

Computer Graphics II: Rendering

CSE 168 [Spr 25], Lecture 3: Illumination and Reflection
Ravi Ramamoorthi

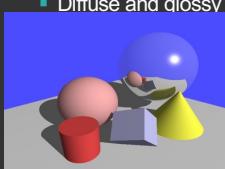
<http://viscomp.ucsd.edu/classes/cse168/sp25>

1

To Do

- Homework 1 (ray tracer) due Monday
- Next assignment direct lighting (on edX edge). Will cover that material next week

2

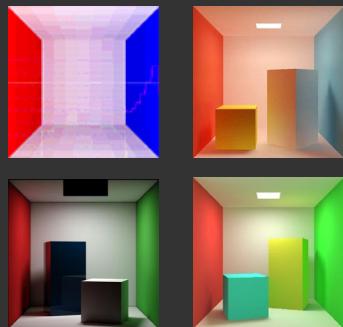

Illumination Models

Local Illumination

- Light directly from light sources to surface
- No shadows (cast shadows are a global effect)

Global Illumination: multiple bounces (indirect light)

- Hard and soft shadows
- Reflections/refractions (already seen in ray tracing)
- Diffuse and glossy interreflections (radiosity, caustics)



Some images courtesy Henrik Wann Jensen

3

Diffuse Interreflection

Diffuse interreflection, color bleeding [Cornell Box]

4

Radiosity

5

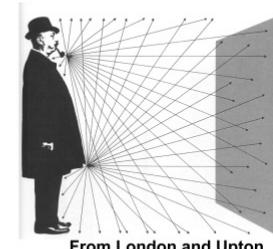
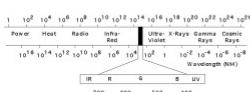
Caustics

Caustics: Focusing through specular surface

- Major research effort in 80s, 90s till today

6

Motivation: BRDFs, Radiometry



- Basics of Illumination, Reflection
- Formal radiometric analysis (not ad-hoc)
- Reflection Equation (Local Illumination)
- Discussion of BRDFs
- Rendering Equation (Global Illumination) on Thu
- Formal analysis important for correct implementation

7

Light

Visible electromagnetic radiation

Power spectrum

Pat Hanrahan, 2009

8

Radiometry

- Physical measurement of electromagnetic energy
- Measure spatial (and angular) properties of light
 - Radiance, Irradiance
 - Reflection functions: Bi-Directional Reflectance Distribution Function or BRDF
 - Reflection Equation
 - Simple BRDF models

9

Angles and Solid Angles

■ Angle $\theta = \frac{l}{r}$

⇒ circle has 2π radians

■ Solid angle $\Omega = \frac{A}{R^2}$

⇒ sphere has 4π steradians

CS348B Lecture 4

Pat Hanrahan, 2009

10

Differential Solid Angles

$$dA = (r d\theta)(r \sin \theta d\phi) = r^2 \sin \theta d\theta d\phi$$

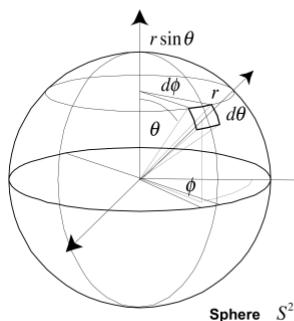
CS348B Lecture 4

Pat Hanrahan, 2009

11

Differential Solid Angles

$$dA = (r d\theta)(r \sin \theta d\phi) = r^2 \sin \theta d\theta d\phi$$


$$d\omega = \frac{dA}{r^2} = \sin \theta d\theta d\phi$$

CS348B Lecture 4

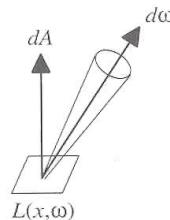
Pat Hanrahan, 2009

12

Differential Solid Angles

$$d\omega = \sin \theta d\theta d\phi$$

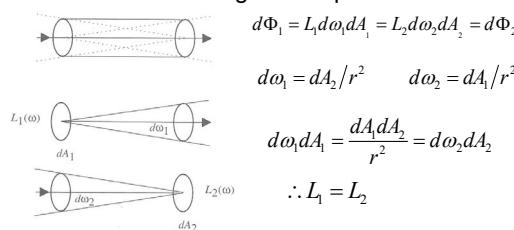
$$\begin{aligned}\Omega &= \int d\omega \\ &= \int_0^{2\pi} \int_0^\pi \sin \theta d\theta d\phi \\ &= \int_0^{2\pi} \int_0^1 d\cos \theta d\phi \\ &= 4\pi\end{aligned}$$


