Computer Graphics Il: Rendering

CSE 168 [Spr 25], Lecture 8: Indirect Lighting Details
Ravi Ramamoorthi

http://viscomp.ucsd.edu/classes/cse168/sp25

Indirect Lighting
Core of path tracing, global illumination
Supports multiple bounces of light, color bleeding
General paths, general visual effects

Light Source (0 bounces) Direct Lighting (1 bounce) Indirect Lighting (2 bounces) Indirect Lighting (3 bounces)

Indirect Lighting

Core of path tracing, global illumination

Supports multiple bounces of light, color bleeding

General paths, general visual effects

To Do

Homework 2 (Direct Lighting) due today!!
Homework 3 (Path Tracer, Indirect Lighting) May 6
Assignment is on edX edge

START EARLY

This lecture goes through details of indirect lighting,
Monte Carlo path tracing for the assignment

Ask re any questions

Indirect Lighting
Core of path tracing, global illumination
Supports multiple bounces of light, color bleeding

General paths, general visual effects
-—

Full Scene Direct Lighting Indirect Lighting

Rendering Equation (Kajiya 86)

[Figure 6. A sample image. All objects are neutral grey. Color on the objects|
s due to caustics from the green glass balls and color bleeding from the base|
polygon.-

Paper introduced rendering equation, path tracing, importance sampling still used today

Reflection Equation

Replace sum with integral
L(x0)=L(x0)+ J. L.(x,0.)f(x, 0, ®,) cos 6. dw,
Q

Reflected Light ~ Emission Incident BRDF

Cosine of
(Output Image)

Light (from Incident angle
light source)

Rendering Equation

Assignment: slight change in notations

L(xw,)=L(x0,)+ -[L (t(x,0,),~0,)f(x,0,0,)(n-o,)do,

x'=t(x,w,)is the raycasting function to first intersection
Monte Carlo estimator (hemisphere, not area light)
Randomly generate sample on hemisphere (total 21 steradians)
N

L(xo,)=L,(x0,)+ %Z L (t(x,@,(k)),~w,(k))f(x,0,(k),0,)(n*w,(k))

Not ideal; each L, call recursively estimated
Can lead to exponential growth in samples, termination condition
Set fixed depth D = 5 to guarantee termination for now

Instead, consider single path without splitting

N = 1 after primary visibility or first bounce (all N for first bounce)
Actuallv randar Nl imanee averana (SQinnla nath ve “hiichv tran”)

Sampling Upper Hemisphere

Uniform directional sampling: how to generate
random ray on a hemisphere?

Option #1: rejection sampling
Generate 3 random numbers (x,y,z), with x,y,z in —1..1
If x2+y2+22 > 1, reject
Normalize (x,y,z)

If pointing into surface (ray dot n < 0), flip to -ray

Rendering Equation
Surfaces (interreflection)

'
, ~x'—x

Ly(x,m,)+ '[L (x',~w, Jf(x,0,,0,) cos 6, dw,

Reflected Light Emission
(Output Image)

L(xm)=

Reflected BRDF Cosine of

Light Incident angle
UNKNOWN KNOWN UNKNOWN KNOWN KNOWN

Path Construction
Single path vs bushy tree

Conceptually simplest to render N 1-sample images
And then average them

Antialiasing within pixel for “free” (consider pixel having unit
area, jitter ray in that, instead of shooting through midpoint)

il il

Sampling Upper Hemisphere

Option #2: inversion method
In polar coords, density must be proportional to sin 6
(remember d(solid angle) = sin 6 db dg)
Integrate, invert = cos-

Recipe is (start with two random numbers €1, & in 0...1
Generate ¢ in 0.2 ¢=2mE,
Generate zin 0.1 z=§;
Let®=cos'z B=acos(&1)
(x,y,2) = (sin 6 cos ¢, sin 6 sin ¢, cos 6)

Rotate according to surface normal (z goes to normal)
Normal is (a,8) with a = acos(n,) and B=atan2(n, n,)
Rotation matrix R = R,(B)Ry(a) then do R*(x,y,z)

Sampling Upper Hemisphere

Two random numbers &4, &2 in 0...1
Generate ¢ in 0.2t $=2m¢,
Generate zin 0..1 z=¢,
Let®=cos'z B=acos(&;)

(x,y,2) = (sin 6 cos ¢, sin 6 sin ¢, cos 6)

Rotate according to surface normal (z goes to normal)

Normal is (a,) with a = acos(n,) and B=atan2(ny,ny)
Rotation matrix R = R,(B)Ry(a) then do R*(x,y,z)
[cos B -sinp 0 [cosa 0 sina) [cos arcos B -sinfB sinacosp
R=| sinf cosB 0 0 1 0 sinfcosoc cosB sinasinf
0 0 1 -sina 0 cosa | -sina (0] cos o

