
1

Computer Graphics II: Rendering

CSE 168 [Spr 25], Lecture 7: Monte Carlo Path Tracing
Ravi Ramamoorthi

http://viscomp.ucsd.edu/classes/cse168/sp25

1

To Do

§ Homework 2 (direct lighting) due in two days

§ Next assignment path tracing (on edX edge).
This lecture covers much of that material

2

Motivation

§ General solution to rendering and global illumination

§ Suitable for a variety of general scenes

§ Based on Monte Carlo methods

§ Enumerate all paths of light transport

3

Monte Carlo Path Tracing

Big diffuse light source, 20 minutes

Jensen

4

Monte Carlo Path Tracing

1000 paths/pixel
Jensen

5

Monte Carlo Path Tracing

Advantages
§ Any type of geometry (procedural, curved, ...)
§ Any type of BRDF (specular, glossy, diffuse, ...)
§ Samples all types of paths (L(SD)*E)
§ Accuracy controlled at pixel level
§ Low memory consumption
§ Unbiased - error appears as noise in final image

Disadvantages (standard Monte Carlo problems)
§ Slow convergence (square root of number of samples)
§ Noise in final image

6

2

Monte Carlo Path Tracing

Integrate radiance
for each pixel
by sampling paths
randomly

Diffuse Surface

Eye

Light

x

Specular
Surface

Pixel

Lo(x,


w) = Le(x,


w)+ fr (x,

Ω
∫


′w ,

w)Li(x,


′w)(

′w •

n)d

w

7

Simple Monte Carlo Path Tracer

§ Step 1: Choose a ray (u,v,θ,ϕ) [per pixel]; assign weight = 1

§ Step 2: Trace ray to find intersection with nearest surface

§ Step 3: Randomly choose between emitted and reflected light
§ Step 3a: If emitted,

 return weight’ * Le
§ Step 3b: If reflected,

 weight’’ *= reflectance
 Generate ray in random direction
 Go to step 2

8

Sampling Techniques

Problem: how do we generate random points/directions
during path tracing and reduce variance?

§ Importance sampling (e.g. by BRDF)
§ Stratified sampling

Surface

Eye

x

9

Outline

§ Motivation and Basic Idea

§ Implementation of simple path tracer

§ Variance Reduction: Importance sampling

§ Other variance reduction methods

§ Specific 2D sampling techniques

10

Simplest Monte Carlo Path Tracer
For each pixel, cast n samples and average

§ Choose a ray with p=camera, d=(θ,ϕ) within pixel
§ Pixel color += (1/n) * TracePath(p, d)

TracePath(p, d) returns (r,g,b) [and calls itself recursively]:
§ Trace ray (p, d) to find nearest intersection p’
§ Select with probability (say) 50%:

§ Emitted:
 return 2 * (Lered, Legreen, Leblue) // 2 = 1/(50%)

§ Reflected:
 generate ray in random direction d’
 return 2 * fr(d èd’) * (n�d’) * TracePath(p’, d’)

11

Simplest Monte Carlo Path Tracer
For each pixel, cast n samples and average over paths

§ Choose a ray with p=camera, d=(θ,ϕ) within pixel
§ Pixel color += (1/n) * TracePath(p, d)

TracePath(p, d) returns (r,g,b) [and calls itself recursively]:
§ Trace ray (p, d) to find nearest intersection p’
§ Select with probability (say) 50%:

§ Emitted:
 return 2 * (Lered, Legreen, Leblue) // 2 = 1/(50%)

§ Reflected:
 generate ray in random direction d’
 return 2 * fr(d èd’) * (n�d’) * TracePath(p’, d’)

12

3

Simplest Monte Carlo Path Tracer
For each pixel, cast n samples and average

§ Choose a ray with p=camera, d=(θ,ϕ) within pixel
§ Pixel color += (1/n) * TracePath(p, d)

TracePath(p, d) returns (r,g,b) [and calls itself recursively]:
§ Trace ray (p, d) to find nearest intersection p’
§ Select with probability (say) 50%:

§ Emitted:
 return 2 * (Lered, Legreen, Leblue) // 2 = 1/(50%)

§ Reflected:
 generate ray in random direction d’
 return 2 * fr(d èd’) * (n�d’) * TracePath(p’, d’)

Weight = 1/probability
Remember: unbiased
requires having f(x) / p(x)

13

Simplest Monte Carlo Path Tracer
For each pixel, cast n samples and average

§ Choose a ray with p=camera, d=(θ,ϕ) within pixel
§ Pixel color += (1/n) * TracePath(p, d)

