Computer Graphics Il: Rendering

CSE 168 [Spr 25], Lecture 3: lllumination and Reflection
Ravi Ramamoorthi

http://viscomp.ucsd.edu/classes/cse168/sp25

Illumination Models

Local lllumination
Light directly from light sources to surface
No shadows (cast shadows are a global effect)

Global lllumination: multiple bounces (indirect light)
Hard and soft shadows
Reflections/refractions (already seen in ray tracing)
Diffuse and alossy interreflections (radiosity, caustics)

Some images courtesy Henrik Wann Jensen

Radiosity

To Do

Homework 1 (ray tracer) due Monday

Next assignment direct lighting (on edX edge).
Will cover that material next week

Diffuse Interreflection

Caustics

Caustics: Focusing throu h specular surface




Motivation: BRDFs, Radiometry

Basics of lllumination, Reflection

Formal radiometric analysis (not ad-hoc)
Reflection Equation (Local lllumination)
Discussion of BRDFs

Rendering Equation (Global lllumination) on Thu

Formal analysis important for correct implementation

Light

Visible electromagnetic radiation
Power spectrum e. ot/

Polarization
Photon (quantum effects) From I'_.on‘d.on.aind.Upt(.)n

Wave (interference, diffraction)
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Radiometry

= Physical measurement of electromagnetic energy

= Measure spatial (and angular) properties of light
= Radiance, Irradiance
= Reflection functions: Bi-Directional Reflectance
Distribution Function or BRDF
= Reflection Equation
= Simple BRDF models

Angles and Solid Angles
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= sphere has 41 steradians
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Differential Solid Angles

A

rsin@

dA =(rd0)(rsinf do)
=r’sin@dO d¢
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Differential Solid Angles

A

rsin@

dA =(rd0)(rsinf do)
=r’sin@dO d¢

do="2 _ino 46 do
=
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Differential Solid Angles

A do=sin6dod¢

rsin@

Q= jdm
2
> :j:;fsinf)(ledq)
= j_jfdcosﬁ do
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Sphere  S°
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Radiance
» Power per unit projected area perpendicular

to the ray per unit solid angle in the direction
of the ray do

+ Symbol: L(x,w) (W/mZ sr)

* Flux given by
d® = L(x,w) cos 6 dw dA

L(x,m)
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Radiance properties

+ Radiance constant as propagates along ray
— Derived from conservation of flux
— Fundamental in Light Transport.

’F — C d®, = LdwdA = Ldw,dd =do,
; ™ , :

do,=dA, [ do,=dA4 /1

o
- \> dw,dA, = dAdd, =dw,d4,
r

Quiz

Does radiance increase under a magnifying glass?

No!!
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Quiz

Does the brightness that a wall appears to the
eye depend on the distance of the viewer to the

wall?

No!!
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Radiance properties

» Sensor response proportional to radiance
(constant of proportionality is throughput)
— Far away surface: See more, but subtends
smaller angle
— Wall equally bright across viewing distances
Consequences
— Radiance associated with rays in a ray tracer
— Other radiometric quants derived from radiance
— This course primarily about computing radiance
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Irradiance, Radiosity

* Irradiance E is radiant power per unit area
* Integrate incoming radiance over

— Power per unit area leaving
surface (like irradiance)

hemisphere )
— Projected solid angle (cos 6 dw) &
— Uniform illumination: // { &
Irradiance = [CW 24,25] | —
— Units: W/m2 N
» Radiant Exitance (radiosity) T 28 rrecionordgereniat rea
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Irradiance from the Environment

d2¢i(.v,w) =L,(x,m)cosOdA dw

dE(x,w)= L (x,w)cos0 dw

Light meter E(x)= J. L(x,w)cos0 dw
Py
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Irradiance Environment Maps

Incident Radiance
(INumination Environment Map)

Irradiance Environment Map

Directional Power Arriving at a Surface

/ L(x.0)
dw
dA 74
o/ .
/ d"®,(x,w)=L,(x,w)cos0dAdw
a’2<I),.(x,a))
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Uniform Area Source

E(x)= j LcosOdw

H

= L'[cosed(o

Q

=LQ
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Radiometry

= Physical measurement of electromagnetic energy

= Measure spatial (and angular) properties of light
= Radiance, Irradiance
= Reflection functions: Bi-Directional Reflectance
Distribution Function or BRDF
= Reflection Equation
= Simple BRDF models
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Types of Reflection Functions

Ideal Specular
m Reflection Law
m Mirror
Ideal Diffuse
m Lambert’s Law
m Matte
Specular
m Glossy

S oK

m Directional diffuse
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Materials

Plastic Metal Matte

From Apodaca and Gritz, Advanced RenderMan
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Spheres [Matusik et al.]
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Building up the BRDF

« Bi-Directional Reflectance Distribution
Function [Nicodemus 77]

* Function based on incident, view direction
* Relates incoming light energy to outgoing

