shown as a black dot (e) at filter's origin.
.' ) ) {d) Filtered signal. (Courtesy of George Wolberg, Columbia University.)
1 ek | adl ; > i H
(a) (b) ()
3 g(x-1) Hr)glx=1) f(e)ge-1) fx)"g(x) can see that this is true by considering the convolution of a filter with a signal that has the _
! ! ¢ same value ¢ at each point.) . -
| ! | J The sinc function has the unfortunate property that _il 1S NRETT0- O porns arbitrarily
' ’j‘]z: € ——1 ¢ e far from the origin (i.¢., it has infinite suppor! since it is infinitely wide). If we truncate ll?u‘ ]'
3 __ - I__l - I_-I . /\ sine function, by multiplying it by a pulse function, we can restrict the support, as zx'hmm in '|
-1 A " { A e 1 1 2 " Fig. 14.24(b). This is a special case of a windowed sin¢ function that has been ra:-sl!'nclml toa
(d) (e) (f) (g) 1i{;ilv window. We might reason that we are throwing away only those parts of the filter '
4

A

where the value is very small anyhow, so it should not influence the result too much.

Fig. 14.22 Graphical convolution. (a) Function fir) = 1,0 = r = 1. (b) Filter kernel g(3) = Urfsstamitely. the rareaed version of the Biter/hasa Fotirier transtorm that suffers feom

5 c,0=r=1.(c)g(-7).(d) glx — 7). (e) ] A7gix — 7jdr=xc, 0=x= 1. (f) [ “Anglx — Adr R : -
=2'= X, 1-=x=2, (gf-"f)f} glx). : . ! ringing (also called the Gibbs phenomenon): A truncated sinc in the spatial domain no

Y ————
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longer corresponds to a pure pulse function in the Irequency domain, but instead
corresponds to a pulse function with ripples near the cutoff frequency, as shown in Fig.
14.24(b). This causes some frequency components to pass that should be suppressed, and
both attenuates and amplifies others around the cutoff point: the domain over which this
effect oceurs decreases in size as a greater portion of the sinc signal is used, but the
amplitude of the ringing does not decrease as long as the sinc is truncated. The
approximation to a square wave in Fig.14.14(a) exhibits ringing in the spatial domain,
which appears as little intensity “‘ripples’ at discontinuities. A truncated sinc is obtained
by multiplying the sinc by a pulse function. An alternative is to use a windowed sinc
function that has been multiplied by a shape that, unlike the pulse. is not discontinuous,
which allows the sine to fall off smoothly. Blinn [BLIN&9Yb| describes the derivation of one
such filter.

One final problem is that the sine, along with windowed filters derived from it, has
parts that dip below zero, known as negative lobes. When a signal is convolved with a filter
that has negative lobes, the resulting signal may itself dip below zero, 1f the signal represents
intensity values, these values correspond to unrealizable negative intensities, and must
therefore ultimately be clamped 1o zero,

Although windowed sine functions are useful, they are relatively expensive because the
window must be fairly wide: thus, a variety of other functions is often used instead. Filters
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0. ..._.v'/—\ /p\__ D .' '._ —
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(b)

Fig. 14.24 (a) Sinc in spatial domain corresponds to pulse in frequency domain.
(b) Truncated sinc in spatial domain corresponds to ringing pulse in frequency domain.
(Courtesy of George Wolberg, Columbia University.)
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Fig. 14.25 Filters in spatial and frequency domains. (a) Pulse—sinc. Ilb] Triang!eu—
sinc?. (c) Gaussian—Gaussian. (Courtesy of George Wolberg, Columbia University.)

as finite impulse-response (FIR) filters, in contrast to the

with finite support are known ; ne
an infinite impulse-response (1IR) filter. Figure 14.25

untruncated sinc filter, which is
shows several popular filters in both spatial and frequency domains. . _

