The Physics of Light Transport

The goal of rendering algorithms is to create images that accurately repre-
sent the appearance of objects in scenes. For every pixel in an image, these
algorithms must find the objects that are visible at that pixel and then
display their “appearance” to the user. What does the term “appearance”
mean? What quantity of light energy must be measured. to capture “ap-
pearance”? How is this energy computed? These are the questions that
this chapter will address. .

In this chapter, we present key concepts and definitions required to
formulate the problem that global illumination algorithms must solve. In
Section 2.1, we present a brief history of optics to motivate the basic as-
sumptions that rendering algorithms make about the behavior of light (Sec-
tion 2.2). In Section 2.3, we define radiometric terms and their relations
to each other. Section 2.4 describes the sources of lights in scenes; in Sec-
tion 2.5, we present the bidirectional distribution function, which captures
the interaction of light with surfaces. Using these definitions, we present
the rendering equation in Section 2.6, a mathematical formulation of the
equilibrium distribution of light energy in a scene. We also formulate the
notion of importance in Section 2.7. Finally, in Section 2.8, we present
the measurement equation, which is the equation that global illumination
algorithms must solve to compute images. In the rest of this book, we will
discuss how global illumination algorithms solve the measurement equation.

2.1 Brief History

The history of the science of optics spans about three thousand years of
human history. We briefly summarize relevant events based mostly on the
history included by Hecht and Zajac in their book Optics [68]. The Greek
philosophers (around 350 B.C.), including Pythagoras, Democritus, Empe-
docles, Plato, and Aristotle among others, evolved theories of the nature
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of light. In fact, Aristotle’s theories were quite similar to the ether theory
of the nineteenth century. However, the Greeks incorrectly believed that
vision involved emanations from the eye to the object perceived. By 300
B.C. the rectilinear propagation of light was known, and Euclid described
the law of reflection. Cleomedes (50 A.D.) and Ptolemy (130 AD.) did
early work on studying the phenomenon of refraction.

The field of optics stayed mostly dormant during the Dark Ages with
the exception of the contribution of Ibn-al-Haitham (also known as Al-
hazen); Al-hazen refined the law of reflection specifying that the angles of
incidence and reflection lie in the same plane, normal to the interface. In
fact, except for the contributions of Robert Grosseteste (1175-1253) and
Roger Bacon (1215-1294) the field of optics did not see major activity until
the seventeenth century.

Optics became an exciting area of research again with the invention
of telescopes and microscopes early in the seventeenth century. In 1611,
Johannes Kepler discovered total internal reflection and described the small
angle approximation to the law of refraction. In 1621, Willebrord Snell
made a major discovery: the law of refraction; the formulation of this law
in terms of sines was later published by René Descartes. In 1657, Pierre
de Fermat rederived the law of refraction from his own principle of least
time, which states that a ray of light follows the path that takes it to its
destination in the shortest time.

Diffraction, the phenomenon where light “bends” around obstructing
objects, was observed by Grimaldi (1618-1683) and Hooke (1635-1703).
Hooke first proposed the wave theory of light to explain this behavior.
Christian Huygens (1629-1695) considerably extended on the wave theory
of light. He was able to derive the laws of reflection and refraction using
this theory; he also discovered the phenomenon of polarization during his
experiments.

Contemporaneously, Isaac Newton (1642-1727) observed dispersion,
where white light splits into its component colors when it passes through a
prism. He concluded that sunlight is composed of light of different colors,
which are refracted by glass to different extents. Newton, over the course
of his research, increasingly embraced the emission (corpuscular) theory of
light over the wave theory.

Thus, in the beginning of the nineteenth century, there were two con-
flicting theories of the behavior of light: the particle (emission /corpuscular)
theory and the wave theory. In 1801, Thomas Young described his principle
of interference based on his famous double-slit experiment, thus providing
experimental support for the wave theory of light. However, due to the
weight of Newton’s influence, his theory was not well-received. Indepen-
dently, in 1816, Augustin Jean Fresnel presented a rigorous treatment of
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diffraction and interference phenomena showing that these phenomena can
be explained in terms of the wave theory of hght.‘ In. 1821, Fresnel pre(—1
sented the laws that enable the intensity and polarization of reflected an
light to be calculated.

refr?ifiiiefdently, in the field of electricity and magnetism, Maxwell (1§31—
1879) summarized and extended the empirical knowledge on these sub {ec}‘cj
into a single set of mathematical equations. M.axwell concluded t.hat 1g1 1
is a form of electromagnetic wave. However, in 1887, Hertz acmden‘ta y
discovered the photoelectric effect: the process whereby elect?ons are hbelr(;
ated from materials under the action of radiant energy. This ejffect C(?uh
not be explained by the wave model of light. Other propertl.es .of hght
also remained inexplicable in the wave model: black body radiation (the
spectrum of light emitted by a heated body), the wavelen%th dependex}llcy
of the absorption of light by various materials, ﬁuorescefnce , ?Lnd phosp 1(;—
rescence?, among others. Thus, despite all the supporting ev1dencg for )t e
wave nature of light, the particle behavior of light had to be explained.

In 1900, Max Karl Planck introduced a uniyersal _constant called
Planck’s constant to explain the spectrum of rad.iatlon emltte.d frc:.m a hot
black body: black body radiation. His work inspired Albert Elnsteln, x;rhl(zt,
in 1905, explained the photoelectric effect based on the notion that 11g
consists of a stream of quantized energy packets. Each guanturp was %:cﬁr
called a photon. Each photon has a frequency v ass.omated v:nth it. : e
energy associated with a photon is B = fv, where A is Planck’s C(?nstan .d

The seemingly conflicting behavior of light as a stream of particles an
waves was only reconciled by the establishment of the field of quanflum
mechanics. By considering submicroscopic phenomena, ‘reseatrchers suc z;ls
Bohr, Born, Heisenberg, Schrédinger, Pauli, de Broglie, Dirac, and oth-
ers were able to explain the dual nature of light. ‘ Quantum field theor}f
and quantum electrodynamics further explained hlgh-energy phengmena,
Richard Feynman’s book on quantum electrodynamics (QED) [49] gives an
intuitive description of the field.

2.2 Models of Light

The models of light used in simulations try to capturfe the different be-
haviors of light that arise from its dual nature: certain phenomfana, }t;or
example, diffraction and interference, can be explained by assuming that

1Fluorescence is the phenomenon by which light absorbed at one frequency is emitted

t a different frequency. o
* 2Phosphorescence is the phenomenon by which light absorbed at one frequency at

some time is emitted at a different frequency and time.
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light is a wave; other behavior, such as the photoelectric effect, can be
better explained by assuming that light consists of a stream of particles.