CS348B Lecture 4

Pat Hanrahan, 2009

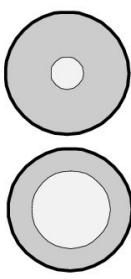
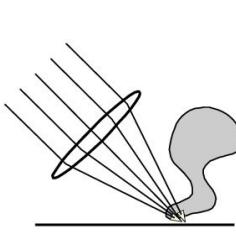
13

Radiance


- Power per unit projected area perpendicular to the ray per unit solid angle in the direction of the ray
- Symbol: $L(x, \omega)$ ($\text{W/m}^2 \text{ sr}$)
- Flux given by $d\Phi = L(x, \omega) \cos \theta d\omega dA$

14

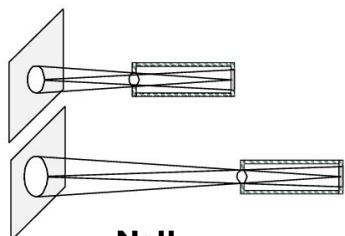
Radiance properties



- Radiance constant as propagates along ray
 - Derived from conservation of flux
 - Fundamental in Light Transport.

15

Quiz

Does radiance increase under a magnifying glass?


CS348B Lecture 4

Pat Hanrahan, Spring 2002

16

Quiz

Does the brightness that a wall appears to the eye depend on the distance of the viewer to the wall?

No!!

CS348B Lecture 4

Pat Hanrahan, Spring 2002

17

Radiance properties

- Sensor response proportional to radiance (constant of proportionality is throughput)

- Far away surface: See more, but subtends smaller angle
- Wall equally bright across viewing distances

Consequences

- Radiance associated with rays in a ray tracer
- Other radiometric quantities derived from radiance
- This course primarily about computing radiance*

18

Irradiance, Radiosity

- Irradiance E is radiant power per unit area
- Integrate incoming radiance over hemisphere
 - Projected solid angle ($\cos \theta d\omega$)
 - Uniform illumination:
Irradiance = π [CW 24,25]
 - Units: W/m^2
- Radiant Exitance (radiosity)
 - Power per unit area leaving surface (like irradiance)

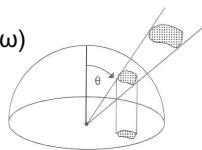
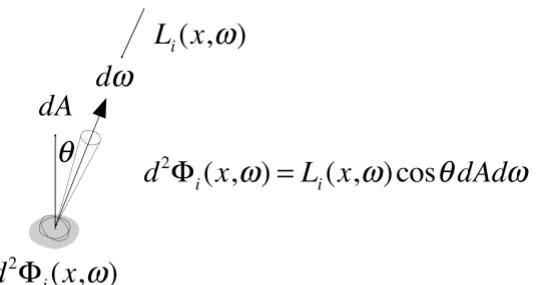



Figure 2.8. Projection of differential area.