We have now reduced the sampling problem to one of convolving the signal with a
suitable filter and then sampling the filtered signal. Notice, however, that if our only use of
the filtered signal is to sample it, then the work done filtering the signal anywhere but at the
sample pnim; i« wasted. If we know in advance exactly where the samples ulfill be taken, we
wolution integral (Eq. 14.8) at ¢ach sample point to determine

need only to evaluate the cor ach int to det
rform the weighting operation in USIng arca

the sample’s value. This is precisely how we pe
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sampling to determine the intensity of each pixel. The weighting distribution constructed
over each pixel’s center is a filter. The pulse function with which we convolve the signal in
performing unweighted arca sampling is often called a box filter, because of its appearance.
Just as the pulse function in the frequency domain corresponds to the sinc function in the
spatial domain, the pulse function in the spatial domain (the box filter's 1D equivalent)
corresponds to the sine function in the frequency domain (Fig. 14.25a). This correspon-
dence underscores how badly a box filter or pulse filter approximates a perfect low-pass
filter. Multiplying with a sinc in the frequency domain not only fails to cut off sharply. but
passes infinitely high frequencies. Furthermore, the pulse filter attenuates frequencies that
are within the desired range. since its Fourier transform—the sinc function —begins to
trail off before the ideal low-pass filter. Therefore, it also blurs the image excessively.

14.10.5 Reconstruction

At this point, let us assume that we have sampled the signal fix) at a frequency f) to obtain
the sampled signal, which we call fix). Sampling theory shows that the frequency spectrum
of fix) looks like that of fix), replicated at multiples of . To see that this relationship holds,
we note that sampling a signal corresponds to multiplying it in the spatial domain by a comb
function, so named because of its appearance, as shown in Fig. 14.26(a). The comb

fix) Flu)
1 f: 125 |
5 I
5 |
25 '
0 0|
0 128 256 384 512 5 25 0 25 5
(a) {b)
Flu) Fs(u)
30 7.5
22.5 5
15 |
7.5 3
1) TR e 0
5 25 0 25 5 5 25 0 25 5
(c) (d)

Fig.14.26 (a)Combfunctionand (b)its Fouriertransform. Convolvingthecomb’s Fourier
transform with (c) a signal’s Fourier transform in the frequency domain yields (d) the
replicated spectrum of the sampled signal. (Courtesy of George Wolberg, Columbia
University.)
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function has a value of 0 everywhere, except at regular intervals, corresponding to the
sample points, where its value is 1. The (discrete) Fourier transform of a comb turns out to
be just another comb with teeth at multiples of f, (Fig. 14.26b). The height of the teeth in
the comb’s Fourier transform is f, in cycles/pixel. Since multiplication in the spatial domain
corresponds to convolution in the frequency domain, we obtain the Fourier transform of the
sampled signal by convolving the Fourier trunsforms of the comb function and the original
signal (Fig. 14.26¢). By inspection, the result is the replicated spectrum (Fig. 14.26d). Try
performing graphical convolution with the comb to verify this, but note that F(«), not [F(z))|
must actually be used. A sufliciently high f, yields spectra that are replicated Tar apart [rom
each other. In the limiting case, as f, approaches infinity, a single spectrum results.

Recall that reconstruction is recreation of the original signal from its samples. The
result of sampling a signal (Fig. 14.27a) at a finite sampling frequency is a signal with an
infinite frequency spectrum (Fig. 14.27b). If once again we deal with the signal in the
frequency domain, the familiar operation of multiplying a signal by a pulse function can be
used to eliminate these replicated spectra (Fig. 14.27¢), leaving only a single copy of the
original spectrum (Fig. 14.27d). Thus, we can reconstruct the signal from its samples by
multiplying the Fourier transform of the samples by a pulse function in the frequency
domain or by convolving the samples with a sine with A = [ in the spatial domain.

To make the Fourier transforms of signals and Qlters easier to see in Figs. 14.27-29, we
have taken several liberties:

= The DC value of the Fourier transform in part (a) of each figure has been truncated.
This corresponds to a signal in the spatial domain with the same shape as shown, but
with a negative DC offset. (Such a signal cannot be displayed as an image without
further processing, because it contains negative intensity values.)

»  Filters in the frequency domain have not been drawn with the correct magnitude. Their

heights should be 1 in Fig. 14.27 and 2 in Figs. 14.28-29 to restore the single copy of

the spectrum 1o its original magnitude,

Figure 14.27(e) and (1) show the result ol reconstructing the samples with a triangle
filter (also known as a Bartlett filter). Convolving with this filter is equivalent to lincarly
interpolating the samples.