2.2.1 Quantum Optics

Quantum optics is the fundamental model of light that explains its dual
wave-particle nature. The quantum optics model can explain the behavior
of light at the submicroscopic level, for example, at the level of electrons.
However, this model is generally considered to be too detailed for the pur-
poses of image generation for typical computer graphics scenes and is not
commonly used.

2.2.2 Wave Model

The wave model, a simplification of the quantum model; is described by
Maxwell's equations. This model captures effects, such as diffraction, in-
terference, and polarization, that arise when light interacts with objects of
size comparable to the wavelength of light. These effects can be observed
in everyday scenes, for example, in the bright colors seen in oil slicks or
birds’ feathers. However, for the purposes of image generation in computer
graphics, the wave nature of light is also typically ignored.

2.2.3 Geometric Optics

The geometric optics model is the simplest and most commonly used model
of light in computer graphics. In this model, the wavelength of light is
assumed to be much smaller than the scale of the objects that the light
interacts with. The geometric optics model assumes that light is emitted,
reflected, and transmitted. In this model, several assumptions are made
about the behavior of light:

o Light travels in straight lines, i.e.; effects such as diffraction where
light “bends around” objects are not considered.

e Light travels instantaneously through a medium; this assumption
essentially requires light to unrealistically. travel at. infinite speed:
However, it is a practical assumption because it requires global illu-
mination algorithms to compute the steady-state distribution of light
energy in scenes.

o Light is not influenced by external factors, such as gravity or magnetic
fields.

In most of this book, we ignore effects that arise due to the transmis-
sion of light through participating media (for example, fog). We also do not
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consider media with varying indices of refraction. For example, mirage-like
effects that arise due to varying indices of refraction caused by temper-
ature differentials in the air are not considered. How to deal with these
phenomena is discussed in Section 8.1.

2.3 Radiometry

The goal of a global illumination algorithm is to compute the steady-state
distribution of light energy in a scene. To compute this distribution, we
need an understanding of the physical quantities that represent light energy.
Radiometry is the area of study involved in the physical measurement of
light. This section gives a brief overview of the radiometric units used in
global illumination algorithms.

It is useful to consider the relation between radiometry and photometry.
Photometry is the area of study that deals with the quantification of the
perception of light energy. The human visual system is sensitive to light in
the frequency range of 380 nanometers to 780 nanometers. The sensitiv-
ity of the human eye across this visible spectrum has been stahdardized,;
photometric terms take this standardized response into account. Since
photometric quantities can be derived from the corresponding radiometric
terms, global illumination algorithms operate on radiometric terms. How-
ever, Section 8.2 will talk about how the radiometric quantities computed
by global illumination algorithms are displayed to an observer.

2.3.1 Radiometric Quantities

Radiant Power or Flux

The fundamental radiometric quantity is radiant power, also called flux.
Radiant power, often denoted as ®, is expressed in watts (W) (joules/sec).
This quantity expresses how much total energy flows from/to/through a
surface per unit time. For example, we can say that a light source emits
50 watts of radiant power, or that 20 watts of radiant power is incident on
a table. Note that flux does not specify the size of the light source or the
receiver (table), nor does it include a specification of the distance between
the light source and the receiver.

Irradiance

Irradiance (E) is the incident radiant power on a surface, per unit surface
area. It is expressed in watts/m?:

E=—. (2.1)
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For example, if 50 watts of radiant power is incident on a surface that
has an area of 1.25 m?, the irradiance at each surface point is 40 watts/m?
(assuming the incident power is uniformly distributed over the surface).

Radiant Exitance or Radiosity

Radiant exitance (M), also called radiosity (B), is the exitant radiant power
per unit surface area and is also expressed in watts/m?:

M=B= —. 2.2

dA (22)

For example, consider a light source, of area 0.1 m?, that emits 100

watts. Assuming that the power is emitted uniformly over the area of the

light source, the radiant exitance of the light is 1000 W/m? at each point
of its surface.

Radiance

Radiance is flux per unit projected area per unit solid angle
(watts/(steradian - m?)). Intuitively, radiance expresses how much power
arrives at (or leaves from) a certain point on a surface, per unit solid angle,
and per unit projected area. Appendix B gives a review of solid angles and
hemispherical geometry.

Radiance is a five-dimensional quantity that varies with position z and
direction vector ©, and is expressed as L(z, ©) (see Figure 2.1):

do d*®

L p==ss - .
dwdAt  dwdAcos

(2.3)

Figure 2.1. Definition of radiance L(z,©): flux per unit projected area dA™* per
unit solid angle dw.
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Radiance is probably the most important quantity in global illumination
algorithms because it is the quantity that captures the “appearance” of
objects in the scene. Section 2.3.3 explains the properties of radiance that
are relevant to image generation.

Intuition for cosine term. The projected area A is the area of the surface
projected perpendicular to the direction we are interested in. This stems
from the fact that power arriving at a grazing angle is “smeared out”
over a larger surface. Since we explicitly want to express power per (unit)
projected area and per (unit) direction, we have to take the larger area into
account, and that is where the cosine term comes from. Another intuition
for this term is obtained by drawing insights from transport theory.

Transport Theory

This section uses concepts from transport theory to intuitively explain the
relations between different radiometric terms (see Chapter 2, [29]). Trans-
port theory deals with the transport or flow of physical quantities such
as energy, charge, and mass. In this section, we use transport theory to
formulate radiometric quantities in terms of the flow of “light particles” or
“photons.”

Let us assume we are given the density of light particles, p(z), which
defines the number of particles per unit volume at some position z. The
number of particles in a small volume dV is p(z)dV. Let us consider the
flow of these light particles in some time dt across some differential surface
area dA. Assume that the velocity of the light particles is & where || is
the speed of light and the direction of ¢ is the direction along which the
particles are flowing. Initially, we assume that the differential surface area
dA is perpendicular to the flow of particles. Given these assumptions, in
time dt, the particles that flow across the area. dA are all the particles
included in a volume cdtdA. The number of particles flowing across the
surface is p(x)cdtdA.

cdt

Figure 2.2. Flow of particles across a surface.
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We now relax the assumption that the particle flow is perpendicular
to the surface area dA (as shown in Figure 2.2). If the angle between the
flow of the particles and dA is 6, the perpendicular area across which the
particles flow is dA4 cosf. Now, the number of particles flowing across the
surface is p(z)cdtdAcos 6.