Create Local Coordinate Frame
First, compute u,v,w to create orthonormal frame

Vector a is arbitrary (use random or up vector)
Be careful when a close to n, use alternative vector

Now, compute ray direction w
(x,y,2) are scalar coordinates; u,v,w are vectors above
o= XU+ yv+2zZw

1 sample per pixel

Or Create Local Coordinate Frame

Simpler, may be useful for texture etc.
Can use any one of 3 methods (rejection, rotation,
coordinate frame but assignment spec coord. frame)

] ==]| =1
usv=vew=u.w=0
wW=uxv

p=(peuu+(p-v)v+(peww

Associate w with normal (+z = n). Need u, v

Assignment so far (checkpoint 1)

Sample hemisphere at each bounce
Evaluate full MC estimator with N = 1 for each ray
Upto depth D = 5. Final ray D = 5 returns emit L. only
Most rays will actually be 0 (do not hit light source)
Very inefficient, but render this, will improve on it next

64 samples per pixel (may be slow)

Separating Direct/Indirect

Also called next event estimation (NEE)

Already know how to do direct (homework 2)
By sampling/integrating area light source
But vanilla path tracing previously is very inefficient
Chance of hitting the light source is very small

So separate direct and indirect

Estimate “next event” on light source for direct
Focus energies on “hard” indirect light vs “easy” direct

Simplest of variance reduction methods
Monte Carlo Path tracing always works, is gold standard
But challenge is making it fast, removing noise

Separating Direct/Indirect: Notes

Ll(x,(oo)z_[L., (x0)(x0,0

fi
[

)neo,)do,

= %EN: L, (t(x,@,(k)),—o,(k))f (x,0,(k),a,)(n . o,(k))
k=1
Note that L, above = L4 + L; only(not L;: no emission)

Implementation

At each intersection in path tracer, execute direct lighting
For simplicity, only one (unstratified) ray for each area light
Ultimately, we will average many primary samples

Add in emission where appropriate (light sources only)

Execute indirect lighting above (randomly sample path)

To avoid double counting, indirect rays don’t see emission
If an indirect ray ever strikes a light source, terminate immediately
Without accumulating the light source’s emission

1 sample per pixel (no NEE)
| |

Separating Direct/Indirect

Formally split incident light at a point L(xo)=L,(x)+Lxo;

Reflected light has emission, direct, indirect

L(xo,)=L(x0)+L,(x0,)+L(x0,)

Emission is easy, and we already know direct
N
L(xo,)=L, %2 F(x,0,(K),0,) G X',) V(X,X',)
k=1

Indirect is now evaluated by path tracing

L(xw,)= j L, (x0)(x0,0,)n-o,)do,

= %EN: L, (t(x,@,(k)),—o,(K))f(x,0,(k),@,)(n.o,(k))

Implementation: Corner Cases

Emission from first intersected surface (light sources)
should be added, but no emission on subsequent bounces

Since next event estimation / direct light effectively extends
path by a bounce, trace indirect ray to depth D — 1

Render Cornell box 1 spp, 64 spp D = 5, single unstratified
direct light sample per intersection

1 sample per pixel (with NEE)

64 samples per pixel (wit

Russian Roulette

Clipping to fixed depth D undesirable
Leads to bias, some complex paths need high D
Continue ray even when throughput is very small
In practice, rays may terminate if exit scene, but this can’t
formally be guaranteed (hall of mirrors, closed box)

Russian roulette unbiased at infinite depth
Terminate (probabilistically) low throughput paths
Increase energy of paths kept alive

NNSN

Without Russian roulette. ‘With Russian roulette. With Russian roulette.
Path continued and Path terminated.
throughput boosted.

Choosing Probability

Choose probability g inversely on throughput
g=1- min(max(Tr,Tg,Tb)A)

Russian Roulette applied (only) in indirect
Determine direct (and emission on first bounce) as usual
(no boosting or termination is applied)
Then find throughput for ray so far (BRDF, cosine, 21t
terms product each bounce), pick random number in 0...1
If number < q terminate (no indirect ray is shot)
Otherwise, boost throughput by 1/(1-q), shoot indirect

64 samples per pixel (with NEE)
—-—

Russian Roulette Termination

Terminate path with some probability q
If terminated, obviously throughput is O
If left alive, multiply (boost) throughput T by 1/(1-q)
Create fewer higher-energy paths (e.g. if g = 0.1, 10
equal paths reduces to 9 (expected) each 10/9 energy.
If instead g = 0.9, reduce to 1 path with 10 times energy)
Keep total energy constant, unbiased (0*q + (1-q)/(1-q))
Probability q controls how aggressive termination

(dep

Russian Roulette Images

D =5, 16 samples D = infinity, 16 samples