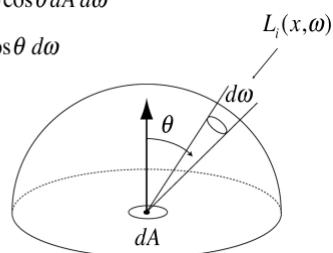
19

Directional Power Arriving at a Surface

CS348B Lecture 4

Pat Hanrahan, 2007

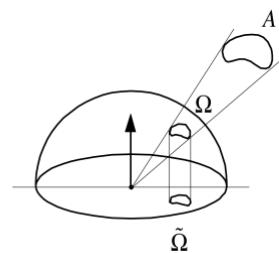
20


Irradiance from the Environment

$$d^2\Phi_i(x, \omega) = L_i(x, \omega) \cos \theta dA d\omega$$

$$dE(x, \omega) = L_i(x, \omega) \cos \theta d\omega$$

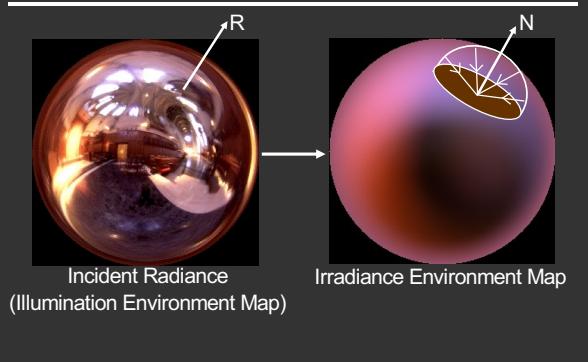
Light meter


$$E(x) = \int_{H^2} L_i(x, \omega) \cos \theta d\omega$$

Pat Hanrahan, 2007

CS348B Lecture 4

Uniform Area Source


$$\begin{aligned} E(x) &= \int_{H^2} L \cos \theta d\omega \\ &= L \int_{\Omega} \cos \theta d\omega \\ &= L \tilde{\Omega} \end{aligned}$$

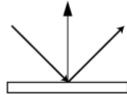
Pat Hanrahan, 2009

22

Irradiance Environment Maps

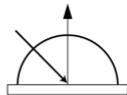
23

Radiometry

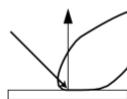

- Physical measurement of electromagnetic energy
- Measure spatial (and angular) properties of light
 - Radiance, Irradiance
 - Reflection functions: Bi-Directional Reflectance Distribution Function or BRDF
 - Reflection Equation
 - Simple BRDF models

24

Types of Reflection Functions


Ideal Specular

- Reflection Law
- Mirror


Ideal Diffuse

- Lambert's Law
- Matte

Specular

- Glossy
- Directional diffuse

CS348B Lecture 10

Pat Hanrahan, Spring 2009

25

Materials

Plastic

Metal

Matte

From Apodaca and Gritz, *Advanced RenderMan*

CS348B Lecture 10

Pat Hanrahan, Spring 2009

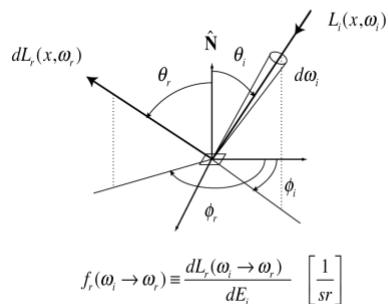
26

Spheres [Matusik et al.]

CS348B Lecture 10

Pat Hanrahan, Spring 2009

27


Building up the BRDF

- Bi-Directional Reflectance Distribution Function [Nicodemus 77]
- Function based on incident, view direction
- Relates incoming light energy to outgoing
- Unifying framework for many materials

28

The BRDF

Bidirectional Reflectance-Distribution Function

$$f_r(\omega_i \rightarrow \omega_r) \equiv \frac{dL_r(\omega_i \rightarrow \omega_r)}{dE_i} \left[\frac{1}{sr} \right]$$

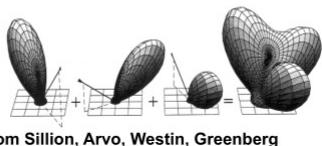
CS348B Lecture 10

Pat Hanrahan, Spring 2009

29

BRDF

- Reflected Radiance proportional Irradiance
- Constant proportionality: BRDF
- Ratio of outgoing light (radiance) to incoming light (irradiance)
 - Bidirectional Reflection Distribution Function
 - (4 Vars) units 1/sr


$$f(\omega_i, \omega_r) = \frac{L_r(\omega_r)}{L_i(\omega_i) \cos \theta_i d\omega_i}$$

$$L_r(\omega_r) = L_i(\omega_i) f(\omega_i, \omega_r) \cos \theta_i d\omega_i$$

30

Properties of BRDF's

1. Linearity

From Sillion, Arvo, Westin, Greenberg

2. Reciprocity principle

CS348B Lecture 10

Pat Hanrahan, Spring 2009

31

Properties of BRDF's

3. Isotropic vs. anisotropic

$$f_r(\theta_i, \varphi_i; \theta_r, \varphi_r) = f_r(\theta_i, \theta_r, \varphi_r - \varphi_i)$$