The derivation above assumed a fixed direction of flow. Including all
possible directions (and all possible wavelengths) along which the particles
can flow gives the following number of particles N that flow across an area
dA,

N = p(z,w, N)cdtd A cos 8dwd A,

where dw is a differential direction (or solid angle) along which particles
flow and the density function p varies with both position and direction.

Fluz is defined as the energy of the particles per unit time. In this
treatment, flux is computed by dividing the number of particles by dt and
computing the limit as dt goes to zero:

® o plz,w,N)dAcosOdwdA,
)
dA cosfdw

Let us assume these particles are photons. Each photon has energy F =
hyv. The wavelength of light A is related to its frequency by the following
relation: A\ = ¢/v, where ¢ is the speed of light in vacuum. Therefore,
E = k& Nicodemus [131] defined radiance as the radiant energy per unit
volume, as follows:

x  plz,w, A)dA.

u@wy=/M@wAm§M.

Relating this equation with the definition of ® above, we get a more
intuitive notion of how flux relates to radiance, and why the cosine term
arises in the definition of radiance. :

2.3.2 Relationships between Radiometric Quantities

Given the definitions of the radiometric quantities above, the following
relationships between these different terms can be derived:

o = / / L(z — ©) cos OdwedA,, (2.4)
AJa
E(z) = /QL(a: — ©) cos fdwe, (2.5)
B(z) = / L(z — ©)cosfdwe, (2.6)
Q
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where A is the total surface area and (2 is the total solid angle at each point
on the surface.

We use the following notation in this book: L(z — ©) represents radi-
ance leaving point z in direction ©. L(z + ©) represents radiance arriving
at point z from direction ©.

Wavelength Dependency

The radiometric measures and quantities described above are not only de-
pendent on position and direction but are also dependent on the wavelength
of light energy. When wavelength is explicitly specified, for example, for ra-
diance, the corresponding radiometric quantity is called spectral radiance.
The units of spectral radiance are the units of radiance divided by meters
(the unit of wavelength). Radiance is computed by integrating spectral
radiance over the wavelength domain covering visible light. For example,

Lz — ©)= / L{z — ©,\)dA.
spectrum
The wavelength dependency of radiometric terms is often implicitly as-
sumed to be part of the global illumination equations and is not mentioned
explicitly.

2.3.3 Properties of Radiance

Radiance is a fundamental radiometric quantity for the purposes of image
generation. As seen in Equations 2.4-2.6, other radiometric terms, such
as flux, irradiance, and radiosity, can be derived from radiance. The fol-
lowing properties of radiance explain why radiance is important for image
generation.

Property 1: Radiance is invariant along straight paths.

Mathematically, the property of the invariance of radiance is expressed as
L(z — y) = L(y < ),

which states that the radiance leaving point z directed towards point y is
equal to the radiance arriving at point ¥ from the point . This property
assumes that light is traveling through a vacuum, i.e., there is no partici-
pating medium.

This important property follows from the conservation of light energy in
a small pencil of rays between two differential surfaces at = and y, respec-
tively. Figure 2.3 shows the geometry of the surfaces. From the definition
of radiance, the total (differential) power leaving a differential surface area
dAg, and arriving at a differential surface area dA,, can be written as
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Figure 2.3. Invariance of radiance.

Lz —y) o 27)
— N .
(z—y (08 OpdAz)dwpean,

*® = L(z — y)cosOpdwg—gqa,dAs, (2.8)

where we use the notation that dwg..q4a, is the solid angle subtended by
dA, as seen from z.

The power that arrives at area d4, from area dA; can be expressed in
a similar way:

Ly — 2 0 29)
— 5 .
veo (cos8ydAy)dwy—aa,’
d?*® = L(y+« z)cosbydwyqa,dA,. (2.10)
The differential solid angles are:
cos0,dA
digegn, = 2010y,
T2,
cosf,dA,
dwyda, = — 5

zY

We assume that there are no external light sources adding to the power
arriving at dA,. We also assume: that the two differential surfaces are
in a vacuum; therefore, there is no energy loss due to the presence of
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participating media. Then, by the law of conservation of energy, all energy
leaving dA, in the direction of the surface dA, must arrive at d4,,

L(z — y) cos Opdwgaa,dAs = L(y + z) cos Oydwy._aa, dAy;

cos 8,dA, cos 0,dA,
——F——2dA, = L(y « ) cos f ————

Ty Ty

L(z — y) cos b, dAy,

and thus,
Lz —-y) = Ly« x). (2.11)

Therefore, radiance is invariant along straight paths of travel and does
not attenuate with distance. This property of radiance is only valid in
the absence of participating media, which can absorb and scatter energy
between the two surfaces. ,

From the above observation, it follows that once incident or exitant
radiance at all surface points is known, the radiance distribution for all
points in a three-dimensional scene is also known. Almost all algorithms
used in global illumination limit themselves to computing the radiance
values at surface points (still assuming the absence of any participating
medium). Radiance at surface points is referred to as surface radiance
by some authors, whereas radiance for general points in three-dimensional
space is sometimes called field radiance.

Property 2: Sensors, such as cameras and the human eye, are sensitive to
radiance.

The response of sensors (for example, cameras or the human eye) is pro-
portional to the radiance incident upon them, where the constant of pro-
portionality depends on the geometry of the sensor.

These two properties explain why the perceived color or brightness of an
object does not change with distance. Given these properties, it is clear that
radiance is the quantity that global illumination algorithms must compute
and display to the observer.

2.3.4 Examples

This section gives a few practical examples of the relationship between the
different radiometric quantities that we have seen.
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dA

Figure 2.4. Diffuse emitter.

Example (Diffuse Emitter)

Let us consider the example of a diffuse emitter. By definition, a diffuse
emitter emits equal radiance in all directions from all its surface points (as
shown in Figure 2.4). Therefore,

Lz — ©) = L.

The power for the diffuse emitter can be derived as

o = //L(:z:—+@)cos(9d,wedAm
Ala

= //Lcos@dwedAm
Alda

= L(AdAz)(LCOSOdwe)
= wLA,

where A is the area of the diffuse emitter, and integration at each point
on A is over the hemisphere, i.e., ! is the hemisphere at each point (see
Appendix B).

The radiance for a diffuse emitter equals the power divided by the area,
divided by w. Using the above equations, it is straightforward to write
down the following relationship between the power, radiance, and radiosity

of a diffuse surface:
® = LAm = BA. (2.12)

Example [Nondiffuse Emitter)

Consider a square area light source with a surface area measuring 10- X
10 cm?. Each point on the light source emits radiance according to the
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following distribution over its hemisphere:
L(z — ©) = 6000 cos § (W /st - m?).