I the sampling frequency is too low, the replicated copies of the frequency spectra
overlap, as in Fig. 14.28_ In this case. the reconstruction process will fail to remove those
parts of the replicated spectra that overlapped the original signal’s spectrum. High-
frequency components from the replicated spectra are mixed in with low-frequency
components from the original spectrum. and therefore are treated like low frequencies
during the reconstruction process. Note how an inadequate sampling rate causes aliasing by
making a higher frequency appear identical to a lower one before and after reconstruction.
lhere are two ways to resolve this problem. We may choose to sample at a high enough
frequency, an approach that is suflicient only il the signal does not have an infinite
spectrum. Alternatively, we may filter the signal before sampling to remove all components
above f,/2, as shown in Fig. 14.29,

——

I

=]

e e | e et g e L.

b =




[ Flu)|

|

0 16 32 48 64 2 0 1 2 0 16 32 48 64 2 1 0 1 2
L (a) (a)
1 ‘ 8 | 1] 4
75 || 6 _73 3
5 nlin | Iy | | 4 _5 | | 2
It | (I I [ 1
el Il L — s H H'1 i
ol 0 | | 1 ol 0 i | | | ) D r
0 16 48 64 -2 1 0 1 2 64
(b) (b)
: 1_ | I | 1 4 ‘ |
75 il | [ 6 E 3
om0 : ! {]]]] il H Wy
o IR ‘ M ]H NI 1
i_ _ ! 0f  Monaase Musorarst Wosnarsaltl Wit Vo ] o| TwAp ; s
0 16 2 -1 0 1 2 o 15 3z 43 64 2 1 0 1 2
(c) (c)
1 i 8 1] 8
£ 6 75 6
25 2 25 2
0l : = O ——— . . oL p : O =——— ————_
0 16 32 48 64 -2 -1 0 1 2 0 16 32 48 64 -2 -1 0 1 2
: (d) (d)
J 1] 8 = 1 4|
f 75| i 6 75 3
i 5 ||.' ||| IH '|| 4 5 | | || ‘|| 2‘
L 25| ‘ ,Hl Il H \ ’ | ‘ w i 2 a5 |11 ‘ ‘ ‘ 1
Bl | | 1
| ol M \ ! Hl Il J ol _ " WJ | o L) |'.| ||||| FASETRATTIII R _
1 0 16 54 2 -1 0 1 2 0 16 32 48 64 .2 - 0 1 2 '
(e) (e
1 8‘ 1 8]
75 6 _75‘ B/
' 5 4 5| W 1‘
25| 2 25 |
|
017_ i e . G!__ e M - O. = OL_:__ el R ———
4 0 16 32 48 64 2 -1 0 1 2 0 16 3z 48 64 -2 -1 0 1 2
3 (0 ()
Fig. 14.27 Sampling and reconstruction: Adequate sampling rate. (a) Original signal. Fig. 14.28 Sampling and reconstruction: Inadequate sampling rate. (a) Original signal
(b) Sampled signal. (c) Sampled signal ready to be reconstructed with sinc. (d) Signal (b) Sampled signal. (c) Sampled signal ready to be reconstructed with sinc. (d) Signal
B reconstructed with sinc. (e) Sampled signal ready to be reconstructed with triangle. reconstructed with sinc. (e) Sampled signal ready to be reconstructed with triangle.
] (f) Signal reconstructed with triangle. (Courtesy of George Wolberg, Columbia (f) Signal reconstructed with triangle. (Courtesy of George Wolberg, Columbia Uni- .
' University.) versity.)
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reconstructed
by video board
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What happens if reconstruction is done by convolving with some signal other than a
sine? Samples in the frame buffer are translated into a continuous video signal, by a process
known as sample and hold: for the signal to be reconstructed, the value of each successive
sample is simply held for the duration of a pixel. This process corresponds to convolving the
samples with a 1-pixel-wide box filter, as shown in Fig. 14.30, and gives rise to our
common conception of a pixel as one of a sct of square boxes tiling the display. The
resulting signal has sharp transitions between pixels, corresponding to high-frequency
he samples. This effect is often known as rasrering.

