
1

Computer Graphics II: Rendering

CSE 168 [Spr 25], Lecture 8: Indirect Lighting Details
Ravi Ramamoorthi

http://viscomp.ucsd.edu/classes/cse168/sp25

1

To Do

§ Homework 2 (Direct Lighting) due today!!

§ Homework 3 (Path Tracer, Indirect Lighting) May 6

§ Assignment is on edX edge

§ START EARLY

§ This lecture goes through details of indirect lighting,
Monte Carlo path tracing for the assignment

§ Ask re any questions

2

Indirect Lighting
§ Core of path tracing, global illumination

§ Supports multiple bounces of light, color bleeding

§ General paths, general visual effects

Light Source (0 bounces) Direct Lighting (1 bounce) Indirect Lighting (2 bounces) Indirect Lighting (3 bounces)

3

Indirect Lighting
§ Core of path tracing, global illumination

§ Supports multiple bounces of light, color bleeding

§ General paths, general visual effects

Full Scene Direct Lighting Indirect Lighting

4

Indirect Lighting
§ Core of path tracing, global illumination

§ Supports multiple bounces of light, color bleeding

§ General paths, general visual effects

5

Rendering Equation (Kajiya 86)

Paper introduced rendering equation, path tracing, importance sampling still used today

6

2

Reflection Equation

 ω i rw

x

(,) (,) (,) (, ,) cosr r e r i i i r iiL x L x L x df xw w w ww w q
W

= + ò
Reflected Light
(Output Image)

Emission Incident
Light (from
light source)

BRDF Cosine of
Incident angle

Replace sum with integral

idw

7

Rendering Equation

iw rw

x

(,) (, ,) c(,) (,) ose r i rr r i ir iL x L xL x f x dw w ww q ww
W

= + ¢ -ò
Reflected Light
(Output Image)

Emission Reflected
Light

BRDF Cosine of
Incident angle

idw

Surfaces (interreflection)

dA
x¢

UNKNOWN UNKNOWNKNOWN KNOWN KNOWN

i x xw ¢-

8

Rendering Equation

§ Assignment: slight change in notations

§ Monte Carlo estimator (hemisphere, not area light)
§ Randomly generate sample on hemisphere (total 2π steradians)

§ Not ideal; each Lr call recursively estimated
§ Can lead to exponential growth in samples, termination condition
§ Set fixed depth D = 5 to guarantee termination for now

§ Instead, consider single path without splitting
§ N = 1 after primary visibility or first bounce (all N for first bounce)
§ Actually render N images, average (Single path vs “bushy tree”)

 x ' = t(x,ω i) is the raycasting function to first intersection

Lr (x,ωo) = Le(x,ωo)+

Ω
∫ Lr (t(x,ω i),−ω i)f (x,ω i ,ωo)(n iω i)dω i

Lr (x,ωo) ≈ Le(x,ωo)+ 2π

N k=1

N

∑ Lr (t(x,ω i (k)),−ω i (k))f (x,ω i (k),ωo)(n iω i (k))

9

Path Construction
§ Single path vs bushy tree

§ Conceptually simplest to render N 1-sample images
§ And then average them

Antialiasing within pixel for “free” (consider pixel having unit
area, jitter ray in that, instead of shooting through midpoint)

10

Sampling Upper Hemisphere

§ Uniform directional sampling: how to generate
random ray on a hemisphere?

§ Option #1: rejection sampling
§ Generate 3 random numbers (x,y,z), with x,y,z in –1..1
§ If x2+y2+z2 > 1, reject
§ Normalize (x,y,z)
§ If pointing into surface (ray dot n < 0), flip to -ray

11

Sampling Upper Hemisphere
§ Option #2: inversion method

§ In polar coords, density must be proportional to sin θ
(remember d(solid angle) = sin θ dθ dϕ)

§ Integrate, invert è cos-1

§ Recipe is (start with two random numbers ξ1, ξ2 in 0…1)
§ Generate ϕ in 0..2π ϕ=2πξ2
§ Generate z in 0..1 z=ξ1
§ Let θ = cos-1 z θ=acos(ξ1)
§ (x,y,z) = (sin θ cos ϕ, sin θ sin ϕ, cos θ)

§ Rotate according to surface normal (z goes to normal)
§ Normal is (α,β) with α = acos(nz) and β=atan2(ny,nx)
§ Rotation matrix R = Rz(β)Ry(α) then do R*(x,y,z)

12

3

Sampling Upper Hemisphere

§ Two random numbers ξ1, ξ2 in 0…1
§ Generate ϕ in 0..2π ϕ=2πξ2
§ Generate z in 0..1 z=ξ1
§ Let θ = cos-1 z θ=acos(ξ1)
§ (x,y,z) = (sin θ cos ϕ, sin θ sin ϕ, cos θ)

§ Rotate according to surface normal (z goes to normal)
§ Normal is (α,β) with α = acos(nz) and β=atan2(ny,nx)
§ Rotation matrix R = Rz(β)Ry(α) then do R*(x,y,z)

R =
cos β −sin β 0
sin β cos β 0

0 0 1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

cosα 0 sinα
0 1 0

−sinα 0 cosα

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
=

cosα cos β −sin β sinα cos β
sin β cosα cosβ sinα sin β
−sinα 0 cosα

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

13

Or Create Local Coordinate Frame
§ Simpler, may be useful for texture etc.