Remember that the radiance function is defined for all directions on
the hemisphere and all points on a surface. This specific distribution is the
same for all points on the light source. However, for each surface point,

there is a fall-off as the direction is farther away from the normal at that
surface point.

The radiosity for each point can be computed as follows:
B = /L(:z:~+ ©) cos 8dwe
Q

= / 6000 cos® fdwe
0

27 pw/2
= 6000 / / cos? @ sin 0d0d¢
0o Jo

a3 7/2 R
- GOOO.QW.{__CM}

3 0

= 4000m W/m?
12566 W/m?.

The power for the entire light source can then be computed as follows:

® = //L(m—>@)cos€dwedAx
AJe

= /(/Lcos@dw@)dAm
A Ja

= /AB(:v)dAx

= 40000 W/m?-0.1 m-0.1 m
125.66 W.

&

Example (Sun, Earth, Mars]

Now let us consider the example of an emitter that is very important to
us: the Sun: One might ask the question, if the radiance of the Sun is the
same irrespective of the distance from the Sun, why is the Earth warmer
than Mars?

Consider the radiance output from the Sun arriving at the Earth and
Mars (see Figure 2.5). For simplicity, let us assume that the Sun is a
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Figure 2.5. Relationship between the Earth, Mars, and the Sun.

uniform diffuse emitter. As before, we assume that the medium between
the Earth, Sun, and Mars is a vacuum. From Equation 2.12,

$ = rwLA.

Given that the total power emitted by the Sun is 3.91 x 1.026 watts, and
the surface area of the Sun is 6.07 x 108 m?, the Sun’s radiance equals

il 3.91 x 106 7 2
e T T =205 % 107 W/sr - m”©.
L(Sun) = 2= = 7557 1018 /

Now consider a 1 x 1 m? patch on the surface of the Earth; the power
arriving at that patch is

P(Earth&Sun):/ / L cosGdwdA.
AJQ

Let us also assume that the Sun is at its zenith (i.e., cosd = 1),. and
that the solid angle subtended by the Sun is small enough that the radiance
can be assumed to be constant over the patch:

P(Earth «— Sun) = ApatenLw.
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The solid angle w subtended by the Sun as seen from the Earth is

Es

Sundisk -5 &
WEarth«Sun = W =6.7x 107 sr.

Note that the area of the Sun considered for the computation of the
radiance of the Sun is its surface area, whereas the area of the Sun in the
computation of the solid angle is the area of a circular section (disc) of the
Sun; this area is 1/4th the surface area of the Sun:

P(Earth « Sun)

I

(1x 1 m?)(2.05 x 10" W/(sr-m?))(6.7 x 107° sr)
= 13735 W.

Similarly, consider a 1 x 1 m? patch on the surface of Mars, the power
arriving at that patch can be computed in the same way. The solid angle

subtended by the Sun as seen from Mars is .
L
Wialarse—Sun = ‘Mb" = 292 X 10_5 ST.
distance?

The total power incident on the patch on Mars is given by

P(Mars « Sun)

(1 x 1 m?)(2.05 x 107 W/(sr - m?))(2.92 x 10° sr)
598.6 W.

Thus, even though the radiance of the Sun is invariant along rays and is
the same as seen from the Earth and Mars, the solid angle measure ensures
that the power arriving at the planets drops off as the square of the distance
(the familiar inverse square law). Therefore, though the Sun will appear
equally bright on the Earth and Mars, it will look larger on the Earth than
on Mars and, therefore, warm the planet more.

Example [Plate]

A flat plate is placed on top of Mount Everest with its normal pointing up
(See Figure 2.6). It is a cloudy day, and the sky has a uniform radiance
of 1000 W/(sr - m?). The irradiance at the center of the plate can be
computed as follows:
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Sky Sky
30°
Ve
Scenario (a) Scenario (b)

Figure 2.6. Plate with different constraints on incoming hemisphere. Scenario
- . el
(a): plate at top of peak; Scenario (b): plate in valley with 60° cutoff.

E = /L(iL’**@)COSgdUJ
= 1000//cosﬁsin9d9dqb

27 w/2
= 1000 / de / cos 0 sin 8d6
0 0

cos? 072
= 1000-2n7 . |—
0

1

= 10007 W/m?%

Now assume the plate is taken to an adjoining valley where the surrounding
mountains are radially symmetric and block off all light below 60°. The
irradiance at the plate in this situation is

E = /L(me—@)cos@du
= 1000 / / cos 6 sin 8dBde

27 /6
= 1000 / do / cos 0 sin 6d0
0 0

cos? 9:lﬂ/6

= 100027 [— 5

]

3
= 1000-7-(1-3)

= 250 -7 W/m?.
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2.4 Light Emission

Light is electromagnetic radiation produced by accelerating a charge. Light
can be produced in different ways; for example, by thermal sources such as
the sun, or by quantum effects such as fluorescence, where materials absorb
energy at some wavelength and emit the energy at some other wavelength.
As mentioned in previous sections, we do not consider a detailed quantum
mechanical explanation of light for the purposes of computer graphics. In
most rendering algorithms, light is assumed to be emitted from light sources
at a particular wavelength and with a particular intensity.

The computation of accurate global illumination requires the specifi-
cation of the following three distributions for each light source: spatial,
directional, and spectral intensity distribution. For example, users, such
as lighting design engineers, require accurate descriptions of light source
distributions that match physical light bulbs available in the real world.
Idealized spatial distributions of lights assume lights are point lights; more
realistically, lights are modeled as area lights. The directional distribu-
tions of typical luminaires is determined by the shape of their zgssociated
light fixtures. Though the spectral distribution of light could also be sim-
ulated accurately, global illumination algorithms typically simulate RGB
(or a similar triple) for efficiency reasons. All these distributions could be

specified either as functions or as tables.

2.9 Interaction of Light with Surfaces

Light energy emitted into a scene interacts with the different objects in the
scene by getting reflected or transmitted at surface boundaries. Some of
the light energy could also be absorbed by surfaces and dissipated as heat,
though this phenomenon is typically not explicitly modeled in rendering
algorithms.

2.5.1 BRDF

Materials interact with light in different ways, and the appearance of ma-
terials differs given the same lighting conditions. Some materials appear
as mirrors; others appear as diffuse surfaces. The reflectance properties
of a surface affect the appearance of the object. In this book, we assume
that light incident at a surface exits at the same wavelength and same time.
Therefore, we are ignoring effects such as fluorescence and phosphorescence.

