To Do

Computer Graphics Il: Rendering Homework 2 (direct lighting) due in two days

CSE 168 [Spr 25], Lecture 7: Monte Carlo Path Tracing Next assignment path tracing (on edX edge).
Ravi Ramamoorthi This lecture covers much of that material

http://viscomp.ucsd.edu/classes/cse168/sp25

Motivation Monte Carlo Path Tracing

General solution to rendering and global illumination
Suitable for a variety of general scenes
Based on Monte Carlo methods

Enumerate all paths of light transport

Big diffuse light source, 20 minutes '

Monte Carlo Path Tracing Monte Carlo Path Tracing

Advantages
Any type of geometry (procedural, curved, ...)
Any type of BRDF (specular, glossy, diffuse, ...)

Samples all types of paths (L(SD)*E)
Accuracy controlled at pixel level

Low memory consumption
Unbiased - error appears as noise in final image

Disadvantages (standard Monte Carlo problems)
Slow convergence (square root of number of samples)
Noise in final image

1000 paths/pixel

Monte Carlo Path Tracing

Integrate radiance Specular
for each pixel Surface

by sampling paths
randomly

Diffuse Surface
L, (x,W) =L (xW)+ j;j (X, W, W)L, (x,W')(W’ » i)dw

Q

Sampling Techniques

Problem: how do we generate random points/directions

during path tracing and reduce variance?

Importance sampling (e.g. by BRDF)
Stratified sampling
Eye

Surface

Simplest Monte Carlo Path Tracer

For each pixel, cast n samples and average
Choose a ray with p=camera, d=(8,¢) within pixel
Pixel color += (1/n) * TracePath(p, d)

TracePath(p, d) returns (r,g,b) [and calls itself recursively]:

Trace ray (p, d) to find nearest intersection p ’
Select with probability (say) 50%:
Emitted:
return 2 * (Leed, Legreen, Lebie) // 2 = 1/(50%)
Reflected:
generate ray in random direction d
return 2 * f(d & d’) * (n*d’) * TracePath(p’, d”)

Simple Monte Carlo Path Tracer

Step 1: Choose a ray (u,v,6,9) [per pixel]; assign weight = 1
Step 2: Trace ray to find intersection with nearest surface

Step 3: Randomly choose between emitted and reflected light
Step 3a: If emitted,
return weight” * Le
Step 3b: If reflected,
weight’’ *= reflectance
Generate ray in random direction
Go to step 2

Outline

Motivation and Basic Idea
Implementation of simple path tracer
Variance Reduction: Importance sampling
Other variance reduction methods

Specific 2D sampling techniques

Simplest Monte Carlo Path Tracer

For each pixel,
Choose a ray with p=camera, d=(8,¢) within pixel
Pixel color +=

TracePath(p, d) returns (r,g,b) [and calls itself recursively]:
Trace ray (p, d) to find nearest intersection p ’
Select with probability (say) 50%:

Emitted:

return 2 * (Leed, Legreen, Lebie) // 2 = 1/(50%)
Reflected:

generate ray in random direction d

return 2 * f(d & d’) * (n*d’) * TracePath(p’, d”)

Simplest Monte Carlo Path Tracer

For each pixel, cast n samples and average
Choose a ray with p=camera, d=(8,¢) within pixel
Pixel color += (1/n) * TracePath(p, d)

TracePath(p, d) returns (r,g,b) [and calls itself recursively]:

Trace ray (p, d) to find nearest interse
Select with probability (say)

Remember: unbiased

Emitted: requires having f(x) / p(x)

return 2 * (Lered, Legreen, Lepiue) // 2 = 1/(50%)
Reflected:

generate-ray in random direction d

return 2 * f(d >d’) * (n*d’) * TracePath(p’, d”)

Path Tracing

CS348B Lecture 14 10 paths / pixel Pat Hanrahan, Spring 2009

15

From CS 283(294) many years ago

Daniel Ritchie and Lita Cho

Simplest Monte Carlo Path Tracer

For each pixel, cast n samples and average
Choose a ray with p=camera, d=(8,¢) within pixel
Pixel color += (1/n) * TracePath(p, d)

TracePath(p, d) returns (r,g,b) [and calls itself recursively]:
Trace ray (p, d) to find nearest intersection p *
Select with probability (say) 50%:

Emitted:

return 2 * (Leed, Legreen, Lebiue) // 2 = 1/4(50%
Reflected: Path terminated when
o a 9 Pl Emission evaluated
generate ray in random direction d

return 2 * f(d >d’) * (n*d’) * TracePath(p’, d”)

Arnold Renderer (M. Fajardo)

Works well diffuse surfaces, hemispherical light

Advantages and Drawbacks

Advantage: general scenes, reflectance, so on
By contrast, standard recursive ray tracing only mirrors

This algorithm is unbiased, but horribly inefficient
Sample “emitted” 50% of the time, even if emitted=0
Reflect rays in random directions, even if mirror
If light source is small, rarely hit it

Goal: improve efficiency without introducing bias
Variance reduction using many of the methods
discussed for Monte Carlo integration last week
Subject of much interest in graphics in 90s till today

Outline

Motivation and Basic Idea

Implementation of simple path tracer
Variance Reduction: Importance sampling
Other variance reduction methods

Specific 2D sampling techniques

Importance Sampling

Can pick paths however we want, but

contribution weighted by 1/probability
Already seen this division of 1/prob in weights to
emission, reflectance

Importance sample Emit vs Reflect

TracePath(p, d) returns (r,g,b) [and calls itself recursively]:
Trace ray (p, d) to find nearest intersection p ’

Emitted:
return () ™ (Lered, Legreen; Lebiue)
Reflected:
generate ray in random direction d
return () * f{d >d’) * (ned’) * TracePath(p’, d”)

Importance Sampling

Pick paths based on energy or expected contribution

More samples for high-energy paths
Don'’t pick low-energy paths

At “macro” level, use to select between reflected vs
emitted, or in casting more rays toward light sources

At “micro” level, importance sample the BRDF to pick
ray directions

Tons of papers in 90s on tricks to reduce variance in
Monte Carlo rendering

Importance sampling now standard in production. |
consulted on Pixar’s svstem (~2011)

Simplest Monte Carlo Path Tracer

For each pixel, cast n samples and average
Choose a ray with p=camera, d=(8,¢) within pixel
Pixel color += (1/n) * TracePath(p, d)

TracePath(p, d) returns (r,g,b) [and calls itself recursively]:
Trace ray (p, d) to find nearest intersection p *
Select with probability (say) 50%:

Emitted:

return 2 * (Leed, Legreen, Lebie) // 2 = 1/(50%)
Reflected:

generate ray in random direction d

return 2 * f(d >d’) * (n*d’) * TracePath(p’, d”)

Importance sample Emit vs Reflect

TracePath(p, d) returns (r,g,b) [and calls itself recursively]:
Trace ray (p, d) to find nearest intersection p ’

Can never be 1 unless
Emitted: Reflectance is 0
return () * (Lered, L€green, Lebiue)
Reflected:

generate ray in random direction d
return () * f{d >d’) * (ned’) * TracePath(p’, d”)

Outline

Motivation and Basic Idea
Implementation of simple path tracer

Variance Reduction: Importance sampling

More variance reduction
Discussed “macro” importance sampling
Emitted vs reflected

How about “micro” importance sampling
Shoot rays towards light sources in scene

Other variance reduction methods Distribute rays according to BRDF

Specific 2D sampling techniques

Russian Roulette

One Variation for Reflected Ray

Maintain current weight along path

Pick alight source (need another parameter to TracePath)

facs fayjian ol Terminate ray iff |weight| < const.

Tra&?eitigiysigmgere iy inzlgt Be sure to weight by 1/probability
Divide by probabilities
1/(solid angle of light) for ray to light source
1/(2 = — solid angle) for non-light ray
So mult by solid angle for ray to light, and
2 1 — solid angle non-light ray
Use two rays so no extra factor of 2 needed

Russian Roulette Path Tracing: Include Direct Lighting

Terminate photon with probability p Step 1. Choose a camera ray r given the

Adjust weight of the result by 1/(1-p) (x,y,u,v,t) sample

weight = 1;
E(X) L=0

Step 2. Find ray-surface intersection

E(X) _

E(X)=p-0+(1-p)
I-p
Intuition:

Reflecting from a surface with R=.5 Step 3.