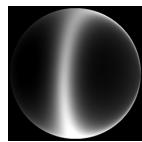
Reciprocity and isotropy

$$f_r(\theta_i, \theta_r, \varphi_r - \varphi_i) = f_r(\theta_r, \theta_i, \varphi_i - \varphi_r) = f_r(\theta_i, \theta_r, |\varphi_r - \varphi_i|)$$

4. Energy conservation


CS348B Lecture 10

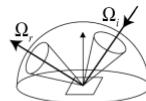
Pat Hanrahan, Spring 2009


32

Isotropic vs Anisotropic

- Isotropic: Most materials (you can rotate about normal without changing reflections)
- Anisotropic: brushed metal etc. preferred tangential direction

Isotropic

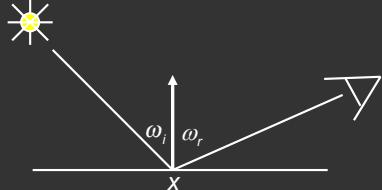

Anisotropic

Energy Conservation

$$\frac{d\Phi_r}{d\Phi_i} = \frac{\int_{\Omega_r} L_r(\omega_r) \cos \theta_r d\omega_r}{\int_{\Omega_i} L_i(\omega_i) \cos \theta_i d\omega_i}$$

$$= \frac{\int_{\Omega_r} \int_{\Omega_i} f_r(\omega_i \rightarrow \omega_r) L_i(\omega_i) \cos \theta_i d\omega_i \cos \theta_r d\omega_r}{\int_{\Omega_i} L_i(\omega_i) \cos \theta_i d\omega_i}$$

$$\leq 1$$

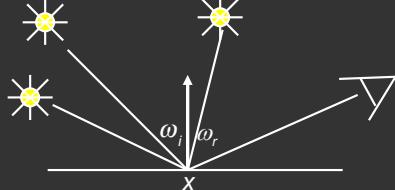


CS348B Lecture 10

Pat Hanrahan, Spring 2009

34

Reflection Equation



$$L_r(x, \omega_r) = L_e(x, \omega_r) + L_i(x, \omega_i) f(x, \omega_i, \omega_r) (\omega_i \cdot n)$$

Reflected Light	Emission	Incident	BRDF	Cosine of
(Output Image)		Light (from		Incident angle
		light source)		

35

Reflection Equation

$$L_r(x, \omega_r) = L_e(x, \omega_r) + \sum L_i(x, \omega_i) f(x, \omega_i, \omega_r) (\omega_i \cdot n)$$

Reflected Light	Emission	Incident	BRDF	Cosine of
(Output Image)		Light (from		Incident angle
		light source)		

36

Reflection Equation

Replace sum with integral

$$L_r(x, \omega_r) = L_e(x, \omega_r) + \int_{\Omega} L_i(x, \omega_i) f(x, \omega_i, \omega_r) \cos \theta_i d\omega_i$$

Reflected Light (Output Image) Emission Incident Light (from light source) BRDF Cosine of Incident angle

37

Environment Maps

- Light as a function of direction, from entire environment
- Captured by photographing a chrome steel or mirror sphere
- Accurate only for one point, but distant lighting same at other scene locations (typically use only one env. map)

Blinn and Newell 1976, Miller and Hoffman, 1984
Later, Greene 86, Cabral et al. 87

38

Environment Maps

- Environment maps widely used as lighting representation
- Many modern methods deal with offline and real-time rendering with environment maps
- Image-based complex lighting + complex BRDFs