In the most general case, light can enter some surface at a point p
and incident direction ¥ and can leave the surface at some other point ¢
and exitant direction ©. The function defining this relation between the
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Figure 2.7. Bidirectional reflectance distribution function.

incident and reflected radiance is called the bidirectional surface scat.te.ering
reflectance distribution function (BSSRDF) [131]. We make the addltlopal
assumption that the light incident at some point exits at the same pqmt;
thus, we do not discuss subsurface scattering, which results in the light
exiting at a different point on the surface of the object..

Given these assumptions, the reflectance properties of a surface are
described by a reflectance function called the bidirectional reflectance d1§-
tribution function (BRDF). The BRDF at a point z is defined as the ratio
of the differential radiance reflected in an exitant direction (©), and the
differential irradiance incident through a differential solid angle {dwy). The
BRDF is denoted as fr(z, ¥ — ©):

dL(z — ©)
fr(z, ¥ —©) = 1B —0) (2.13)
dL(z — ©)
Lz — U) cos(Ng, ¥)dwy’

(2.14)

where cos(N, ¥) is the cosine of the angle formed by the normal vector at
the point z, N, and the incident direction vector v, ' '
Strictly speaking, the BRDF is defined over the e?nt%re.sphere of di-
rections (47 steradians) around a surface point. Thl.S is important f'or
transparent surfaces, since these surfaces can “reflect” hght. over thg ent.lre
sphere. In most texts, the term BSDF (bidirectional scattering distribution
function) is used to denote the reflection and transparent parts together.

2.5.2 Properties of the BRDF
There are several important properties of a BRDF:

1. Range. The BRDF can take any positive value and can vary with
wavelength.
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2. Dimension. The BRDF is a four-dimensional function defined at each

point on a surface; two dimensions correspond to the incoming direc-
tion, and two dimensions correspond to the outgoing direction.

Generally, the BRDF is anisotropic. That is, if the surface is rotated
about the surface normal, the value of f,. will change. However, there
are many isotropic materials for which the value of f,. does not depend
on the specific orientation of the underlying surface.

. Reciprocity. The value of the BRDF remains unchanged if the in-

cident and exitant directions are interchanged. This property. is
also called Helmholtz reciprocity; intuitively, it means that reversing
the direction of light does not change the amount of light that gets
reflected:

fr(@, ¥ — 0) = f,(z,0 - V).

Because of the reciprocity property, the following notation is used for
the BRDF to indicate that both directions can be freely interchanged:

Fr(2,0 & ).

2

. Relation between incident and reflected radiance. The value of the

BRDF for a specific incident direction is not dependent on the pos-
sible presence of irradiance along other incident angles. Therefore,
the BRDF behaves as a linear function with respect to all incident
directions. The total reflected radiance due to some irradiance distri-
bution over the hemisphere around an opaque, non-emissive surface
point can be expressed as:

dL(z = ©) = f(z,¥ — O)dE(z « ¥); (2.15)

Lz —0) = / folz, ¥ — ©)dE(z « ¥); (2.16)
Qz

Liz—0©) = / fr(z, ¥ — ©)L(z «— ¥)cos(N,, ¥)dwy. (2.17)
Qz

. Energy conservation. The law of conservation of energy requires that

the total amount of power reflected over all directions must be less
than or equal to the total amount of power incident on the surface
(excess power is transformed into heat or other forms of energy). For
any distribution of incident radiance L(z « W) over the hemisphere,
the total incident power per unit surface area is the total irradiance
over the hemisphere:

E= / L(z « ¥) cos(Ny, ¥)dwy. (2.18)
Qe
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The total reflected power M is a double integral over the hemisphere.
Suppose we have a distribution of exitant radiance L(z — ©) at a

surface. The total power per unit surface area leaving the surface,
M, is

M ——:/ L(z — ©) cos(Ny, ©)dwe. (2.19)
Qe

From the definition of the BRDF, we know
dL(z — 0) = fr(z, ¥ — ©)L(z « ¥)cos(Ng, ¥)dwy.

Integrating this equation to find the value for L(z — ©) and com-
bining it with the expression for M gives us

M= / / fr(z, ¥ — O)L(z «— ¥) cos(Ng, ©) cos(Ny, ¥)dwydwe .
z v Qe

(2.20)
The BRDF satisfies the constraint of energy conservation for re-
flectance at a surface point if, for all possible incident radiance dis-
tributions L(z « ¥), the following inequality holds: M < E, or
Jo, Jo, fr(z,¥ = O)L(z < T) cos(Ng, ©) cos(Ny, ¥)dwy dwe <1
Ja, L(z « ¥) cos(Ng, ¥)dwy -

(2.21)

This inequality must be true for any incident radiance function. Sup-
pose we take an appropriate d-function for the incident radiance dis-
tribution, such that the integrals become simple expressions:

L(z + ¥) = Li,6(¥ — ©),
then, the above equation can be simplified to

LA / fr(z, ¥ — ©) cos(Ng, ©)dwe < 1. (2.22)
Q:x:

The above equation is a necessary condition for energy conservation,
since it expresses the inequality for a specific incident radiance dis-
tribution. It is also a sufficient condition because incident radiance
from two different directions do not influence the value of the BRDF;
therefore, conservation of energy is valid for any combination of inci-
dent radiance values. If the value of the BRDF is dependent on the
intensity of the incoming light, the more elaborate inequality from
Equation 2.21 holds.
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Global illumination algorithms often use empirical models to charac-
terize the BRDF. Great care must be taken to make certain that these
empirical models are a good and acceptable BRDF. More specifically, en-
ergy conservation and Helmholtz reciprocity must be satisfied to make an
empirical model physically plausible.

Satisfying Helmholtz reciprocity is a particularly important constraint
for bidirectional global illumination algorithms; these algorithms compute
the distribution of light energy by considering paths starting from the light
sources and paths starting from the observer at the same time. Such al-
gorithms explicitly assume that light paths can be reversed; therefore, the
model for the BRDF should satisfy Helmholtz’s reciprocity.

2.5.3 BRDF Examples
Depending on the nature of the BRDF, the material will appear as a diffuse

‘surface, a mirror, or a glossy surface (see Figure 2.8). The most commonly

encountered types of BRDFs are listed below.

Diffuse Surfaces .

