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Computer Graphics II: Rendering

CSE 168 [Spr 25], Lecture 5: Monte Carlo Integration      
Ravi Ramamoorthi

http://viscomp.ucsd.edu/classes/cse168/sp25
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To Do

§ Homework 2 (Direct Lighting) due Apr 24

§ Assignment is on edX edge

§ START EARLY (NOW)
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Motivation

Rendering = integration
§ Reflectance equation: Integrate over incident illumination
§ Rendering equation: Integral equation

Many sophisticated shading effects involve integrals
§ Antialiasing
§ Soft shadows
§ Indirect illumination
§ Caustics
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Example: Soft Shadows
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Monte Carlo

§ Algorithms based on statistical sampling and 
random numbers

§ Coined in the beginning of 1940s.  Originally used 
for neutron transport, nuclear simulations
§ Von Neumann, Ulam, Metropolis, …

§ Canonical example: 1D integral done numerically
§ Choose a set of random points to evaluate function, and 

then average (expectation or statistical average)
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Monte Carlo Algorithms

Advantages
§ Robust for complex integrals in computer graphics 

(irregular domains, shadow discontinuities and so on)
§ Efficient for high dimensional integrals (common in 

graphics: time, light source directions, and so on)
§ Quite simple to implement
§ Work for general scenes, surfaces
§ Easy to reason about (but care taken re statistical bias)

Disadvantages
§ Noisy
§ Slow (many samples needed for convergence) 
§ Not used if alternative analytic approaches exist (but 

those are rare)
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Outline

§ Motivation

§ Overview, 1D integration

§ Basic probability and sampling

§ Monte Carlo estimation of integrals
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Integration in 1D

x=1

f(x)

  
f (x)dx =

0

1

∫ ?

Slide courtesy of 
Peter Shirley
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We can approximate 

x=1

f(x) g(x)

  
f (x)dx ≈

0

1

∫ g(x)dx
0

1

∫

Slide courtesy of 
Peter Shirley

Standard integration methods like trapezoidal
rule and Simpsons rule

Advantages: 
• Converges fast for smooth integrands
• Deterministic

Disadvantages:
• Exponential complexity in many dimensions
• Not rapid convergence for discontinuities
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Or we can average

x=1

f(x)
E(f(x))

  
f (x)dx

0

1

∫ = E(f (x))

Slide courtesy of 
Peter Shirley
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Estimating the average

x1

f(x)

xN

  
f (x)dx

0

1

∫ = 1
N

f (xi )
i=1

N

∑

E(f(x))

Slide courtesy of 
Peter Shirley

Monte Carlo methods (randomly choose 
samples)

Advantages: 
• Robust for discontinuities
• Converges reasonably for large dimensions
• Can handle complex geometry, integrals
• Relatively simple implement, reason about
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Other Domains

x=b

f(x)
< f >ab

x=a

  
f (x)dx

a

b

∫ = b − a
N

f (xi )
i=1

N

∑

Slide courtesy of 
Peter Shirley
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Multidimensional Domains

Same ideas apply for integration over …
§ Pixel areas
§ Surfaces
§ Projected areas
§ Directions
§ Camera apertures
§ Time
§ Paths

  
f (x)dx

UGLY
∫ = 1

N
f (xi )

i=1

N

∑

Surface

Eye

Pixel

x
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Outline

§ Motivation

§ Overview, 1D integration

§ Basic probability and sampling

§ Monte Carlo estimation of integrals
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Random Variables

§ Describes possible outcomes of an experiment

§ In discrete case, e.g. value of a dice roll [x = 1-6]

§ Probability p associated with each x (1/6 for dice)

§ Continuous case is obvious extension 
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Expected Value

§ Expectation

§ For Dice example: 

  

Discrete: E(x) = pi
i=1

n

∑ xi

Continuous: E(x) = p(x)f (x) dx
0

1

∫

  
E(x) = 1

6i=1

n

∑ xi =
1
6

1+ 2+ 3 + 4 + 5 + 6( ) = 3.5
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Sampling Techniques

Problem: how do we generate random 
points/directions during path tracing?
§ Non-rectilinear domains
§ Importance (BRDF)
§ Stratified

Surface

Eye

x

18



4

Generating Random Points

Uniform distribution:
§  Use random number generator
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0

1

W
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Generating Random Points

Specific probability distribution:
§ Function inversion
§ Rejection
§ Metropolis

Pr
ob
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0

1

W
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Common Operations

Want to sample probability distributions
§ Draw samples distributed according to probability
§ Useful for integration, picking important regions, etc.