components that are not represented by t
nsity, the

Although the video hardware nominally samples and holds each pixel’s inte
circuitry that generates the analog voltages applied to the CRT and the CRT itself are
senerally not fast enough to produce discontinuous jumps in intensity between pixels. The
Gaussian distribution of the CRT spot also reduces this problem. Thus, the sampled signal
is reconstructed by the equivalent of convolution with a box filter, followed by convolution
vith a Gaussian. Rastering is especially easy to sec. however, when pixel-replicating zoom
is used in raster CRT displays, increasing the amount of screen space allocated o an

individual pixel. Rastering is also more evident in printer, digital film recorder, and LCD

mpled
qnal
l Sample-and hold
[ =
lulf L= * £
signal r R~ =

l Gaussian CRT spot

i 5 o

_._f\\_,x\m :'_I'I ! 4

W= B £
Displayed A
signal

Fig. 14.30 Reconstruction by sample and hold and Gaussian CRT spot. (Courtesy of
George Wolberg, Columbia University.)
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Fig. 14.31 A signal sampled at slightly over the Nyquist rate. {Courtesy of George
Wolberg, Columbia University )

technologies, in which pixel-to-pixel transitions are much sharper and produce relatively
hard-edged square pixels of constant intensity.

We noted earlier that a signal must be sampled at a frequency greater than 2f, to make
perfect reconstruction possible. If the filter used to reconstruct the samples is not an
untruncated sinc, as is always the case when displaying an image, then the sampling
frequency must be even higher! Consider, for example, a sampling frequency slightly
greater than 2f,. The resulting samples trace out the original signal modulated by
(multiplied by) a low-frequency sine wave, as shown in Fig. 14.31. The low-frequency
amplitude modulation remains, compounded by rastering, if the signal is reconstructed
with a 1-pixel-wide box filter. If convolution is performed with an untruncated sinc,
however, the original signal is recovered. The inevitable use of nonideal filters before and
after sampling therefore mandates higher sampling rates. Mitchell and Netravali [MITCS8]
discuss some of the problems involved in doing a good job of reconstruction.

14.10.6 Antialiasing in Practice

We have seen that image synthesis involves sampling and reconstruction, noting that there is
little that we can do (in software) about the reconstruction approach employed in hardware.
Rendering algorithms that perform antialiasing use either point sampling or an analytic
approach, such as area sampling. In either case, a single value must ultimately be
determined for each pixel. Catmull’s algorithm, discussed in Section 15.7.3, is an example
of an analytic (and expensive) approach using unweighted area sampling. It corresponds to
filtering at object precision before calculating the value of each pixel’s sample. Filtering
before sampling is often called prefiltering. When supersampling is used, the samples are
combined according to a filter weighting in a discrete version of the continuous convolution
and sampling that we discussed earlier. The filter is represented by an array of values. As
shown in Fig. 14.32, the filter array is positioned over the array of supersampled values and
the sum of the products of values in corresponding positions determines a single sample
taken at the center of the filter. The filter array is then moved to the position at which the
next sample will be taken, with the number of samples corresponding to the pixel resolution
of the filtered image being created. This approach is often called postfiltering, since filtering
is performed after point sampling. It actually corresponds to reconstructing the signal from
its samples only at selected points in space. These reconstructed values are then used as new
samples. Supersampling thus performs a discrete approximation to weighted area sampling.
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Fig. 14.32 Digital filtering. Filter is used to combine samples to create a new sample.

Although it is computationally attractive to use a 1-pixel-wide box filter that averages
all subpixel samples, better filters can produce better results, as demonstrated in Fig. 14.33.
Note that, no matter what filter is used to postfilter the samples, damage caused by an
inadequate initial sampling rate will not be repaired. A rule of thumb is that supersampling
four times in each of x and y often will be satisfactory [WHIT8S5]. This works because the
high frequencies in most graphics images are caused by discontinuities at edges, which have
a Fourier transform that tapers off rapidly (like the Fourier transform of a pulse—the sinc).
In contrast, images with textures and distant objects viewed in perspective have a Fourier
transform that is richer in high frequencies and that may be arbitrarily difficult to filter.

