Computer Graphics Il: Rendering

CSE 168 [Spr 25], Lecture 5: Monte Carlo Integration
Ravi Ramamoorthi

http://viscomp.ucsd.edu/classes/cse168/sp25

Motivation

Rendering = integration
Reflectance equation: Integrate over incident illumination
Rendering equation: Integral equation

Many sophisticated shading effects involve integrals
Antialiasing
Soft shadows
Indirect illumination
Caustics

Monte Carlo

Algorithms based on statistical sampling and
random numbers

Coined in the beginning of 1940s. Originally used
for neutron transport, nuclear simulations
VVon Neumann, Ulam, Metropalis, ...

Canonical example: 1D integral done numerically
Choose a set of random points to evaluate function, and
then average (expectation or statistical average)

To Do

Homework 2 (Direct Lighting) due Apr 24
Assignment is on edX edge
START EARLY (NOW)

Example: Soft Shadows
E(x)= IL,(x,w)costa)

7
Challenges
u Visibility and blockers
m Varying light distribution
= Complex source geometry

Source: Agrawala. Ramamoorthi, Heirich, Moll, 2000

Monte Carlo Algorithms

Advantages
Robust for complex integrals in computer graphics
(irregular domains, shadow discontinuities and so on)
Efficient for high dimensional integrals (common in
graphics: time, light source directions, and so on)
Quite simple to implement
Work for general scenes, surfaces
Easy to reason about (but care taken re statistical bias)

Disadvantages
Noisy
Slow (many samples needed for convergence)
Not used if alternative analytic approaches exist (but
those are rare)




Outline

Motivation
Overview, 1D integration
Basic probability and sampling

Monte Carlo estimation of integrals

We can approximate

Standard integration methods like trapezoidal
rule and Simpsons rule

Advantages:
« Converges fast for smooth integrands
* Deterministic

Disadvantages:
« Exponential complexity in many dimensions
« Not rapid convergence for discontinuities

Slide courtesy of
Peter Shirley

Estimating the average

j;f(x)dx: %gf(xl.)

Monte Carlo methods (randomly choose
samples)
E(f(X) ) Advantages:
* Robust for discontinuities
« Converges reasonably for large dimensions
« Can handle complex geometry, integrals
« Relatively simple implement, reason about

Slide courtesy of
Peter Shirley

Integration in 1D

th(x)dx:?

Slide courtesy of
Peter Shirley

Or we can average

_1[f(x)dx: E(f(x))

E(f(x))

Slide courtesy of
Peter Shirley

Other Domains

Zf(x)dx:b%gf(xf)

<f>u

Slide courtesy of
Peter Shirley




Multidimensional Domains

Same ideas apply for integration over ...
Pixel areas
Surfaces
Projected areas
Directions
Camera apertures
Time
Paths

Surface

Random Variables

Describes possible outcomes of an experiment

In discrete case, e.g. value of a dice roll [x = 1-6]

Probability p associated with each x (1/6 for dice)

Continuous case is obvious extension

Continuous Probability Distributions

PDF p(x) Uniform

p(x)=>0

CDF P(x)

P(x)= J.p(x)dx
P(x)= i))r(X< x)  P=1

B
Pria <X < fB)= fp(x)dx

a

0

=P(p)-P@ '
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Motivation
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Basic probability and sampling

Monte Carlo estimation of integrals

Expected Value
Expectation Discrete:

Continuous:  E(x)= [ p(x)f(x) dx

[

For Dice example:

E(x):i1 X :1

5% 6(1+2+3+4+5+6):3.5
i=1

Sampling Techniques

Problem: how do we generate random
points/directions during path tracing?
Non-rectilinear domains
Importance (BRDF)

Stratified
Eyeﬂ

Surface




Generating Random Points Generating Random Points
Specific probability distribution:

Uniform distribution:
Use random number generator Function inversion
Rejection
Metropolis

Probability

Probability

Sampling Continuous Distributions

Common Operations
Cumulative probability distribution function

Want to sample probability distributions
Draw samples distributed according to probability P(x)=Pr(X <x)
Useful for integration, picking important regions, etc.