+ Unifying framework for many materials
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The BRDF

Bidirectional Reflectance-Distribution Function

dL (x,0,)

o -0)=

dL(w, > ®,) ‘:L}
dE,
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BRDF

» Reflected Radiance proportional Irradiance

» Constant proportionality: BRDF

+ Ratio of outgoing light (radiance) to incoming
light (irradiance)
— Bidirectional Reflection Distribution Function
— (4 Vars) units 1/sr

f(@,a) L)

- Li(wi)cos Bidwi
Li(or) = Li{w)) f (i, ) cos Bid wi
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Properties of BRDF’s

1. Linearity

From Sillidn, Arvo, Westin, Greenberg

2. Reciprocity principle
o, - o)=f(0->ao)

Pat Hanrahan, Spring 2009
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Isotropic vs Anisotropic

= |sotropic: Most materials (you can rotate about
normal without changing reflections)

= Anisotropic: brushed metal etc. preferred

tangential direction

Anisotropic

Isotropic

Properties of BRDF’s

3. Isotropic vs. anisotropic
1,(6,.9,:6,.9,) = /,(6..6,.0, - ¢,)

Reciprocity and isotropy

£6,.6,.0,—0) = £.(6,.6,.0,—9,) = £.(6,.6,.lo, -0,

4. Energy conservation
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Reflection Equation

L (x0.)=L(x%0,)+L(x0)(X0,0, )o,n)
BRDF Cosine of
Incident angle

Reflected Light Emission  Incident
(Output Image) Light (from
light source)
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Energy Conservation

_[ L (®@,)cos6_ dw,
dd, o

dod, - J'L‘(w,)cose, dw,
Q

_[ Jf,(a)‘ - o,)L,(w,)cos6, dw,cosO_dw,

_ Q0

| Li@)cos6, da,
Q,
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Reflection Equation

Sum over all light sources

L(x0)=L(x0)+Y, L(xo)(x0,o )o,-n)
Reflected Light ~ Emission  Incident BRDF Cosine of
(Output Image) Light (from Incident angle

light source)



Reflection Equation

Replace sum with integral
L(x0)=L(x0)+ J‘ L.(x,0.)f(x, 0, ®,) cos 6. dw,
Q

Reflected Light ~ Emission - Incident BRDF Cosine of
(Output Image) Light (from Incident angle
light source)

Environment Maps

Environment maps widely used as lighting representation

Many modern methods deal with offline and real-time
rendering with environment maps

Image-based complex lighting + complex BRDFs

Environment Maps
Light as a function of direction, from entire environment

Captured by photographing a chrome steel or mirror sphere

Accurate only for one point, but distant lighting same at other
scene locations (typically use only one env. map)
! o\

Blinn and Newell 1976, Miller and Hoffman, 1984
Later, Greene 86, Cabral et al. 87

Radiometry

= Physical measurement of electromagnetic energy

= Measure spatial (and angular) properties of light
= Radiance, Irradiance
= Reflection functions: Bi-Directional Reflectance
Distribution Function or BRDF
= Reflection Equation
= Simple BRDF models

Brdf Viewer plots

Anisotropic

bv written by Szymon Rusinkiewicz
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Ideal Diffuse Reflection

Assume light is equally likely to be reflected in
any output direction (independent of input
direction).

L, @)= f L(@)cos0,do,

3
=oft P

M= JL,,(a),_)cos 6 do, =L, _[ cos@ dw, =7L,

M rzL nf E P,
=—=—2l=—Lf _ =g = ==
R TR

Pa

Lambert’s Cosine Law M = p ,E = p E cos0,
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Phong Model

R(L)

(E-R(t))s

Reciprocity: (EeR(L)) =(L eR(E))

Distributed light source!
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Fresnel Reflectance
Metal (Aluminum) Dielectric (N=1.5)
) e EW{&IM‘ bt
"5 @
a2 02/
o I

T —
Angls fiom

normal

Gold  F(0)=0.82
Silver F(0)=0.95

Angla from normal

n=1.5 F(0)=0.04

Diamond n=2.4 F(0)=0.15

Schlick Approximation F(6) = F(0)+(1 - F(0))(1-cos6)’
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Torrance-Sparrow

Fresnel term:
allows for wavelength
dependency

v

How much of the
copic surface
le to the light
source

How much of the
ma ic
surface sible
to the viewer

amount of shadow

Geometric Attenuation:
reduces the output based on the

distribution function
determines what

oriented to reflect in
the viewer direction.

Specular Term (Phong)

Phong Model

s Pat Hanrahan, Spring 2002
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Experiment
Reflections from a shiny floor
From Lafortune, Foo, Torrance, Greenberg, SIGGRAPH 97
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Other BRDF models

= Empirical: Measure and build a 4D table
= Anisotropic models for hair, brushed steel
= Cartoon shaders, funky BRDFs

= Capturing spatial variation

= Very active area of research
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