Some materials reflect light uniformly over the entire reflecting hemisphere.
That is, given an irradiance distribution, the reflected radiance is indepen-
dent of the exitant direction. Such materials are called diffuse reflectors,
and the value of their BRDF is constant for all values of © and ¥. To an
observer, a diffuse surface point looks the same from all possible directions.
For an ideal diffuse surface,

folw, @ o 0) = 22, (2.23)

The reflectance pg represents the fraction of incident energy that is
reflected at a surface. For physically-based materials, pq varies from 0 to 1.
The reflectance of diffuse surfaces is used in radiosity calculations as will
be seen in Chapter 6.

Pure Diffuse  Pure Specular Glossy

Figure 2.8. Different types of BRDFs.
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Specular Surfaces
Perfect specular surfaces only reflect or refract light in one specific direction.

Specular reflection. The direction of reflection can be found using the
law of reflection, which states that the incident and exitant light direction
make equal angles to the surface’s normal, and lie in the same plane as the
normal. Given that light is incident to the specular surface along direction
vector ¥, and the normal to the surface is N, the incident light is reflected
along the direction R:

R=2(N -T)N - 0. (2.24)

A perfect specular reflector has only one exitant direction for which the
BRDF is different from 0; the implication is that the value of the BRDF
along that direction is infinite. The BRDF of such a perfect specular reflec-
tor can be described with the proper use of §-functions. Real materials can
exhibit this behavior very closely, but are nevertheless not ideal reflectors
as defined above.

Specular refraction. The direction of specular refraction is computed using
Snell’s law. Counsider the direction T" along which light that is incident from
a medium with refractive index 7, to a medium with refractive index 7, is
refracted. Snell’s law specifies the following invariant between the angle of
incidence and refraction and the refractive indices of the media:

71 8in 8y = 1 sin 05, (2.25)

where 6, and 6, are the angles between the incident and transmitted ray
and the normal to the surface.
The transmitted ray 7" is given as:

T = n2\Il+N( 2cos<9 -—\/1——(772) (1—00892))

= B N - 1= B2 - - 92), @20)
N2 N2 12

since cosf#y = N - ¥, the inner product of the normal and the incoming

direction.

When light travels from a dense medium to a rare medium, it could get
refracted back into the dense medium. This process is called total internal
reflection; it arises at a critical angle 6., also known as Brewster’s angle,
which can be computed by Snell’s law:

. .
msinfd, = masin ~2~;
sinf, = -@.
m
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H¥

0, 2

T

Figure 2.9. Perfect specular reflection and refraction.

We can derive the same condition from Equation 2.26, where total internal
reflection occurs when the term under the square root, 1—()*(1—cos 61),
is less than zero.

Figure 2.9 shows the geometry of perfect specular reflections and re-
fractions.

Reciprocity for transparent surfaces. One has to be careful when assuming
properties about the transparent side of the BSDF; some characteristics,
such as reciprocity, may not be true with transparent surfaces as described
below. When a pencil of light enters a dense medium from a less dense
(rare) medium, it gets compressed. This behavior is a direct consequence
of Snell’s law of refraction (rays “bend” towards the normal direction).
Therefore, the light energy per unit area perpendicular to the pencil di-
rection becomes higher; i.e., the radiance is higher. The reverse process
takes place when a pencil of light leaves a dense medium to be refracted
into a less dense medium. The change in ray density is the square ratio of
the refractive indices of the media [203, 204]: (n2/7m1)%. When computing
radiance in scenes with transparent surfaces, this weighting factor should
be considered.

Fresnel equations. The above equations specify the angles of reflection
and refraction for light that arrives at a perfectly smooth surface. Fresnel
derived a set of equations called the Fresnel equations that Spec1fy the
amount of light energy that is reflected and refracted from a perfectly
smooth surface.

When light hits a perfectly smooth surface, the light energy that is re-
flected depends on the wavelength of light, the geometry at the surface, and
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the incident direction of the light. Fresnel equations specify the fraction of
light energy that is reflected. These equations (given below) take the po-
larization of light into consideration. The two components of the polarized
light, 7, and r,, referring to the parallel and perpendicular (senkrecht in
German) components, are given as

__macosby — 1 cos 78
" mpcosfy + 1y cosfy’
__ micosfy —macosby

" mycosfy +nocosfy’

Tp (2.27)

T's (2.28)

where 77, and 72 are the refractive indices of the two surfaces at the interface.

For unpolarized light, F' = W Note that these equations apply
for both metals and nonmetals; for metals, the index of refraction of the
metal is expressed as a complex variable: n + ik, while for nonmetals, the
refractive index is a real number and k = 0.

The Fresnel equations assume that light is either reflected or refracted
at a purely specular surface. Since there is no absorption of light energy,
the reflection and refraction coefficients sum to 1.

Glossy Surfaces

Most surfaces are neither ideally diffuse nor ideally specular but exhibit a
combination of both reflectance behaviors; these surfaces are called glossy
surfaces. Their BRDF is often difficult to model with analytical formulae.

2.5.4 Shading Models

Real materials can have fairly complex BRDFs. Various models have been
suggested in computer graphics to capture the complexity of BRDFs. Note
that in the following description, ¥ is the direction of the light (the input
direction) and © is the direction of the viewer (the outgoing direction).
Lambert's model.. The simplest model is Lambert’s model for idealized
diffuse materials. In this model, the BRDF is a constant as described
earlier:

Frl(z, U o 0) = kg = -’?7{—,

where py is the diffuse reflectance (see Section 2.5.3).

Phong model. Historically, the Phong shading model has been extremely
popular. The BRDF for the Phong model is:

(R-©)"

fr(2, ¥ & 0) = ks‘W

+ kd)
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Figure 2.10. Shading models geometry.

where the reflected vector R can be computed from Equation 2.24.

Blinn-Phong model. The Blinn-Phong model uses the half-vector H, the
halfway vector between ¥ and ©, as follows:

(- =" .

fr(z, ¥ - ©) =k N + kq.

Modified Blinn-Phong model. While the simplicity of the Phong model is ap-
pealing, it has some serious limitations: it is not energy conserving, it does
not satisfy Helmholtz’s reciprocity, and it does not capture the behavior of
most real materials. The modified Blinn-Phong model addresses some of
these problems:

fr(z, U« O) = k(N - H)" + kq.

Physically Based Shading Models

The modified Blinn-Phong model is still not able to capture realistic BRDF's.
Physically based models, such as Cook-Torrance [33] and He [67], among
others, attempt to model physical reality. We provide a brief description of
the Cook-Torrance model below. For details, refer to the original paper [33].
The He model [67] is, to date, the most comprehensive and expensive shad-
ing model available; however, it is beyond the scope of this book to present
this model.