Common distributions
§ Disk or circle
§ Uniform
§ Upper hemisphere for visibility
§ Area luminaire
§ Complex lighting like an environment map
§ Complex reflectance like a BRDF
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Generating Random Points
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Rejection Sampling
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Outline

§ Motivation

§ Overview, 1D integration

§ Basic probability and sampling

§ Monte Carlo estimation of integrals
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Monte Carlo Path Tracing

Big diffuse light source, 20 minutes

Jensen
Motivation for rendering in graphics: Covered in detail in next lecture
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Monte Carlo Path Tracing

1000 paths/pixel
Jensen
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Estimating the average

x1

f(x)

xN

  
f (x)dx

0

1

∫ = 1
N

f (xi )
i=1

N

∑

E(f(x))

Slide courtesy of 
Peter Shirley

Monte Carlo methods (randomly choose 
samples)

Advantages: 
• Robust for discontinuities
• Converges reasonably for large dimensions
• Can handle complex geometry, integrals
• Relatively simple implement, reason about
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Monte Carlo Integration
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Variance

x1 xN

E(f(x))

  
Var f (x)⎡⎣ ⎤⎦ =

1
N

[f (xi
i=1

N

∑ )−E(f (x))]2

38
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Variance for Dice Example?

§ Work out on board (variance for single dice roll)
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Variance

x1 xN

E(f(x))

  
Var E(f (x))⎡⎣ ⎤⎦ =

1
N

Var f (x)⎡⎣ ⎤⎦

Variance decreases as 1/N
Error decreases as 1/sqrt(N)
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Variance

§ Problem: variance decreases with 1/N
§ Increasing # samples removes noise slowly

x1 xN

E(f(x))
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Variance Reduction Techniques

§ Importance sampling

§ Stratified sampling

  
f (x)dx

0

1

∫ = 1
N

f (xi )
i=1

N

∑
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Importance Sampling

Put more samples where f(x) is bigger

  

f (x)dx
Ω
∫ = 1

N
Yi

i=1

N

∑

Yi =
f (xi )
p(xi )

x1 xN

E(f(x))
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Importance Sampling

§ This is still unbiased

x1 xN

E(f(x))

  

E Yi
⎡⎣ ⎤⎦ = Y(x)p(x)dx

Ω
∫

= f (x)
p(x)

p(x)dx
Ω
∫

= f (x)dx
Ω
∫

for all N
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Importance Sampling

§ Zero variance if p(x) ~ f(x)

x1 xN

E(f(x))

Less variance with better
importance sampling

  

p(x) = cf (x)

Yi =
f (xi )
p(xi )

= 1
c

Var(Y ) = 0
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Stratified Sampling

§ Estimate subdomains separately

x1 xN

Ek(f(x))

Arvo
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Stratified Sampling

§ This is still unbiased

  

FN = 1
N

f (xi )
i=1

N

∑

= 1
N

NiFi
k=1

M

∑

x1 xN

Ek(f(x))
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Stratified Sampling

§ Less overall variance if less variance 
in subdomains

x1 xN

Ek(f(x))

  
Var [FN ] = 1

N2 Ni
i=1

M

∑ Var [Fi ]
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More Information

§ Veach PhD thesis chapter (linked to from 
website)

§ Course Notes (links from website)
§ Mathematical Models for Computer Graphics, Stanford, Fall 1997
§ State of the Art in Monte Carlo Methods for Realistic Image Synthesis, 

Course 29, SIGGRAPH 2001
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