TracePath(p, d) returns (r,g,b) [and calls itself recursively]:
§ Trace ray (p, d) to find nearest intersection p’
§ Select with probability (say) 50%:

§ Emitted:
 return 2 * (Lered, Legreen, Leblue) // 2 = 1/(50%)

§ Reflected:
 generate ray in random direction d’
 return 2 * fr(d èd’) * (n�d’) * TracePath(p’, d’)

Path terminated when
Emission evaluated

14

15

Arnold Renderer (M. Fajardo)
§ Works well diffuse surfaces, hemispherical light

16

From CS 283(294) many years ago

Daniel Ritchie and Lita Cho

17

Advantages and Drawbacks

§ Advantage: general scenes, reflectance, so on
§ By contrast, standard recursive ray tracing only mirrors

§ This algorithm is unbiased, but horribly inefficient
§ Sample “emitted” 50% of the time, even if emitted=0
§ Reflect rays in random directions, even if mirror
§ If light source is small, rarely hit it

§ Goal: improve efficiency without introducing bias
§ Variance reduction using many of the methods

discussed for Monte Carlo integration last week
§ Subject of much interest in graphics in 90s till today

18

4

Outline

§ Motivation and Basic Idea

§ Implementation of simple path tracer

§ Variance Reduction: Importance sampling

§ Other variance reduction methods

§ Specific 2D sampling techniques

19

Importance Sampling
§ Pick paths based on energy or expected contribution

§ More samples for high-energy paths
§ Don’t pick low-energy paths

§ At “macro” level, use to select between reflected vs
emitted, or in casting more rays toward light sources

§ At “micro” level, importance sample the BRDF to pick
ray directions

§ Tons of papers in 90s on tricks to reduce variance in
Monte Carlo rendering

§ Importance sampling now standard in production. I
consulted on Pixar’s system (~2011)

20

Importance Sampling

Can pick paths however we want, but
contribution weighted by 1/probability
§ Already seen this division of 1/prob in weights to

emission, reflectance

f (x)dx
Ω
∫ = 1

N
Yi

i=1

N

∑

Yi =
f (xi)
p(xi)

x1 xN

E(f(x))

21

Simplest Monte Carlo Path Tracer
For each pixel, cast n samples and average

§ Choose a ray with p=camera, d=(θ,ϕ) within pixel
§ Pixel color += (1/n) * TracePath(p, d)

TracePath(p, d) returns (r,g,b) [and calls itself recursively]:
§ Trace ray (p, d) to find nearest intersection p’
§ Select with probability (say) 50%:

§ Emitted:
 return 2 * (Lered, Legreen, Leblue) // 2 = 1/(50%)

§ Reflected:
 generate ray in random direction d’
 return 2 * fr(d èd’) * (n�d’) * TracePath(p’, d’)

22

Importance sample Emit vs Reflect

TracePath(p, d) returns (r,g,b) [and calls itself recursively]:
§ Trace ray (p, d) to find nearest intersection p’
§ If Le = (0,0,0) then pemit= 0 else pemit= 0.9 (say)
§ If random() < pemit then:

§ Emitted:
 return (1/ pemit) * (Lered, Legreen, Leblue)

§ Else Reflected:
 generate ray in random direction d’
 return (1/(1- pemit)) * fr(d èd’) * (n�d’) * TracePath(p’, d’)

23

Importance sample Emit vs Reflect

TracePath(p, d) returns (r,g,b) [and calls itself recursively]:
§ Trace ray (p, d) to find nearest intersection p’
§ If Le = (0,0,0) then pemit= 0 else pemit= 0.9 (say)
§ If random() < pemit then:

§ Emitted:
 return (1/ pemit) * (Lered, Legreen, Leblue)

§ Else Reflected:
 generate ray in random direction d’
 return (1/(1- pemit)) * fr(d èd’) * (n�d’) * TracePath(p’, d’)

Can never be 1 unless
Reflectance is 0

24

5

Outline

§ Motivation and Basic Idea

§ Implementation of simple path tracer

§ Variance Reduction: Importance sampling

§ Other variance reduction methods

§ Specific 2D sampling techniques

25

More variance reduction

§ Discussed “macro” importance sampling
§ Emitted vs reflected

§ How about “micro” importance sampling
§ Shoot rays towards light sources in scene
§ Distribute rays according to BRDF

26

§ Pick a light source

§ Trace a ray towards that light

§ Trace a ray anywhere except for that light
§ Rejection sampling

§ Divide by probabilities
§ 1/(solid angle of light) for ray to light source
§ 1/(2 𝜋𝜋 – solid angle) for non-light ray
§ So mult by solid angle for ray to light, and

2 𝜋𝜋 – solid angle non-light ray
§ Use two rays so no extra factor of 2 needed

One Variation for Reflected Ray

27

Russian Roulette

§ Maintain current weight along path
(need another parameter to TracePath)

§ Terminate ray iff |weight| < const.