§ Can use any one of 3 methods (rejection, rotation,
coordinate frame but assignment spec coord. frame)

§ Associate w with normal (+z = n). Need u, v

u = v = w = 1

u iv = v iw = u iw = 0
w = u ×v

p = (p iu)u + (p iv)v + (p iw)w

14

Create Local Coordinate Frame
§ First, compute u,v,w to create orthonormal frame

§ Vector a is arbitrary (use random or up vector)
§ Be careful when a close to n, use alternative vector

§ Now, compute ray direction ω
§ (x,y,z) are scalar coordinates; u,v,w are vectors above

w = n
n

u = a ×w
a ×w

v = w × u

 ωω = xu+ yv + zw

15

Assignment so far (checkpoint 1)

§ Sample hemisphere at each bounce
§ Evaluate full MC estimator with N = 1 for each ray
§ Upto depth D = 5. Final ray D = 5 returns emit Le only
§ Most rays will actually be 0 (do not hit light source)
§ Very inefficient, but render this, will improve on it next

16

1 sample per pixel

17

64 samples per pixel (may be slow)

18

4

Separating Direct/Indirect

§ Also called next event estimation (NEE)

§ Already know how to do direct (homework 2)
§ By sampling/integrating area light source
§ But vanilla path tracing previously is very inefficient
§ Chance of hitting the light source is very small

§ So separate direct and indirect
§ Estimate “next event” on light source for direct
§ Focus energies on “hard” indirect light vs “easy” direct

§ Simplest of variance reduction methods
§ Monte Carlo Path tracing always works, is gold standard
§ But challenge is making it fast, removing noise

19

Separating Direct/Indirect

§ Formally split incident light at a point

§ Reflected light has emission, direct, indirect

§ Emission is easy, and we already know direct

§ Indirect is now evaluated by path tracing

 Li (x,ω i) = Ldir (x,ω i)+ Lind (x,ω i)

 Lr (x,ωo) = Le(x,ωo)+ Ld (x,ωo)+ LI(x,ωo)

Ld (x,ωo) ≈ Le

A
N k=1

N

∑ f (x,ω i (k),ωo) G(x,x'k)V(x,x'k)

LI(x,ωo) =
Ω
∫ Lind (x,ω i)f (x,ω i ,ωo)(n iω i)dω i

≈ 2π
N k=1

N

∑ Lo(t(x,ω i (k)),−ω i (k))f (x,ω i (k),ωo)(n iω i (k))

20

Separating Direct/Indirect: Notes

§ Note that Lo above = Ld + LI only(not Lr: no emission)

§ Implementation
§ At each intersection in path tracer, execute direct lighting

§ For simplicity, only one (unstratified) ray for each area light
§ Ultimately, we will average many primary samples

§ Add in emission where appropriate (light sources only)
§ Execute indirect lighting above (randomly sample path)
§ To avoid double counting, indirect rays don’t see emission

§ If an indirect ray ever strikes a light source, terminate immediately
§ Without accumulating the light source’s emission

LI(x,ωo) =
Ω
∫ Lind (x,ω i)f (x,ω i ,ωo)(n iω i)dω i

≈ 2π
N k=1

N

∑ Lo(t(x,ω i (k)),−ω i (k))f (x,ω i (k),ωo)(n iω i (k))

21

Implementation: Corner Cases
§ Emission from first intersected surface (light sources)

should be added, but no emission on subsequent bounces
§ Since next event estimation / direct light effectively extends

path by a bounce, trace indirect ray to depth D – 1
§ Render Cornell box 1 spp, 64 spp D = 5, single unstratified

direct light sample per intersection

22

1 sample per pixel (no NEE)

23

1 sample per pixel (with NEE)

24

5

64 samples per pixel (without NEE)

25

64 samples per pixel (with NEE)

26

Russian Roulette
§ Clipping to fixed depth D undesirable

§ Leads to bias, some complex paths need high D
§ Continue ray even when throughput is very small
§ In practice, rays may terminate if exit scene, but this can’t

formally be guaranteed (hall of mirrors, closed box)

§ Russian roulette unbiased at infinite depth
§ Terminate (probabilistically) low throughput paths
§ Increase energy of paths kept alive

27

Russian Roulette Termination
§ Terminate path with some probability q

§ If terminated, obviously throughput is 0
§ If left alive, multiply (boost) throughput T by 1/(1-q)
§ Create fewer higher-energy paths (e.g. if q = 0.1, 10

equal paths reduces to 9 (expected) each 10/9 energy.
If instead q = 0.9, reduce to 1 path with 10 times energy)

§ Keep total energy constant, unbiased (0*q + (1-q)/(1-q))
§ Probability q controls how aggressive termination

(depends on throughput, can increase variance)

28

Choosing Probability
§ Choose probability q inversely on throughput

§ Russian Roulette applied (only) in indirect
§ Determine direct (and emission on first bounce) as usual

(no boosting or termination is applied)
§ Then find throughput for ray so far (BRDF, cosine, 2π

terms product each bounce), pick random number in 0…1
§ If number < q terminate (no indirect ray is shot)
§ Otherwise, boost throughput by 1/(1-q), shoot indirect

q = 1−min max Tr ,Tg,Tb(),1()

29

Russian Roulette Images

D = 5, 16 samples D = infinity, 16 samples

30