100 incoming photons with power 2 W L += weight * Lr(light sources)

1. Reflect 100 photons with power 1 W weight *= reflectance(r)

2 Reflect 50 photons with power 2 W Choose new ray r’ ~ BRDF pdf(r)

to Step 2.

Go
CS348B Lecture 14 Pat Hanrahan, Spring 2009 CS348B Lecture 14 Pat Hanrahan, Spring 2009

29 30

Monte Carlo Extensions

Unbiased
Bidirectional path tracing
Metropolis light transport

Biased, but consistent
Noise filtering
Adaptive sampling
Irradiance caching

Monte Carlo Extensions

Unbiased
Bidirectional path tracing
Metropolis light transport

Biased, but consistent
Noise filtering
Adaptive sampling
Irradiance caching

Monte Carlo Extensions

Unbiased
Bidirectional path tracing
Metropolis light transport

Biased, but consistent
Noise filtering
Adaptive sampling
Irradiance caching

Adaptive

Heinrich

Ohbuchi

Monte Carlo Extensions

Unbiased
Bidirectional path tracing
Metropolis light transport

Biased, but consistent
Noise filtering
Adaptive sampling
Irradiance caching

Monte Carlo Extensions

Unbiased
Bidirectional path tracing
Metropolis light transport

Biased, but consistent

Noise filtering
Adaptive sampling
Irradiance caching

Monte Carlo Extensions

Unbiased
Bidirectional path tracing
Metropolis light transport

Biased, but consistent
Noise filtering
Adaptive sampling
Irradiance caching

RenderPark

Monte Carlo Path Tracing Image Outline

Motivation and Basic Idea

Implementation of simple path tracer
Variance Reduction: Importance sampling
Other variance reduction methods

Specific 2D sampling techniques

2000 samples per pixel, 30 computers, 30 h(gars Jensen

2D Sampling: Motivation Sampling Upper Hemisphere

Final step in sending reflected ray: sample 2D domain Uniform directional sampling: how to generate

i ?
According to projected solid angle random ray on a hemisphere

Option #1: rejection sampling
Or BRDF Generate random numbers (x,y,z), with x,y,z in —1..1

Or area on light source If X2+y2+z2 > 1, reject
Normalize (x,y,z)

Or sampling of a triangle on geometry If pointing into surface (ray dot n < 0), flip
Etc.

Sampling Projected Solid Angle

Sampling Upper Hemisphere
Generate cosine weighted distribution
Option #2: inversion method
In polar coords, density must be proportional to sin 6
(remember d(solid angle) = sin 6 db dg)
Integrate, invert = cos-'

So, recipe is
Generate ¢ in 0..21
Generate zin 0..1
Let@=cos’z
(x,y,2) = (sin 6 cos ¢, sin O sin ¢, cos 0)

This is what you need to do for homework 3 (simple upper
hemisphere sampling). Anything more advanced (importance

sampling later in lecture) is extra (homework 4). 53488 Lecture 6 Pat Hanrahan, Spring 2004

BRDF Importance Sampling BRDF Importance Sampling

Better than uniform sampling: importance sampling For cosine-weighted Lambertian:

. S Density = cos 8 sin 6
Because you divide by probability, ideally Integrate, invert & cos-'(sqrt)

probability proportional to f. * cos 6; o
So, recipe is:

Generate ¢ in 0..21T
Generate zin 0..1
Let 8 = cos (sqrt(z))

BRDF Importance Sampling BRDF Importance Sampling

Phong BRDF: f; ~ cos"a where « is angle Recipe for sampling specular term:

between outgoing ray and ideal mirror direction Generate zin 0..1
Let @ = cos™ (z!/(*1)
Constant scale = ks(n+2)/(21) Generate ¢, in 0.2

, o This gives direction w.r.t. ideal mirror direction
Can’ t sample this times cos 6; <

Can only sample BRDF itself, then multiply by cos 6; Convert to (x,y,z), then rotate such that z points
That’ s OK — still better than random sampling along mirror dir.

Summary
Monte Carlo methods robust and simple (at least
until nitty gritty details) for global illumination

Must handle many variance reduction methods in
practice

Importance sampling, Bidirectional path tracing,
Russian roulette etc.

Rich field with many papers, systems researched
even over last 10 years