Although it is easy to increase the sampling rate, this approach is limited in its
usefulness by corresponding increases in both processing time and storage. A number of
variations on point sampling have been implemented to address these issues without
sacrificing the conceptually simple mechanism of point sampling itself. In adaptive
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Fig. 14.33 (Cont'd.)

supersampling, an example ol which is discussed in Section 15.10.4, the sampling rate is
varied across the image, with additional samples taken when the system determines that
they are needed. Stochastic supersampling, discussed in Section 16.12.4, places samples at
stochastically determined positions, rather than in a regular grid. This approach produces
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Fig. 14.33 Filtered images with intensity plot of middle scan line and filter
kernel. (a) Original image. (b) Box filter. (c) Bartlett filter. (d) Gaussian filter. Images are
512 x 512, and filters are 7 x 7. Middle scan line is at bottom of a checkerboard row.
Because 2D filter covers light and dark squares above and below scan line, amplitude of
filtered checkerboard signal along middle scan line is greatly diminished. (Courtesy of
George Wolberg, Columbia University.)

aliasing in the form of noise, which our visual system finds less irritating than the clearly
defined frequency components of regular aliasing. These two approaches can be combined,
allowing the determination of where to place new samples to be based on the statistical
properties of those that have already been obtained.
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When the original source signal is itself a sampled image, postfiltering followed I
resampling may be used to create a new image that has been scaled, rotated, or distorted i
a variety of ways. These image transformations are discussed in Chapter 17.

14.11 SUMMARY

In this chapter, we provided a high-level introduction to the techniques used to produce
realistic images. We then examined the causes of and cures for aliasing. In the following
chapters, we discuss in detail how these techniques can be implemented. There are five key
questions that you should bear in mind when you read about the algorithms presented in
later chapters:

L. Isthe algorithm general or special purpose? Some techniques work best only in specilic
circumstances; others are designed to be more general. For example, some algorithms
assume that all objects are convex polyhedra and derive part of their speed and relative
simplicity from this assumption.

2. Can antialiasing be incorporated? Some algorithms may not accommodate antialiasi ng
as easily as others do.

3. What is the algorithm’s space—time performance? How is the algorithm affected by
factors such as the size or complexity of the database, or the resolution at which the
picture is rendered?

4. How convincing are the effects generated? For example, is refraction modeled
correctly, does it look right only in certain special cases, or is it not modeled at all?
Can additional effects, such as shadows or specular reflection, be added? How
convincing will they be? Sacrificing the accuracy with which an effect is rendered may
make possible significant improvements in a program’s space or time requirements,

5. Is the algorithm appropriate, given the purpose for which the picture is created? The
philosophy behind many of the pictures in the following chapters can be summed up by
the credo, “If it looks good, do it!”" This directive can be interpreted two ways. A
simple or fast algorithm may be used if it produces attractive effects, even if no
Justification can be found in the laws of physics. On the other hand, a shockingly
expensive algorithm may be used if it is the only known way to render certain effects.

EXERCISES

14.1 Suppose you had a graphics system that could draw any of the color plates referenced in this
chapter in real time. Consider several application areas with which you are (or would like to be)
familiar. For each area, list those effects that would be most useful, and those that would be Jeast
useful.

14.2 Show that you cannot infer the direction of rotation from orthographic projections of a
monochrome, rotating, wireframe cube. Explain how additional techniques can help to make the
direction of rotation clear without changing the projection.

14.3 Consider the pulse function f(x) = 1| for ~1 = x = |, and f(x} = 0 elsewhere. Show that the
Fourier transform of f(x) is a multiple of the sinc function. Hint: The Fourier transform of f(x) can be
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computed as

Sl

Fu) = [f(olcos 2mmux — isin 2muxldx,
-1

hecause the regions where f(x) = 0 contribute nothing to the integral, and f(x) = | in the remaining
region. (Apply the inverse Fourier transform to your answer. You should get the original function.)

144 Prove that reconstructing a signal with a triangle filter of width 2 corresponds to linearly
interpolating its samples. What happens if the filter is wider?

14.5 Write a program that allows you to convolve an image with a filter kernel. Use different filter
kernels to create images of the same size from original images with 2, 4, and 8 times the number of
pixels in x or y as the new images. You can obtain original images by saving the frame buffer generated
by the graphics packages that you have been using. Do vour filtered images look better than original
images of the same resolution? Does your experience corroborate the rule of thumb mentioned in
Section 14.10.67
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