Construction of samples

Solve for X=P-/(U)

Common distributions

Disk or circle
Uniform
Must know:

Upper hemisphere for visibility
1. The integral of p(x)

Area luminaire
Complex lighting like an environment map 0
2. The inverse function P/(x) Y

Complex reflectance like a BRDF
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Example: Power Function

Generating Random Points
o Assume
p(x)=(n+1)x"
P(x)=x""
X~p(x)=>X=P'(U)="YU

Trick
Y = max(U,,U, -, U,,U, )

Cumulative
Probability

n+l
Pr(Y <x)= l_[ Pr(U<x)=x""
i=1
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Sampling a Circle

N

2z 1

00 0 0
r

E. !
A= nj jr drdf = i[r dr}[dﬁ = [’7]‘” HL:): =

Sampling a Circle

WRONG = Equi-Areal

RIGHT = Equi-Areal

p(r,0)drdod = Lr dr do = p(r,0)=—
T V4

p(r,0)= p(r)p(0)
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Rejection Sampling

>
=
o

o]

pe

<)

o

Sampling a Circle: Rejection

do {
X=1-2*U,
Y=1-2+U,

while( X2+ Y2 >1 )

May be used to pick random 2D directions

Circle techniques may also be applied to the sphere
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r=Uu,
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Rejection Methods

1= ljf(x)dx

= ” dx dy

y<f(x)

Algorithm
Pick U, and U,

Accept U, if U, <f(U))

Wasteful? Efficiency = Area / Area of rectangle

C€S348B Lecture 6 Pat Hanrahan, Spring 2004

Outline

Motivation

Overview, 1D integration

Basic probability and sampling
Monte Carlo estimation of integrals




Monte Carlo Path Tracing Monte Carlo Path Tracing

Big diffuse light source, 20 minut;;m D . 1000 péfhs/pixel -

Motivation for rendering in graphics: Covered in detail in next lecture I
enser

Estimating the average Monte Carlo Integration

Jf i Definite integral 1(f)= .[f(x)dx

1
MonteI C?rlo methods (randomly choose Expectation of./f E[f] = Jf(x)p(x) dx

samples,
E(f(X) ) Advantages:
* Robust for discontinuities Random variables
« Converges reasonably for large dimensions
« Can handle complex geometry, integrals
« Relatively simple implement, reason about

Estimator

Slide courtesy of
Peter Shirley

Unbiased Estimator Direct Lighting - Directional Sampling

ElF\J:E%ZY,J ] J.L N
F. 1=1 L . E(x)= |L(x,®)cosOdw
E[ Al m ElY.J:L,XElf(X,)J a

Ray intersection X (x,w)

Properties =N Z:;[f x)p(x)dx
i ZY ZE Z f Sample  uniformly by Q
f(x)dx

NS Y, =L(x' (x,0,),~®,) cos O 27

E[aY 1= [Y ]
= J.f(x)d,\‘
Assume uniform probability
distribution for now
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Direct Lighting - Area Sampling "
ariance

E(x) = [L(x.0)cosfdwr = [L,(x'.a))V(x. y)Losdeosd
Q 1

a
]

Ray direction @' =x-x'

Var[f(x)]= <3 1f(x)- EC()P

=il

Sample X’ uniformly by A

cosd cos !
Y =L,(x, &)V (x,x)———>+4
|x —x/
Vi) JO —wisible
x,x)=
Il visible
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Variance . .
Variance for Dice Example?

Definition
VIY]= EL(Y - E[Y])’]
E[Y? - 2YE[Y]+ E[YT]
E[Y’|-E[YT
Properties

USRAEDIYN

ViaY]=da*V|Y]

Work out on board (variance for single dice roll)

Variance decreases with sample size

1< 1 < 1
iy 21= TZ AREURY

i=l
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Variance Variance

Problem: variance decreases with 1/N
Increasing # samples removes noise slowly

Var[ E(f(x)) ] = %Var[f(x)]

Variance decreases as 1/N
Error decreases as 1/sqrt(N)




Variance Reduction

Variance Reduction Techniques

Efficiency measure
1 Importance sampling

Efficiency o« m Stratified sampling

Techniques
= Importance sampling

s Sampling patterns: stratified, ...
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Importance Sampling Importance Sampling
Put more samples where f(x) is bigger This is still unbiased

E[Y,]= [ Y(x)p(x)dx

-WP(X)dX

= [f(x)ox

L)

for all N

Importance Sampling Stratified Sampling
Zero variance if p(x) ~ f(x) Estimate subdomains separately

p(x) = cf(x)
_f(x) 1

i

Tpx)
Var(Y)=0

i

E(f(x))

Less variance with better
importance sampling




Stratified Sampling

This is still unbiased

More Information

Veach PhD thesis chapter (linked to from
website)

Course Notes (links from website)
Mathematical Models for Computer Graphics, Stanford, Fall 1997
State of the Art in Monte Carlo Methods for Realistic Image Synthesis,
Course 29, SIGGRAPH 2001

Stratified Sampling

Less overall variance if less variance
in subdomains

M
Var[F,]= #ZN/.Var[F/.]
i=1