Cook-Torrance model. The Cook-Torrance model includes a microfacet
model that assumes that a surface is made of a random collection of small
smooth planar facets. The assumption in this model is ‘that an incoming
ray randomly hits one of these smooth facets. Given a specification of the
distribution of microfacets for a material, this model captures the shadow-
ing effects of these microfacets. In addition to the facet distribution, the
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Cook-Torrance model also includes the Fresnel reflection and refraction
terms:

ol @ o 0) = T DG

T (VD) (v-@)

where the three terms in the nondiffuse component of the BRDF are the
Fresnel reflectance F', the microfacet distribution D, and a geometric shad-
owing term G. We now present each of these terms.

The Fresnel terms, as given in Equations 2.27 and 2.28, are-used in the
Cook-Torrance model. This model assumes that the light is unpolarized;

therefore, F' = {—T*'f—;-"—"ff— The Fresnel reflectance term is computed with
respect to the angle [, which is the angle between the incident direction
and the half-vector: cos = ¥ - H = © - H. By the definition of the half-
vector, this angle is the same as the angle between the outgoing direction
and the half-vector.

The distribution function D specifies the distribution of the microfacets
for the material. Various functions can be used to specify this distribution.
One of the most common distributions is the distribution by Beckmann:

1 tan8p 2
D(6) = ——r—e (™) ,
(On) m2 cos? 6,
Where 8, is the angle between the normal and the half-vector and cos ), =
N - H. Also, m is the root-mean-square slope of the microfacets, and it
captures surface roughness.

The geometry term G captures masking and self-shadowing by the mi-
crofacets:

2N - H)(N -©) 2(N - H)(N - )

G = min{l, o . Wi ¥

Empirical Models

Models such as Ward [221] and Lafortune [105] are based on empirical
data. These models aim at ease of use and an intuitive parameterization
of the BRDF. For isotropic surfaces, the Ward model has the following
BRDF:

wtanzgt
€ >3

ira? /N D)(NV-©)

where 6}, is the angle between the half-vector and the normal.
The Ward model includes three parameters to describe the BRDF: Pds
the diffuse reflectance; ps, the specular reflectance; and «, a measure of

folw, ¥ = ©) = £ 4 p,
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the surface roughness. This model is energy conserving and relatively in-
tuitive to use because of the small set of parameters; with the appropriate
parameter settings, it can be used to represent a wide range of materials.

Lafortune et al. [105] introduced an empirically based model to repre-
sent measurements of real materials. This model fits modified Phong lobes
to measured BRDF data. The strength of this technique is that it exploits
the simplicity of the Phong model while capturing realistic BRDFs from
measured data. More detailed descriptions of several models can be found
in Glassner’s books [54].

2.6 Rendering Equation

Now we are ready to mathematically formulate the equilibrium distribution

-of light energy in a scene as the rendering equation. The goal of a global

illumination algorithm is to compute the steady-state distribution of light
energy. As mentioned earlier, we assume the absence of participating me-
dia. We also assume that light propagates instantaneously; therefore, the
steady-state distribution is achieved instantaneously. At each surface point
z and in each direction O, the rendering equation formulates the exitant
radiance L(z — ©) at that surface point in that direction.

2.6.1 Hemispherical Formulation

The hemispherical formulation of the rendering equation is one of the most
commonly used formulations in rendering. In this section, we derive this
formulation using energy conservation at the point z. Let us assume that
Le(z — ©) represents the radiance emitted by the surface at z and in
the outgoing direction ©, and L,.(z — ©) represents the radiance that is
reflected by the surface at z in that direction ©.

By conservation of energy, the total outgoing radiance at a point and
in a particular outgoing direction is the sum of the emitted radiance and
the radiance reflected at that surface point in that direction. The outgoing
radiance L(z — ©) is expressed in terms of L.(z — ©) and L.(z — ©) as
follows:

L{z — ©) = Le(z — ©) + L.(z — ©).
From the definition of the BRDF, we have

dL.(x — )
dE(z « )’

L.(z—0) = /Q fr(z,¥ — ©)L(z «— ¥) cos(N,, ¥)dwy.

fr(z, ¥ — ©)
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Putting these equations together, the rendering equation is
Lz —0©) = L(z— 0) (2.29)
+/ fr(z, ¥ — O)L(z — ¥) cos(Ng, ¥)dwy.
Q:r.

The rendering equation is an integral equation called a Fredholm equa-
tion of the second kind because of its form: the unknown quantity, radi-
ance, appears both on the left-hand side of the equation, and on the right,
integrated with a kernel.

2.6.2 Area Formulation

Alternative formulations of the rendering equation are sometimes used de-
pending on the approach that is being used to solve for global illumination.
One popular alternative formulation is arrived at by considering the sur-
faces of objects in the scene that contribute to the incoming radiance at
the point . This formulation replaces the integration over the hemisphere
by integration over all surfaces visible at the point.

To present this formulation, we introduce the notion of a ray-casting
operation. The ray-casting operation, denoted as r(z, ¥), finds the point
on the closest visible object along a ray originating at point z and pointing
in the direction ¥. Efficient ray-casting techniques are beyond the scope of
this book; hierarchical bounding volumes, octrees, and BSP trees are data
structures that are used to accelerate ray casting in complex scenes [52].

T(xs \I}) = {y Y =T+ tintersection\y};
= min{t:t>0,z+t¥ € A},

tintersection

Figure 2.11. Area formulation of the rendering equation.
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where all the surfaces in the scene are represented by the set A. The
visibility function V{z,y) specifies the visibility between two points z and
y and is defined as follows:

Vo,y € A: Viz,y) = 1 if z and y are mutually visible,
’ ' ’ 0 if z and y are not mutually visible.

The visibility function is computed using the ray-casting operation r(z, ¥):
x and y are mutually visible if there exists some ¥ such that r{z, ¥) = y.

Using these definitions, let us consider the terms of the rendering equa-
tion from Equation 2.29. Assuming nonparticipating media, the incoming
radiance at = from direction ¥ is the same as the outgoing radiance from
y in the direction —W:

Lz —¥) = L(y-— —¥).
Additionally, the solid angle can be recast as follows (see Appendix B):

dA,

2
zy

Substituting in Equation 2.29, the rendering equation can also be expressed
as an integration over all surfaces in the scene as follows:

)

dwy = dwzqa, = cos(Ny, —¥)

L(z — ©) = Le(z — ©)
+/ fr(z, ¥ — O)L(y — —U)V(z,y) cos( Ny, ¥) cos(Ny, —¥)
A

2
T2y

dA,.
The term G(z,y), called the geometry term, depends on the relative
geometry of the surfaces at point z and y:

cos(Nz, ¥) cos(N,, =)

¥

2
Tmy

G(z,y) =

Lz —0) = Le(z—0)
+Lfr(x, U — O)L(y — —¥)V(z,y)G(z,y)dA,.