§ Be sure to weight by 1/probability

28

29 30

6

Monte Carlo Extensions

Unbiased
§ Bidirectional path tracing
§ Metropolis light transport

Biased, but consistent
§ Noise filtering
§ Adaptive sampling
§ Irradiance caching

31

Monte Carlo Extensions

Unbiased
§ Bidirectional path tracing
§ Metropolis light transport

Biased, but consistent
§ Noise filtering
§ Adaptive sampling
§ Irradiance caching

RenderPark

32

Monte Carlo Extensions

Unbiased
§ Bidirectional path tracing
§ Metropolis light transport

Biased, but consistent
§ Noise filtering
§ Adaptive sampling
§ Irradiance caching

Heinrich

33

Monte Carlo Extensions

Unbiased
§ Bidirectional path tracing
§ Metropolis light transport

Biased, but consistent
§ Noise filtering
§ Adaptive sampling
§ Irradiance caching

Unfiltered

Filtered Jensen

34

Monte Carlo Extensions

Unbiased
§ Bidirectional path tracing
§ Metropolis light transport

Biased, but consistent
§ Noise filtering
§ Adaptive sampling
§ Irradiance caching

Adaptive

Fixed

Ohbuchi

35

Monte Carlo Extensions

Unbiased
§ Bidirectional path tracing
§ Metropolis light transport

Biased, but consistent
§ Noise filtering
§ Adaptive sampling
§ Irradiance caching

Jensen

36

7

Monte Carlo Path Tracing Image

2000 samples per pixel, 30 computers, 30 hours Jensen

37

Outline

§ Motivation and Basic Idea

§ Implementation of simple path tracer

§ Variance Reduction: Importance sampling

§ Other variance reduction methods

§ Specific 2D sampling techniques

38

2D Sampling: Motivation

§ Final step in sending reflected ray: sample 2D domain

§ According to projected solid angle

§ Or BRDF

§ Or area on light source

§ Or sampling of a triangle on geometry

§ Etc.

39

Sampling Upper Hemisphere

§ Uniform directional sampling: how to generate
random ray on a hemisphere?

§ Option #1: rejection sampling
§ Generate random numbers (x,y,z), with x,y,z in –1..1
§ If x2+y2+z2 > 1, reject
§ Normalize (x,y,z)
§ If pointing into surface (ray dot n < 0), flip

40

Sampling Upper Hemisphere

§ Option #2: inversion method
§ In polar coords, density must be proportional to sin θ

(remember d(solid angle) = sin θ dθ dϕ)
§ Integrate, invert è cos-1

§ So, recipe is
§ Generate ϕ in 0..2π
§ Generate z in 0..1
§ Let θ = cos-1 z
§ (x,y,z) = (sin θ cos ϕ, sin θ sin ϕ, cos θ)

§ This is what you need to do for homework 3 (simple upper
hemisphere sampling). Anything more advanced (importance
sampling later in lecture) is extra (homework 4).

41 42

8

BRDF Importance Sampling

§ Better than uniform sampling: importance sampling

§ Because you divide by probability, ideally
probability proportional to fr * cos θi

43

BRDF Importance Sampling

§ For cosine-weighted Lambertian:
§ Density = cos θ sin θ
§ Integrate, invert è cos-1(sqrt)

§ So, recipe is:
§ Generate ϕ in 0..2π
§ Generate z in 0..1
§ Let θ = cos-1 (sqrt(z))

44

BRDF Importance Sampling

§ Phong BRDF: fr ~ cosnα where α is angle
between outgoing ray and ideal mirror direction

§ Constant scale = ks(n+2)/(2π)

§ Can’t sample this times cos θi
§ Can only sample BRDF itself, then multiply by cos θi
§ That’s OK – still better than random sampling

45

BRDF Importance Sampling

§ Recipe for sampling specular term:
§ Generate z in 0..1
§ Let α = cos-1 (z1/(n+1))
§ Generate ϕα in 0..2π
§ This gives direction w.r.t. ideal mirror direction

§ Convert to (x,y,z), then rotate such that z points
along mirror dir.

46

Summary

§ Monte Carlo methods robust and simple (at least
until nitty gritty details) for global illumination

§ Must handle many variance reduction methods in
practice

§ Importance sampling, Bidirectional path tracing,
Russian roulette etc.

§ Rich field with many papers, systems researched
even over last 10 years

47