39

Radiometry

- Physical measurement of electromagnetic energy
- Measure spatial (and angular) properties of light
 - Radiance, Irradiance
 - Reflection functions: Bi-Directional Reflectance Distribution Function or BRDF
 - Reflection Equation
 - Simple BRDF models

40

Brdf Viewer plots

Diffuse Torrance-Sparrow Anisotropic

by written by Szymon Rusinkiewicz

41

Ideal Diffuse Reflection

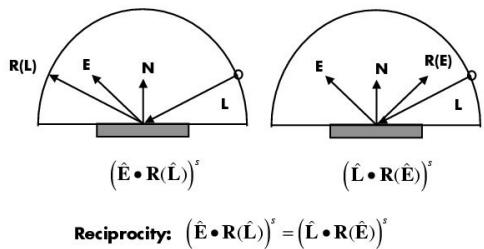
Assume light is equally likely to be reflected in any output direction (independent of input direction).

$$L_{r,d}(\omega_r) = \int f_{r,d} L_i(\omega_i) \cos \theta_i d\omega_i$$

$$= f_{r,d} \int L_i(\omega_i) \cos \theta_i d\omega_i$$

$$= f_{r,d} E$$

$$M = \int L_r(\omega_r) \cos \theta_r d\omega_r = L_r \int \cos \theta_r d\omega_r = \pi L_r$$


$$\rho_d = \frac{M}{E} = \frac{\pi L_r}{E} = \frac{\pi f_{r,d} E}{E} = \pi f_{r,d} \Rightarrow f_{r,d} = \frac{\rho_d}{\pi}$$

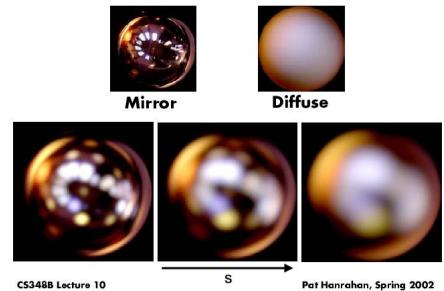
Lambert's Cosine Law $M = \rho_d E = \rho_d E_s \cos \theta_s$

CS348B Lecture 10 Pat Hanrahan, Spring 2002

42

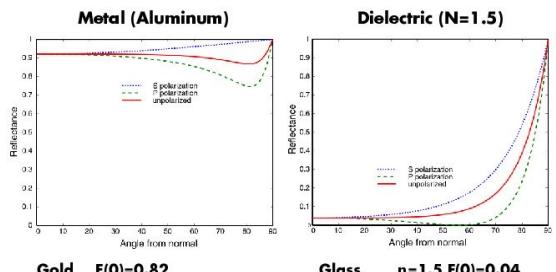
Phong Model

Distributed light source!


CS348B Lecture 10

Pat Hanrahan, Spring 2002

43


Specular Term (Phong)

Phong Model

44

Fresnel Reflectance

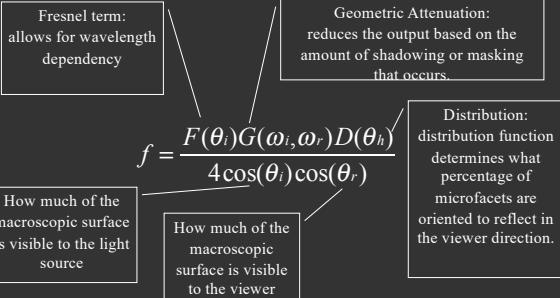
CS348B Lecture 10

Pat Hanrahan, Spring 2002

45

Experiment

Reflections from a shiny floor


From Lafortune, Foo, Torrance, Greenberg, SIGGRAPH 97

CS348B Lecture 10

Pat Hanrahan, Spring 2002

46

Torrance-Sparrow

47

Other BRDF models

- Empirical: Measure and build a 4D table
- Anisotropic models for hair, brushed steel
- Cartoon shaders, funky BRDFs
- Capturing spatial variation
- Very active area of research

48