~ This formulation recasts the rendering equations in terms of an integration

over all the surfaces in the scene.

2.6.3 Direct and Indirect lllumination Formulation

Another formulation of the rendering equation separates out the direct
and indirect illumination terms. Direct illumination is the illumination



44 2. The Physics of Light Transport

that arrives at a surface directly from the light sources in a scene; indi-
rect illumination is the light that arrives after bouncing at least once off
another surface in the scene. It is often efficient to sample direct illumina-
tion using the area formulation of the rendering equation, and the indirect
illumination using the hemispherical formulation.

Splitting the integral into a direct and indirect component gives the
following form of the rendering equation:

Lz - ©) = Le(z— 0©)+Ly(z— O);

L(z—0) = fr(z, ¥ — ©)L(z — ¥) cos(Ng, ¥)dwy
= Lt:rect + Lindirect;
Laireet = /A f2(, 5 — ©) Loy — TRV (2, 5)C(x, y)dAy;
Dintirest = [ 10, % = ©) e = W) cos(Ne, W)do;
Lz «T) = Lilzr(x, T) — —).

Thus, the direct term is the emitted term from the surface y visible to the
point z along direction 7y: y = r(z,zy). The indirect illumination is the
reflected radiance from all points visible over the hemisphere at point z:
r(z, T).

2.7 Importance

The problem that a global illumination algorithm must solve is to compute
the light energy that is visible at every pixel in an image. Each pixel
functions as a sensor with some notion of how it responds to the light
energy that falls on the sensor. The response function captures this notion
of the response of the sensor to the incident light energy. This response
function is also called the potential function or importance by different

authors.
The response function is similar in form to the rendering equation:

Wz —0) = We(z—0) (2.30) |

+/ fr(z, ¥ — @YW (z — ¥) cos(Ny, ¥)dwy.
Qe

Importance flows in the opposite direction as radiance. An informal in-
tuition for the form of the response function can be obtained by considering
two surfaces, ¢ and j: If surface ¢ is visible to the eye in a particular image,
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then We(¢) will capture the extent to which the surface is important to the
image (some measure of the projected area of the surface on the image). If
surface j is also visible in an image and surface i reflects light to surface 7,
then, due to the importance of j, ¢ will indirectly be even more important.
Thus, while energy flows from ¢ to j, importance flows from j to i.

2.8 The Measurement Equation

The rendering equation formulates the steady-state distribution of light
energy in the scene. The importance equation formulates the relative im-
portance of surfaces to the image. The measurement equation formulates
the problem that a global illumination algorithm must solve. This equation
brings the two fundamental quantities, importance and radiance, together
as follows.

For each pixel j in an image, M represents the measurement of radiance
through that pixel j. The measurement function M is

M; = /W(m — U)L(z «— ¥) cos(N,, ¥)dAdwy. (2.31)

We assume here that the sensors are part of the scene so that we can
integrate over their surface.

2.9 Summary

This chapter presented the formulation of the fundamental problems that
global illumination must solve: the rendering equation and the measure-
ment equation. We discussed a model of the behavior of light, definitions
from radiometry, and a description of how light interacts with materials in
a scene. For more details on the behavior of light, refer to standard physics
textbooks in the field of optics [68]. References for radiative transport
theory are Chandrasekhar’s Radiative Transfer [22] and Ishimaru’s Wave
Propagation and Scattering in Random Media [75]. Glassner’s books [54]
present a range of different shading models used in computer graphics.

2.10 Exercises

1. A flat plate (measuring 0.5 meter by 0.5 meter) is placed on the
highest mountain in the landscape, exactly horizontal. It is a cloudy
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day, such that the sky has a uniform radiance of 1000 W/ m?sr. What
is the irradiance at the center point of the plate?

. The plate has a uniform Lambertian reflectance p = 0.4. What is the

exitant radiance leaving the center point of the plate in a direction
45 degrees from the normal? In a direction normal to the surface?

. Consider the sun being a diffuse light source with a diameter of 1.39 -

10° meters at a distance of 1.5 - 10'* meters and emitting a radiance
of 8-10% W/m?sr. What is the radiance at the center point of the
plate, expressed as a function of the angle between the position of
the sun and the normal to the plate (the zenith)?

. Using the Web, look up information on the following: the irradiance

spectrum of the sun (irradiance as a function of wavelength) reaching
the Earth; and the reflectivity of a chosen material, also as a function
of wavelength. Sketch the approximate spectrum of the reflected light
from the plate as a function of wavelength.

. Implement the specular term of the Cook—Torrance BRDF model. For

nickel at 689 nm wavelength, use the following parameters: microfacet
distribution m = 0.3; refractive index n = 2.14 and k = 4.00. Plot
graphs of the following terms: the Fresnel reflectance; the geometry
term G; the full BRDF in the plane of incidence. Look up parameters
for some additional materials and make similar plots.

Monte Carlo Methods

This chapter introduces the concept of Monte Carlo integration and reviews
some basic concepts in probability theory. We also present techniques to
create better distributions of samples. More details on Monte Carlo meth-
ods can be found in Kalos and Whitlock [86], Hammersley and Hand-
scomb [62], and Spanier and Gelbard [183]. References on quasi-Monte
Carlo methods include Niederreiter [132].

L

3.1 Brief History

The term “Monte Carlo” was coined in the 1940s, at the advent of elec-
tronic computing, to describe mathematical techniques that use statistical
sampling to simulate phenomena or evaluate values of functions. These
techniques were originally devised to simulate neutron transport by scien-
tists such as Stanislaw Ulam, John von Neumann, and Nicholas Metropolis,
among others, who were working on the development of nuclear weapons.
However, early examples of computations that can be defined as Monte
Carlo exist, though without the use of computers to draw samples. One
of the earliest documented examples of a Monte Carlo computation was
done by Comte de Buffon in 1677. He conducted an experiment in which a
needle of length L was thrown at random on a horizontal plane with lines
drawn at a distance d apart (d > L). He repeated the experiment many
times to estimate the probability P that the needle would intersect one of

these lines. He also analytically evaluated P as
2L
owd’

P

Laplace later suggested that this technique of repeated experimentation
could be used to compute an estimated value of w. Kalos and Whitlock [86]
present early examples of Monte Carlo methods.

47



